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Video surveillance of road traffic plays an important role in highway safety and is an 

important application of intelligent transportation systems. One of the basic applications of 

intelligent transport systems is the detection and classification of vehicle types. The major 

problems encountered by these systems are the significant similarity between the vehicles, 

frequent occlusions on the highway, and low resolution of the surveillance cameras. This 

paper proposes a novel convolutional neural network architecture called master-slave 

convolutional deep architecture for vehicle detection and type classification. The basic 

concept of this architecture is twofold: a. The sequential operation of the two networks 

where the slave network only works if the master network detects vehicles in the road scene 

will allow a considerable reduction in the search area for vehicles. It will induce a significant 

reduction in processing time. b. A combination of deep-shallow neural networks allows the 

system to share the knowledge gained from the vehicles on two networks. The first (master) 

shallow learns the shape of vehicles while the second (slave) is responsible for learning all 

the details of vehicles to distinguish the different classes. The experimental results, 

performed on 3200 images, have shown that the favorable performance of the proposed 

CNN architecture allowed us to achieve successful detection with TPR of 92% and TNR of 

95% and vehicle type classification with a considerable mean average precision of 93.38% 

where cars classification gives the highest rate (98.63%).  
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1. INTRODUCTION

Road and motorway safety has become a problem of high 

priority for public authorities because of the massive increase 

in road accidents per year, mainly caused by the violation of 

the traffic code, driving under the influence of drugs, fatigue, 

drowsiness, speeding, congestion, etc. An effective; solution 

to this problem adopted in several developed countries; is 

installing an intelligent transport system (ITS) on the road 

network [1]. 

Intelligent Transportation Systems (ITS) owe their 

establishment and development to new technologies applied in 

the analysis and control of transport to improve safety, 

mobility, and efficiency [2]. 

ITS cover a wide range of applications enabling the 

processing and sharing of information to minimize congestion, 

improve traffic management, reduce pollution. from vehicles 

and increase the reliability and efficiency of public transport. 

The intelligent transportation system (ITS) significantly 

affects transport applications such as electronic toll collection, 

ramp counters, traffic light cameras, traffic light coordination, 

transit signal priority, and traffic systems passenger 

information. 

The adoption of ITS is expected to increase in applications 

such as fleet monitoring, toll management, ticket management, 

transport pricing, telematics, and traffic monitoring. The main 

beneficiaries of the improvements in ITS safety are travelers, 

businesses, and transport agencies. ITS data also has homeland 

security applications [3, 4]. 

The research proposed for improving the efficiency of such 

systems is divided into two parts. The first concerns deep 

research on the improvement of sensor technologies 

representing the source of information for ITS [5-7], and the 

second mainly concerns the scientific community that works 

on improving intelligence algorithms and artificial vision, 

keys elements of ITS decision-making [8-11]. 

IoT research [12-14], which is a combination of technology 

and algorithms, has also participated in important solutions in 

conjunction with network research and its applications such as 

Blockchain, 5G network, … etc. [15-17].  

Deep neural networks (deep learning) have been 

implemented in various fields and have given remarkable 

results, thus opening the door for researchers to expose them 

to unresolved problems [18-20]. Problems of which ITS are 

part, given the constraints and specifications of these systems 

mentioned above. Therefore, recently, deep neural networks 

have been exploited in ITS; to improve their performance, 

which before that was not very favorable; especially when it 

comes to real-time response for the monitoring and prevention 

of road accidents [21-23] or in recognition of the license plate 

or logo of vehicles inviolate of the highway code [24, 25]. 

Another application where deep learning has proven its 

effectiveness both in the context of road safety and energy 

through the control of traffic lights [26, 27]. 
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Most vehicle-type classification systems proposed in the 

scientific literature are based on searching for each frame, 

forcing the system to search for vehicle classes even in scenes 

that do not contain any. This induces a considerable loss in 

research time, thus slowing down these systems, which are 

generally designed to operate in real time. To remedy the 

problem of searching for vehicle types in every frame, we have 

proposed an architecture based on two networks combined as 

master-slave. The search for vehicle types by the slave 

network only takes place if the master detects the presence of 

the vehicles on the scene. this will significantly improve the 

reliability and the performance of these systems. 

The contributions of this paper are summarized as follows: 

• We propose a system of identification and classification 

of vehicle types based on deep learning. 

• We propose an architecture of a sequential CNN based on 

two deep learning networks: the first has the role of 

detection (identification) of vehicles among all moving 

objects in the sequence. In contrast, the second network is 

responsible for classifying the types of vehicles detected 

by the previous network. 

• We propose a master-slave CNN where the vehicle 

detector is the master because his positive decision 

(detection of vehicles) will start the operation of the 

classifier CNN considered a slave. 

• We propose a combination of shallow and deep networks 

where the choice of network depth depends on the context 

characteristics of the object sought in the scene, this is 

why the identification of the vehicles, which is an 

operation that requires only coarse details of the general 

appearance of vehicles to be able to distinguish them from 

other types of objects in the scene, we have chosen a 

shallow network, and for the classification of vehicle 

types, which is an operation that requires learning lesser 

details about each vehicle, we have adopted a deep 

network. 

The remainder of this paper is organized as follows:  

Section II presents related works about intelligent 

transportation systems and the most recent studies of vehicle 

detection and classification. 

Section III presents the dataset used in the training and test 

of our system. Section IV presents the overall architecture of 

the proposed vehicle identification and type classification 

system. Experiment results are shown in Section V. The final 

section provides conclusions and directions for future research. 

  

 

2. RELATED WORK 

 

The detection and classification of vehicles remain one of 

the ITS problems not yet resolved because of several problems: 

including mainly the acquisition conditions related to sensors 

(cameras, electromagnetic loop, radar, optical fiber…, etc.) 

and the variable external environment in atmospheric 

conditions and lighting [28] 

Researchers in the field of automatic road traffic monitoring 

have conducted preliminary research on detecting and 

classifying vehicles from a video stream issued by cameras 

placed on red highway lights or onboard vehicles in traffic [29]. 

Most recent research has adopted deep networks, thus 

allowing systems to learn from the external environment, 

which is often complex and variable according to climatic 

conditions. For example, Zohra et al. [30] proposed a 

framework for the detection and recognition of vehicles from 

a video stream. The proposed model used a deep learning 

approach based on the convolutional neural network (CNN). 

This model works in two stages: a data preparation stage, 

which applies to process on the images composing the data set 

to extract the characteristics. The second stage used the 

concept of convolutional neural networks to classify vehicles. 

The dataset used contains two files (vehicle files and non-

vehicle files). It is taken from video sequences (obtained by a 

front camera mounted on a car). To ensure proper learning of 

the data, images are captured under different road conditions 

(far, near, left, right). The vehicle file includes 8,798 images, 

and the non-vehicle file includes 8,971 images. Each image is 

of dimension: (64x64) pixels despite obtaining high accuracy. 

Tsai et al. [31] provided an optimized method of vehicle 

detection and classification based on deep learning technology 

for intelligent transport applications. The authors optimized 

the CNN (Convolutional Neural Network) architecture by 

refining the existing CNN architecture for intelligent transport 

applications. The proposed design; achieved 90% accuracy on 

three categories of target vehicles, including small vehicles 

(sedan, SUV, van), large vehicles (bus), and trucks, and 

achieved the performance of 720x480 video in different 

weather conditions (day, night, rain) at 25 fps. The vehicle 

datasets used to form the proposed models are IVS-1 and IVS-

2 (collected by them), consisting respectively of 316,733 and 

599,277 vehicles. 

The combination of deep networks with other methods has 

been considered by researchers in order to set up more 

efficient vehicle detection and classification systems. For 

example, Chen et al. [32] presented a system for detecting and 

classifying vehicles using traffic surveillance cameras. First, 

the scales and proportions of the vehicles are grouped into the 

vehicle datasets using the k-means algorithm. Then a 

convolutional neural network is used to detect a vehicle then 

high-level, and low-level features are concatenated using 

feature merge techniques. Detected vehicles are therefore 

classified into four categories (bus, minibus, car, truck). To 

improve speed, a fully convolutional architecture is adopted 

instead of fully connected “FC” layers. The performance of the 

algorithm is evaluated on the “JiangSuHighway Dataset" 

(JSHD), composed of 5000 images collected from 25 videos 

of the JiangSu highway. The proposed algorithm achieved 

significant improvement over Faster R-CNN and SSD. The 

network speed is 15 FPS, three times faster than the Faster R-

CNN. Seo [33] proposed a method of detection and 

classification of vehicles according to AUSTROADS’s plan 

using Deep Learning and UAV (Unmanned Aerial Vehicle) in 

4K UHD (ultra-high definition). Darknet-53 and Kalman filter 

are used to detect and classify vehicle types in UHD images. 

The aerial images used in this article are images of vehicles on 

the road, recorded at an altitude of fewer than 120 m using a 

drone (Phantom3 Professional by DJI). The size of the 

experimental images is 3940 × 2160, 30 FPS in UHD 

resolution. Vehicles are classified into three categories 

according to their size: short vehicles (motorcycles, cars), 

medium vehicles (buses, heavy trucks), and long vehicles 

(long trailers). Authors also suggested the variable 

classification method based on parked and stopped cars for 

traffic flow monitoring. He, therefore, considered the three 

conditions of driving, stopping, and parking. The results of the 

experiment show that the proposed approach gives low errors 

than conventional methods, which use a fixed search area. 

Asvadi et al. [34] discussed the problem of vehicle detection 

using Deep Convolutional Neural Network (ConvNet) and 
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3D-LIDAR (Object Motion Detector) data. They introduced: 

a vehicle detection system based on HG-HV (the hypothesis 

generation and verification) paradigm using a Deep ConvNet 

and range data from a 3D-LIDAR mounted on board an 

instrumented vehicle. The proposed solution is based on 

removing the points on the ground, followed by segmentation 

of the point clouds. Then bounding boxes are fitted to the 

segmented objects as vehicle hypotheses (step HG). Finally, 

the bounding boxes are used as inputs in a ConvNet to 

classify/verify the assumptions belonging to the category 

"vehicle" (step HV). The performance of the proposed system 

is evaluated on the KITTI Benchmark [35], where vehicle 

recognition accuracy with applying data augmentation is 

96.02% for the training data set and 91.93% for the validation 

data set. 

Although the existing studies have led to fruitful and 

encouraging results, the existing systems, on the one hand, do 

not meet the specific needs of poor road traffic, and, on the 

other hand, the majority of the proposed systems are based on 

a single search and classification module based on a single 

deep network embedded on sophisticated hardware, thus 

compensating for the shortcomings of these systems. Our 

study is based on the proposal of a new architecture using two 

CNN networks combined as master-slave whose main 

objective is to adapt to our road system (which is more or less 

mediocre) and having considerable performance thanks to the 

separation of detectors and vehicle classifiers, even if the 

equipment used is not high performance. 

 

 

3. DATASET 

  

The training and test of the proposed system are performed 

using a publicly available dataset called MIO-TCD dataset. 

Vehicle classification [36] with 50,000 images where vehicles 

are presented in different lighting conditions, different 

resolutions, and different viewing angles. 

This dataset contains 11 categories described in Table 1. 

Figure 1 contains some sample images of the MIO-TCD 

dataset. 

 

 
 

Figure 1. Sample images of the MIO-TCD dataset 

 

Table 1. Categories of MIO-TCD dataset 

 
Categories Number 

Car 6238 

Bus 5072 

Bicycle 2254 

motorcycle 1952 

pedestrian 6232 

Pickup truck 6260 

Non motorize vehicle 1721 

Work van 5425 

Articulated truck 4961 

Non-motorized vehicle 1721 

Single unit truck 5090 

4. PROPOSED METHOD 

 

The brief architecture of the proposed framework is shown 

in Figure 2. We proposed a vehicle identification and 

classification algorithm based on sequential convolutional 

deep architecture. The proposed is composed of two main 

parts working successively. (1) Vehicle identification module 

whose role is the classification of vehicles / non-vehicles in a 

traffic scene (2) vehicle type classification module, for 

separation of the different types of vehicles according to their 

weight and functions where we have opted for four classes (the 

most present in our highways): car, truck, motorcycle, bus. 

 

4.1 Vehicle identification 

 

Most existing vehicle detection systems under static 

cameras are based on two steps: foreground segmentation and 

vehicle classification. Generally, the task of foreground 

segmentation is to extract from the video stream the regions of 

interest represented by all moving objects then the detected 

blobs will subsequently be classified into vehicles or non-

vehicles. But such systems cannot detect vehicles parked on a 

road or a motorway for a reason of breakdown or accident, for 

example. In this paper, we proposed to merge the two tasks of 

vehicles detection into one that we called vehicle identification 

(Figure 2 (1)), where we used a convolutional neural network 

(CNN) which will scan the whole scene and classify all the 

regions of the image into two classes: vehicle / non-vehicle. 

The images from the video stream of the road traffic scene 

are firstly scaled to a size proportional to the sliding window 

and to the number of network inputs fixed at 100 x 100 pixels. 

Then the CNN will scan the scene with a window of 100 x 100 

pixels to separate the foreground (vehicles) from the 

background, i.e., any object or region present in the traffic 

scene which is not a vehicle like a highway, trees, sidewalk, 

pedestrians, road signs … etc. 

Since the CNN of vehicle identification is based on the 

shape and texture of objects, the color of vehicles is therefore 

optional in our application, so it operates on the grayscale 

image. This will also make it possible to speed up the 

processing (vehicle search) and therefore reduce the vehicle 

identification time to a third (1/3). 

 

Table 2. Model architecture of vehicle identifier CNN 

 

Layer 
Feature 

Map 
Size 

Kernel 

size 

 

Stride 
activation 

Input Image 1 100x100x1 - - - 

1 Conv1 96 90x90x96 11x11 1 Relu 

 
Max 

pool 
96 45x45x96 2x2 1 Relu 

2 Conv2 256 35x35x256 11x11 1 Relu 

 
Max 

pool 
256 17x17x256 2x2 1 Relu 

3 Conv3 384 15x15x384 3x3 1 Relu 

4 Conv4 384 13x13x384 3x3 1 Relu 

5 Conv5 256 11x11x256 3x3 1 Relu 

 
Max 

pool 
256 5x5x256 2x2 1 Relu 

6 FC - 4096 - - Relu 

7 FC - 4096 - - Relu 

8 FC - 1000 - - Relu 

 Output - 1 - - Sigmoid 

 

The model architecture is given in Figure 2 and Table 2. Our 

CNN model consists of 5 convolutional, three max-pooling, 1 
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Flatten, one drop out, and three dense layers. Binary cross-

entropy for loss function and Adam optimizer were used. 

The optimizer used in both networks of our system is 

adaptive moment estimation (Adam) [37] based on adaptive 

estimation of the low-order moment, which is widely applied 

in the machine learning field. 

Binary cross-entropy is intended to use with binary 

classification where the target value is 0 or 1. It compares each 

of the predicted probabilities to the actual class output, which 

can be either 0 or 1. It then calculates the score that penalizes 

the probabilities based on the distance from the expected. 

The loss function as shown in (1), �̂�𝑖  is the predicted value, 

𝑦𝑖  is the target, and N is the output size. Output size is the 

number of scalar values in the model output. 

 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑦𝑖  . 𝑙𝑜𝑔 �̂�𝑖 +  (1 − 𝑦𝑖). log (1 − �̂�𝑖)

𝑁

𝑖=1

 (1) 

 

The output layer needs to configure with a single node and 

a “sigmoid” activation, given by "2"; in order to predict the 

probability for class 1. 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (2) 

 

 
 

Figure 2. The architecture of proposed framework 

 

 
 

Figure 3. The architecture of the VGG-16 model trained on the ImagetNet dataset 

 

 
 

Figure 4. The architecture of VGG-16 with transfer learning 

622



4.2 Vehicle classification type 

 

The vehicle identifier network supplies the regions (blobs) 

classified as vehicles to the vehicle type classifier network 

(Figure 2 (2)) to classify these vehicles as cars, motorcycles, 

trucks, bus. 

We used VGG-16 as a classifier vehicle type network, 

which is pre-trained with ImageNet [38] dataset. Figure 3 and 

Table 3 show a model architecture that has thirteen 

convolutional layers and five maximum 'pooling' layers, then 

three 'fully connected' layers, and finally a 'softmax' classifier 

with 1000 classes where the last layer is replaced by another 

with four classes instead of 1000 classes.  

In order to increase the performance of the Vgg-16 pre-

trained, we have enhanced its training in the four classes 

mentioned above, using transfer learning as shown in Figure 4. 

To extract feature vectors from the VGG-16 model, weights of 

all convolutional layers are frozen, and resulted output is given 

to a new classifier. 

Two steps are necessary for this learning mode:  

a. Download the weights from the pre-trained ‘Vgg16’ 

model.  

b. Train network on the last layers only. 

 

Table 3. Model architecture of vehicle classifier CNN 

 

Layer 
Feature 

Map 
Size 

Kernel 

size 
Stride activation 

Input Image 1 224x224x3 - - - 

1 Conv1 64 224x224x64 3x3 1x1 Relu 

2 Conv2 64 224x224x64 3x3 1x1 Relu 

 
Max 

pool 
128 112x112x128 2x2 2x2 Relu 

3 Conv3 128 112x112x128 3x3 1x1 Relu 

4 Conv4 128 112x112x128 3x3 1x1 Relu 

 
Max 

pool 
256 56x56x256 2x2 2x2 Relu 

5 Conv5 256 56x56x256 3x3 1x1 Relu 

6 Conv6 256 56x56x256 3x3 1x1 Relu 

7 Conv7 256 56x56x256 3x3 1x1 Relu 

 
Max 

pool 
512 28x28x512 2x2 2x2 Relu 

8 Conv8 512 28x28x512 3x3 1x1 Relu 

9 Conv9 512 28x28x512 3x3 1x1 Relu 

10 Conv10 512 28x28x512 3x3 1x1 Relu 

 
Max 

pool 
512 14x14x512 2x2 2x2 Relu 

11 Conv11 512 14x14x512 3x3 1x1 Relu 

12 Conv12 512 14x14x512 3x3 1x1 Relu 

13 Conv13 512 14x14x512 3x3 1x1 Relu 

 
Max 

pool 
512 7x7x512 2x2 2x2 Relu 

 FC - 4096 - - Relu 

 FC - 4096 - - Relu 

 FC - 4096 - - Relu 

 Output - 4 - - Softmax 

 

 

5. EXPERIMENTAL RESULTS 

 

In this section, we introduce the details of network training 

and testing where we used Google Colab [39] as the training 

environment along with Tensorflow for training our model. 

We have used the GPU of Google Colab, which is 60 times 

faster than the CPU. The specifications of CPU runtime 

offered by Google Colab are Intel Xeon Processor with two 

cores @ 2.30 GHz and 13 GB RAM. Python and PyCharm 

were used as the programming language.  

After network training and validation, the trained model is 

imported to perform all the tests on a laptop with an Intel Core 

i7 and 16 Go RAM. 

 

5.1 Dataset 

 

The training of networks was carried out using the MIO-

TCD dataset used differently for each network where in the 

vehicle identifier network, all vehicles (bus, car, truck, … etc.) 

are considered as positive examples, while for the class of 

negative examples, we have considered backgrounds and the 

pedestrians as represented in Table 4. 

In the case of the vehicle classifier network, interest is given 

to vehicle subclasses such as car, bus, car, truck, and 

motorcycle, as represented by Table 5. 

It should be noted that for each network, the dataset is 

separated into 80% for the training phase and the remaining 

20% for the test phase. 

 

Table 4. Dispatching dataset for vehicle identifier CNN 

 
Classes Training  Test  

Vehicles [‘bus’, ‘car’, ‘truck’, ‘motorcycle’] 4000 1000 

Non-Vehicles [‘background’, pedestrian’] 4000 1000 

Total 8000 2000 

 

Table 5. Dispatching dataset for vehicle classifier CNN 

 
Classes Training  Test  

Bus 3550 800 

Car 4366 800 

Motorcycle 1366 800 

Truck 3563 800 

Total 16045 3200 

 

5.2 Evaluation metrics 

 

We have implemented CNNs of our proposed system to 

compare the overall accuracy and loss. Additionally, to 

evaluate the effectiveness of our proposed networks, we have 

calculated the confusion matrix. 

The following conventional evaluation metrics are used for 

the confusion matrix: 

True Positives (TP), which are examples correctly labeled 

as positive; 

True Negatives (TN) refer to negative examples correctly 

labeled as negatives 

False Positives (FP) refer to negative examples incorrectly 

labeled as positives;  

False Negatives (FN), which are positive examples 

mislabeled as negatives. 

Accuracy given by “3”: is a proportion of observations 

correctly predicted to the total observations. 

Loss in CNN: is the difference between the predicted output 

and the actual output. It measures the mistakes made by the 

network in predicting the output. 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

 

In the detection task, the model's prediction is evaluated 

through the Bounding-Box measure, in which the overlap ratio 

between the predicted Bounding-Box Bp and the ground truth 

box Bgt is calculated. A correct detection is obtained when the 
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overlap ratio Intersection over Union (IoU) surpasses 0.5 

using Eq. (4) 

 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (4) 

 

5.3 Training and validation 

 

During the training phase of the vehicles identifier model, 

the following parameters have been fixed: 

 

Optimizer=Adam, loss=binary_crossentropy, epochs=40, 

batch_size=32. 

 

A dataset of 10000 samples is used, including 8000 for 

training and 2000 for validation of the vehicle identifier 

network. Figure 5 illustrates the training and validation 

represented by the graph of accuracy and loss, where we notice 

that the model has reached an accuracy of (98%) during the 

training and (95%) during the test, and a loss of (0.05%) during 

the training and (0.28%) for the test. 

 

 
 

Figure 5. Accuracy and loss for training and validation of 

vehicle identifier CNN 

 

Table 6. Tests of vehicle identifier network 

 
Rates Percentage 

TP 92% 

TN 95% 

FP 05% 

FN 08% 

 

Tests were carried out on 2000 images (20% of the dataset) 

that are not used in training. A recap of the rates obtained 

during the test phase is illustrated in Table 6, where the 

positive detection rate of vehicle classes reached 92%, the 

positive detection rate of the non-vehicle class reached 95%, 

and the false alarms in both classes are markedly weak. 

During the training phase of the vehicles classifier model, 

the following parameters have been fixed: 

 

Optimizer=Adam, loss=categorical_crossentropy, 

epochs=30, batch_size=32. 

 

Figure 6 illustrates the training and validation represented 

by the graph of accuracy and loss, where we notice that the 

model has reached an accuracy of (98%) during the training 

and (92%) during the test, and a loss of (0.05%) during the 

training and (0.4%) for the test. 

Tests were performed on 3200 images (20% of the dataset) 

from the four classes not used in training. A recap of the rates 

obtained during the test phase is illustrated in Table 7 

represents the confusion matrix of the rates obtained for each 

class, where the highest detection rate (98.63%) was obtained 

for the car class and the lowest for the truck class 87.75% 

while the false alarms in the four classes are markedly weak. 

 

 
 

Figure 6. Accuracy and loss for training and validation of 

vehicle classifier CNN 

 

Table 7. Confusion matrix for vehicle classification 

 
   Target Class 

 

Output Class 

Bus  Car  Motor cycle Truck  

Bus 94.62% 01.00% 00.13% 04.25% 

Car  00.25% 98.63% 00.25% 00.87% 

Motorcycle 00.00% 03.63% 92.50% 03.87% 

Truck 06.25% 03.38% 02.62% 87.75% 
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5.4 Tests and analysis 

 

We verify the proposed system for different real highway 

videos. The tests were carried out on videos filmed from a road 

intersection, as shown in Figure 7, where (a) original image, 

(b) Vehicle detection (identification), and (c) vehicle type 

classification. 

From the obtained results, we find the following:  

1. The detector (vehicle presence identifier) manages to 

detect the vehicles which present from different angles of view 

and different positions.  

2. The vehicle type classifier manages to classify the 

majority of the vehicles present in the scene, whatever their 

positions, by discarding, of course, the tiny vehicles that we 

have set at 30 pixels. The obtained overall mean average 

precision (mAP) is 93.38%. 

3. A considerable reduction of processing time (average ten 

fps) thanks to the master-slave combination, which allows the 

classifying network to locate its search on a very small area 

(area of detected vehicle) instead of searching in the entire 

image. 

 

 
(a)                  (b)                          (c) 

 

Figure 7. Illustration of vehicle detection and classification 

(a) original image (b) Vehicle detection (c) vehicle 

classification 

 

It should be noted that:  

1. Subject classes are the four most available (present) 

classes in the Algerian road network.  

2. A class can integrate sub-classes of vehicles having the 

same gauge; for example, the motorcycle class includes 

motorcycles and bicycles, and the Bus class includes: buses, 

minibuses…etc. 

To evaluate the effectiveness of our proposed network, we 

compare the proposed network to the state-of-the-art detectors 

(DenseNet 121, ResNet 90, ResNet 50, Inception V3) on MIO 

TCD. Figure 8 and Table 8 show the results of our experiment. 

Where we notice that our network outperforms the other 

algorithms with an overall mean average precision (mAP) of 

93.38%, thus exceeding state-of-the-art by almost 3%. 

It is also important to note that our network has a high 

ability to detect and classify MCs and trucks. 

Table 8. Results on the MIO TCD 

 
Class 

 

Algorithms  

Bus 

(%)  

Car 

(%) 

Motor 

Cycle 

(MC) 

Truck 

(%) 

Overall 

mAP (%) 

DenseNet 

121 
96.32 98.88 92.32 74.14 90.42 

ResNet 90 95.77 98.47 91.52 74.84 90.15 

ResNet 50 85.73 97.36 87.79 66.42 84.33 

Inception 

V3 
92.25 98.23 88.74 71.35 87.64 

Ours 94.62 98.63 92.50 87.75 93.38 

 

 
 

Figure 8. Graphical comparison of our proposed network and 

the state of the art 

 

 

6. CONCLUSION 

 

In this paper, we present a new CNN architecture based on 

a master-slave convolutional neural network for vehicle 

detection and type classification.  

The two networks operate sequentially as master and slave. 

This separation of the detector and the classifier allowed us to 

boost the performance of the system because instead of the 

classifier proceeding in each frame of the video to search for 

vehicles even when the scene is empty (contains no vehicle) it 

will therefore classify only vehicles previously detected and 

located by the master (detector). The latter is responsible for 

triggering the classifier only in scenes (frames) containing 

vehicles if not the detector goes on to search in the next frame 

without triggering the slave (the classifier) this will reduce the 

tasks and the occupation of the system and thus increase its 

performance. Vehicles are classified into four categories (bus, 

car, truck, motorcycle). Tests were performed on 3200 images 

of the four classes where the best accuracy is obtained for cars 

(98.63%) and the overall mean average precision is (Map) 

93.38% thus exceeding state-of-the-art by almost 3%. It 

should be noted that these results considered very promising 

in the field of ITS are due not only to the proposed master-

slave architecture but also to the type of network used where 

we used a shallow network for the detection because its main 

task is to look for the general shape of the vehicles whereas for 

the classification, we used a deep network to look for details 

allowing to discriminate the vehicles previously detected.  

In future studies, we intend to carry out a series of tests of 

our system on the roads and highways of our country to put it 

into real service for the monitoring of the road network. But 

preliminary tests on the processing time of the system are 

essential before putting it into operation in real time. 
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