
A Schema Integration Approach for Big Data Analysis

Souad Amghar* , Safae Cherdal , Salma Mouline

LRIT, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10080, Morocco

Corresponding Author Email: souad_amghar@um5.ac.ma

https://doi.org/10.18280/isi.280207 ABSTRACT

Received: 22 February 2023

Accepted: 2 April 2023

A huge volume of data is analyzed by organizations to understand their clients and improve

their services. In many cases, these data are stored separately in different database systems

and need to be integrated before being used in analysis tools or prediction applications. One

of the main tasks of data integration process is the definition of the global schema. Defining

a global schema in the context of NoSQL systems is a demanding task since it necessitates

dealing with a variety of issues, including the lack of local schemas, data model

heterogeneity, and semantic heterogeneity. To address these challenges, this work aims to

automatically define the global schema of a set of databases stored in heterogeneous NoSQL

systems. The main contributions of this work are presented in three phases: (1) Schema

extraction where we define the local schemas using a unified representation. (2) Schema

matching in which we propose a hybrid approach to find matching attributes between the

local schemas. (3) Schema integration where we define the global schema using the schema

matching results. A Covid-19 use case as well as other benchmarks are presented in this

paper to evaluate the results of the proposed approach and illustrate its effectiveness.

Keywords:

data integration, NoSQL systems, schema

integration, schema matching

1. INTRODUCTION

Context

Today, practically every organization has transformed into

a data-driven organization, which means that they are using a

method to gather data from various sources and analyze them

to derive valuable information [1].

In addition to their large volume, these data are

heterogenous and most of the time unstructured. Therefore,

they cannot be managed by relational systems. The adoption

of NoSQL systems is the result of all these specificities.

NoSQL which stands for Not Only SQL is used to describe

non-relational, distributed, and scalable systems.

These systems offer high availability, simple scalability,

and support for numerous data structures, making them

excellent for managing massive volumes of data [2].

Unlike relational systems that use a unified data model

representation and query language, NoSQL systems use

different approaches and query languages [3], and they are

grouped into four categories which are document-oriented,

column-oriented, key-value, and graph-oriented [4].

To analyze data stored in different categories of NoSQL

systems we need to integrate them. Data integration is the

problem of combining data stored in many database systems

to provide a unified view of data through a common

representation called the global schema [5].

Problems

The definition of the global schema is one of the main tasks

in the design of a data integration system. Defining a global

schema in the context of NoSQL systems is a demanding task

since it requires addressing several challenges:

• Lack of local schemas: Most NoSQL systems are

schemaless which means that the database does not follow

a predefined schema. This means that each record may

have a distinct schema.

• Data model heterogeneity: Each NoSQL system uses a

different data model to store data. For instance, data in

document-oriented systems are stored as JSON or BSON

documents, whereas data in graph-oriented systems are

stored as graphs.

• Semantic heterogeneity: Data are not stored to be

integrated. They are stored independently for various

purposes. As a result, the names and terminology used to

represent data are different.

Contributions

Because of the lack of works that address the previously

mentioned challenges, this work aims to automatically define

the global schema of a set of databases stored in heterogeneous

NoSQL systems. The main contributions of this work are

presented in three phases:

• Schema extraction phase where we define the local

schemas using a unified representation.

• Schema matching phase in which we propose a hybrid

approach to specify matching attributes between the local

schemas.

• Schema integration phase where we propose a

methodology to define the global schema using the results

of the schema matching.

Our proposition aims to provide data analysts with a unified

view of data stored in various NoSQL systems. This unified

view can be used in big data analysis to query data across

several sources as well as to import data from multiple sources

into one source.

Paper structure

The rest of this paper is organized as follows: Section 2

presents some of the related works. Section 3 gives in detail

the phases of the proposed approach. We provide in section 4

an evaluation of our proposed approach using a Covid-19 use

Ingénierie des Systèmes d’Information
Vol. 28, No. 2, April, 2023, pp. 315-325

Journal homepage: http://iieta.org/journals/isi

315

http://orcid.org/0000-0001-9551-8221
http://orcid.org/0000-0003-1653-4229
http://orcid.org/0000-0003-0417-8968
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280207&domain=pdf

case and a set of benchmarks. Conclusions and future works

are given in section 5.

2. RELATED WORKS

According to a review of 794 articles presented by Guo et

al. [6], there is a lack of data integration solutions in the works

that use data analysis. Most data analysis applications use a

single-sourced methodology that might have left out crucial

indicators and produced biased algorithms. According to this

review, the full potential of data analysis can be realized by

integrating heterogeneous data, which will also increase

accuracy and decrease bias.

One of the few works that performed heterogeneous data

integration for data analysis is KG-COVID-19 [7]. It offers a

method for integrating heterogeneous data from many sources

to produce knowledge graphs. KG-COVID-19 enables users

to make complex queries about pertinent biological entities

and to utilize machine learning analysis for predictions.

Although this solution offers a quick way to combine fresh

data and information from many sources, it is dedicated to the

biomedical research community since it integrates data about

drugs and gene expression. Moreover, this work does not use

NoSQL systems.

Ramadhan et al. [8] propose a semi-automatic schema

integration approach composed of two phases which are

schema matching and schema mapping. In the schema

matching phase, a similarity score is defined for the different

attributes of local schemas by comparing schema instances as

well as attribute names and datatypes using a string-based

similarity measure and a WordNet based semantic similarity

measure. The schema mapping phase generates the global

schema by merging the local schemas concepts that have

matching attributes. This work provides an interesting hybrid

approach for schema matching. However, schema integration

is defined by merging schemas that have at least one match

which may lead to merging concepts that are not similar.

Madhavan et al. [9] is a schema matching system that uses

a hybrid approach to identify matches between schema items

based on their names, datatypes, constraints, and schema

structure. Input schemas are encoded as graphs where nodes

represent schema elements and edges represent the

hierarchical relation between them. This approach uses string-

based and structural similarity measures to create final

matching by selecting pairs of schema components that have a

similarity coefficient greater than the threshold. Cupid

proposes an interesting solution for schema matching based on

many evaluation experiments. However, it tends to rely largely

on predefined domain synonyms and abbreviations which are

not always easy to identify.

The work presented in research [10] is a schema matching

solution that uses two techniques of the instance-based

approach. The first technique uses regular expressions to

compare numeric and mixed data. The second technique uses

a semantic similarity measure. The combination of these two

techniques enables the system to achieve a high F-measure.

However, this solution is based on instances only which makes

it unsuitable for small datasets.

Radwan et al. [11] propose a top-k ranking algorithm that

generates a set of integrated schemas. This approach calculates

the similarity of schemas’ concepts based on the similarity of

their attributes by using Hausdorff Distance measure. The

concepts with a similarity score higher than a predefined

threshold are either merged or connected with a ‘has’

relationship. The main goal of this work is to reduce the

manual effort needed to define the global schema. However,

this solution is limited to relational and XML systems.

We provide in Table 1 a summary of the previously

presented related works where we present their main

contribution and the database systems used.

Table 1. Related works summary

Work Contributions Database systems

[7] Graph Merging YAML Files

[8]
Schema Matching

Schema Integration

Relational, NoSQL, and HDFS

Systems

[9] Schema Matching Relational and XML Systems

[10] Schema Matching Not Specified

[11] Schema Integration Relational and XML Systems

By analyzing the previously presented related works, as

shown in Table 1, we can retrieve the following needs:

• Few works include schema extraction in the global

schema definition process. The vast majority begin with

predefined local schemas. In our context, we assume that

we do not have any information about the integrated

databases, and we need to extract the local schemas.

• Most existing works use one schema matching technique.

Many studies, however, show that using hybrid

approaches is the key to overcoming the limitations of

each technique [12]. Moreover, all matching techniques

can generate incorrect results. However, none of the

existing solutions provide a post-processing step to

identify and remove misleading findings.

• The majority of existing schema integration solutions are

either manual or semi-automatic. The automatic

approaches are proposed in the context of relational or

XML systems. However, we need new methodologies to

automatically define the global schema in the context of

NoSQL systems.

To address the previously presented limitations, we present

in this paper a data integration approach to combine

heterogeneous NoSQL schemas in a unified view called the

global schema. This unified view can be used in big data

analysis to import data from several sources into one source as

well as to query data across numerous sources.

3. THE PROPOSED APPROACH

To automatically define the global schema of a set of

databases stored in heterogeneous NoSQL systems, we need

to go through three phases: schema extraction, schema

matching, and schema integration. Each phase takes place in

several steps. Figure 1 represents the architecture of the

approach which is composed of three phases: schema

extraction, schema matching and schema integration.

Schema Extraction: In this phase, we automatically define

the local schemas by extracting general information such as

the name and datatype of the attributes. We also propose a

unified representation of the local schemas to alleviate the data

model heterogeneity of NoSQL systems.

Schema matching: We specify in this phase, matching

attributes in the different local schemas by combining

datatype-based, semantic-based, string-based, and instance-

based techniques. We also suggest a post-processing step that

helps in detecting and deleting incorrect matches.

316

Figure 1. The approach architecture

Figure 2. (a) DailyReport database stored in Redis; (b) Report database stored in Cassandra

Schema Integration: In this phase, we exploit the results of

schema matching to identify matching concepts that are

merged to define the global schema.

To illustrate the different phases of the proposed approach,

we use an example related to healthcare data where we define

the global schema of two databases namely DailyReport (a)

and Report (b) stored respectively in Redis and Cassandra as

shown in Figure 2. The two databases contain data about cases

and deaths related to Covid-19 [5].

3.1 Schema extraction

Extracting schema from NoSQL systems is a difficult task

because of many challenges. First, a lot of NoSQL systems do

not include any tools for extracting schema. Second, most

NoSQL systems are schema-less, which means they do not

require the database schema to be defined before storing data.

As a result, we may end up having many schemas for the same

database. Third, extracting schema from a system that is

document-oriented differs from extracting schema from a

system that is key-value, column-oriented, or graph-oriented

as each type uses a different data model.

To represent the different schemas in a unified way, we need

to clearly define the meaning of the following items: a

database, a concept, and an attribute:

• A database is a set of data that is saved in a database

management system. For instance, the Report database

stored in Cassandra (Figure 2).

• A concept is a database component made up of related

data. For instance, the Report database is composed of

two concepts: NewCases and NewDeaths.

• An attribute is a concept field describing its

characteristics and properties. For example, NewCases

concept has attributes such as Date, FirstName, and

LastName.

Given the heterogeneity of NoSQL systems types, the

previously presented items can have different significations.

In Table 2, we present the equivalents of database, concept,

and attribute in five different NoSQL systems representing the

four existing categories.

Table 2. The equivalents of database, concept, and attribute in five NoSQL systems

NoSQL system NoSQL system type Database Concept Attribute

Redis Key-value A Redis database A key-value pair or a Hash A key-value pair

Cassandra Column-oriented A keyspace A table Column or a Column family

MongoDB Document-oriented A MongoDB database A collection A document’s field

Couchbase Key-value and Document- oriented A Couchbase bucket A collection A document’s field

Neo4j Graph-oriented A graph A node A node’s or relationship’s property

Table 3. Schema extraction tools for NoSQL systems

NoSQL system Concepts names Attributes names Attribute types

Redis A script using SCAN or HSCAN A script using SCAN or HSCAN A script using TYPE

Cassandra “system schema” command “system schema” command “system schema” command

MongoDB “extract schema” command “extract schema” command “extract schema” command

Couchbase A script using SELECT * A script using SELECT * A script using SELECT *

Neo4j Call apoc.meta.schema() Call apoc.meta.schema() Call apoc.meta.schema()

317

In our approach, the main items that need to be extracted

from the database are concept names, attribute names, and

attribute types. We extract this information using the system’s

extraction predefined tool, such as the ‘system schema’

command in Cassandra. For the systems that do not provide a

schema extraction tool, we define a Python script that goes

through the database and extracts the various concepts as well

as the names and types of attributes.

We present in Table 3 the implementation details of the

schema extraction phase for five NoSQL systems representing

the four categories. Nevertheless, this solution can be extended

to other NoSQL systems.

After extracting the main components of the local schema,

we define a unified representation based on JSON [13]. The

reason for choosing JSON is its flexibility and self-describing

nature in addition to its ease of use in many programming

languages. We consider that the local schema is a JSON object

that is composed of three key-value pairs: Database-System-

Name, Database-Name, and Concepts. The Concept contains

the concept’s name as well as the related attributes. Each

attribute is presented using its name, type, and if present, a set

of sub-attributes as presented in Figure 3.

Figure 3. The unified representation syntax of local schemas

In order to illustrate the schema extraction phase, we return

to the example illustrated in Figure 2 of two databases namely

DailyReport (a) and Report (b) stored respectively in Redis

and Cassandra. Redis database is stored as two hashes (Cases

and Deaths). However, Cassandra database is composed of

two tables (NewCases and NewDeaths).

The extracted schemas of Cassandra and Redis databases

are presented in Figure 4 using the unified representation.

Every table becomes a concept for Casandra, and every hash

becomes a concept for Redis.

The schema extraction phase enables the generation of the

local schemas with a unified representation which alleviates

the data model heterogeneity of NoSQL databases. In the next

phase, which is schema matching, we address the semantic

heterogeneity issue by specifying matching attributes between

local schemas.

3.2 Schema matching

The goal of schema matching is to solve the semantic

heterogeneity issue of NoSQL databases. In this phase, we aim

to specify matching attributes between local schemas.

The main problem of schema matching is that data are

stored independently with different reasoning. For this reason,

finding matching attributes is difficult.

There are various schema matching techniques, each of

which serves a particular purpose and has its limits. For

instance, the semantic-based technique which uses the

semantic similarity of names cannot provide good results for

attributes whose names do not convey any semantic

information such as ListofSynd (Example of Figure 2). These

matches can only be found using the string-based or the

instance-based technique. To overcome the different

limitations of the different techniques, our work is based on a

hybrid schema matching approach in which we use datatype-

based, semantic-based, string-based, and instance-based

matchers which are the most used techniques in schema

matching [14].

To illustrate the schema matching approach, we use the

illustration example shown in Figure 2 in which we identify

matching attributes between Cassandra and Redis local

schemas. Only to make it easier to represent matching

attributes, the two local schemas are shown in a hierarchical

representation, as seen in Figure 5.

In this example, the concepts Cases and NewCases share

five true matches, and the concepts Deaths and NewDeaths

share six additional true matches. Dashed lines serve as a

representation of the true matches.

The first step of the schema matching phase uses the

datatype-based technique where we generate a list of matching

candidates of two schemas which are the attributes with the

same type. This step prevents false matches and reduces the

number of elements that must be processed by the other three

matchers.

Figure 4. Local schemas of Redis and Cassandra databases presented in the unified representation

318

Figure 5. True matching attributes of Redis and Cassandra databases

The three matchers algorithms take separately as input the

results of the datatype-based matcher which we refer to as

matching candidates. Similarly to the literature, our algorithms

produce false matches (i.e. False positives). For this reason,

we define post-processing that detects and deletes false

positives of each matcher. After applying the post-processing,

the union of the three matchers results constitutes the schema

matching phase's results.

We describe in detail the algorithms of the three proposed

matchers and the post-processing in the following sub-sections.

3.2.1 Semantic-based matcher

The semantic-based technique enables the specification of

matching attributes based on the semantic similarity of their

names. There are two categories of semantic similarity

measures. The first category is corpus-based. It derives the

similarity score of two texts using large corpora. The second

category is knowledge-based, it identifies the degree of

similarity between words using information generated from

semantic networks such as WordNet [15]. In our approach, we

are interested in knowledge-based similarity measures because

corpus-based measures have a statistical background and do

not take into consideration the actual meaning of words which

may produce a lot of false results. Based on a set of

experiments, where we compare many knowledge-based

similarity measures, we have decided to use Resnik [9] and

Leacock & Chodorow [9] measures in our semantic-based

matcher algorithm.

Algorithm 1. Semantic-based matcher

1 function Semantic-based-Matcher (Candidates)

2 // Candidates is a list of possible matching

attributes generated by the type-based matcher

3 // Candidates = {a1 = b1, a2 = b2, .., an = bn}

4 Initialize a List of SemanticMatches;

5 for i from 1 to size(Candidates) do

6 ai ← clean(ai);

7 bi ← clean(bi);

8 if ResnikSimilarity(ai,bi)>=0.6 or

LeacockChodorowSimilarity ai,bi)>=0.6 then

9 Add ai = bi to SemanticMatches

10 end

11 end

11 return SemanticMatches;

We define the semantic-based matcher as described in

Algorithm 1. The algorithm takes as input a set of candidates

produced by the datatype-based matcher and returns a set of

matching attributes. For each candidate, the algorithm first

cleans the names of the attributes to get rid of punctuation,

special characters, and uppercase. Then, it calculates the

similarity of each candidate using Resnik and

Leacock&Chodorow similarity measures and selects those

where at least one of the similarity scores is greater or equal to

0.6 (lines 8-9). The threshold has been chosen based on many

experiments.

 In this algorithm, the similarity scores produced by Resnik

and Leacock&Chodorow measures are normalized to provide

values between 0 and 1.

To illustrate the semantic-based matcher, we return to the

example of Figure 5. As presented in Table 4, the matcher

finds eight correct matches. However, it also returns eight false

matches because of the semantic similarity of these words.

These false matches are detected and deleted in the post-

processing step.

Table 4. Semantic-based matcher results

True Positives False Positives

C-Date=Date;

C-Name=FirstName;

C-Name=LastName;

D-Date=DateOfDeath;

D-Name=Name;

City=City;

Country=Country;

email=ContactEmail

C-Date=DateOfDeath;

C-Name=Name;

D-Date=Date;

D-Name=FirstName;

D-Name=LastName;

City=Country;

Country=City;

Contact=ContactEmail

The semantic-based matcher finds eight out of eleven

matches which demonstrates the necessity of the other

matchers.

3.2.2 String-based matcher

The string-based technique enables the identification of

matching attributes based on the similarity of their strings.

Many string-based similarity measures are proposed in the

literature. Some of them are character-based measures which

make them suitable for comparing simple words. Another

category of string-based measures is token-based. This

category recognizes similarities between two groups of words.

It is suitable for the comparison of long texts [9].

In our context, attributes’ names are, in general, composed

of one word or parts of many words. For this reason, character-

319

based measures are the most suitable in our case.

Consequently, we choose to use Jaro-Winkler measure [9] as

it is the most recommended measure in this category.

Similarly, to Algorithm 1, we define the string-based

matcher algorithm that takes as input the same set of

candidates produced by the type-based matcher and returns a

set of matches as shown in Algorithm 2. It enables the

identification of matching attributes based on the similarity of

their characters using Jaro-Winkler measure. In this algorithm,

the threshold of 0.77 has been chosen based on many

experiments.

Algorithm 2. String-based matching

1 function String-based-Matcher (Candidates)

2 // Candidates is a list of possible matching

attributes generated by the type-based matcher

3 // Candidates = {a1=b1, a2=b2, .., an=bn}

4 Initialize a List of StringBasedMatches;

5 for i from 1 to size (Candidates) do

6 ai ← clean(ai);

7 bi ← clean(bi);

8 if jaroWinklerSimilarity (ai, bi) >= 0.77 then

9 Add ai = bi to StringBasedMatches

10 end

11 end

12 return StringBasedMatches;

We return to the example of Figure 5 to illustrate the string-

based matcher. As shown in Table 5, the matcher finds eight

correct matches, one of which is not found by the semantic-

based matcher. However, it also returns four false matches.

Table 5. String-based matcher results

True positives False positives

C-Date=Date;

add=address;

ListOfSynd=ListofSyndromes;

D-Date=DateOfDeath;

D-Name=Name;

City=City;

Country=Country;

email=ContactEmail

D-Name=Name;

ListOfSynd= ListOfLocations;

D-Date=Date;

Contact=ContactEmail;

Even though we use the string-based matcher, not all

matches are found. As a result, we define the instance-based

macher as discussed in the subsection that follows.

3.2.3 Instance-based matcher

Instance-based matcher considers attributes similar if their

instances are similar [16]. This technique is valuable in cases

where attributes are named using different words or even

different languages. It enables the specification of matching

attributes that can not be generated by string-based and

semantic-based techniques.

The instance-based matcher is presented in Algorithm 3. It

takes the same set of candidates produced by the datatype-

based matcher as input and returns a set of matches. Since this

matcher uses instances of the attributes, we need to access the

databases. After establishing the database connexion, the

algorithm first generates attributes’ instances for every

matching candidate (lines 9-10). Then, it calculates the

number of values in common for each candidate (lines 11-16).

After that, it asserts that the percentage of equal values is more

than 0.6 in both databases. Like the other two matchers, the

threshold of 0.6 is selected after conducting numerous

experiments.

Algorithm 3. Instance-based matching

1 function Instance-based-Matcher (Candidates)

2 // Candidates is a list of possible matching attributes

generated by the type-based matcher

3 // Candidates = {a1 = b1, a2 = b2, .., an = bn}

4 Connect(Database1);

5 Connect(Database2);

6 Initialize a List of InstanceBasedMatches;

7 for i from 1 to size(Candidates) do

8 Set elementInCommun to zero;

9 queryResultsList1 ← Select ai from Database1;

10 queryResultList2 ← Select bi from Database2;

11 for j from 1 to size(queryResultsList1) do

12 for j from 1 to size(queryResultsList2) do

13 if element1=element2 then

14 elementInCommun ←

elementInCommun+1

15 end

16 end

17 if elementInCommun/size(queryResultsList1) >=

0.6 AND

18 elementInCommun/size(queryResultsList2) >=

0.6 then

19 ADD ai = bi to InstanceBasedMatches;

20 end

21 end

22 return InstanceBasedMatches;

For our example (Figure 5), the instance-based matcher

returns five correct matches which are: C-Date=Date; D-

Date=DateOfDeath; City=City; Country=Country; Phone=Tel,

and it does not return any false positive. The Phone=Tel match

is not found by the other matchers which shows the

effectiveness of our hybrid approach.

We provide in the following, a post-processing step to

automatically identify and delete misleading results. In our

work, the proposed post-processing only concerns the

semantic-based and string-based matchers since they generate

more incorrect results than the instance-based matcher.

3.2.4 Post-processing

The main goal of the post-processing step is to distinguish

between true and false matches. It is based on a set of rules

that validate the results of semantic and string-based matchers

separately.

Let M be a set of matches produced by each matcher as

follow: M={a1=b1, a2=b2, .., an=bm}. M is the union of Ms

which is a set of 1:1 matches that are single matching attributes

(Ex. {C-Date=Date; City=City}) and Mm that is a set of 1:n

matches that contains multi-matching attributes (Ex. {C-

name=FirstName; C-name=LastName}).

The post-processing concerns only 1:n matching attributes

which are more likely to contain false results. We can have

false 1:1 matching results, however, during our experiments,

we found that some of these false matches are removed in the

schema integration phase. For this reason, we restricted the

post-processing to the 1:n matching attributes.

The post-processing algorithm takes as input an attribute ‘a’

from both local schemas as well as a set of its 1:n matches and

320

removes the false matches from this set as provided in

Algorithm 4.

The algorithm is performed separately on the results of the

semantic-based matcher and the string-based matcher using

the threshold and the similarity measures provided in each

matcher.

The post-processing algorithm is composed of three major

parts each of which deals with a different category of false

matches. We explain each part using the example of Figure 5.

Algorithm 4. Post-processing algorithm

1 function Post-processing (a, Mm)

2 //Mm is a list of matches of attribute a

3 // Mm = {a = a1, a = a2.., a = an}

4 if ∃i{1, 2, .., n}/IsSimilar

(ConceptName(a),ConceptName(ai)) then

5 for j from 1 to n do

6 if ¬IsSimilar (ConceptName(a),

ConceptName(ai)) then

7 Delete {a = aj} from Mm;

8 end

9 if ∃i {1, 2, .., n}/Similarity (a, ai) == 1 then

10 for j from 1 to n do

11 if Similarity (a, ai) < 1 then

12 Delete {a = aj} from Mm;

13 end

14 else

15 amax = MaxSimilarity(Mm);

16 for j from 1 to n / aj ! = amax do

17 if isNotSimilar(amax,aj) OR isHierarchical(amax,aj)

then

18 Delete {a = aj} from Mm;

19 end

20 end

21 end

22 end

23 return Mm;

The first part of our post-processing algorithm (Algorithm

4 lines 4-8) addresses the case where an attribute ‘a’ of a

concept ‘C’ is matched with many attributes ‘ai’ of different

concepts ‘Ci’. In this case, we calculate the semantic similarity

between the name of concept ‘C’ and the name of each concept

‘Ci’ using Resnik and Leacock&Chodorow measures as

presented in Algorithm 1 of the semantic-based matcher. If the

name of concept ‘C’ is similar to at least one of the concepts

‘Ci’, then we delete all matches where the name of concepts

are not similar.

For instance, in the semantic-based matcher’s results of the

example of Figure 5, the attribute C-Name is matched with

FirstName and LastName, as well as with Name. All of These

results are semantically correct because there is a semantic

similarity between them. However, in this example, C-Name

should not be matched with Name since the concept’s name

Cases is semantically similar to NewCases but not similar to

NewDeaths.

For our example, this step helps in removing the five false

matches from the semantic-based matcher: C-

Date=DateOfDeath, C-Name=Name, D-Date=Date, D-

Name=FirstName, and D-Name=LastName. And two false

matches from the string-based matcher: C-Name=Name and

D-Date=Date.

The second part of the post-processing (Algorithm 4 lines

9-13) deals with the case where there is a similarity of 1

between two attributes. In general, identical attributes are not

supposed to have 1:n matches. For this reason, we remove all

the other matches where the similarity score is less than 1.

This case is illustrated by the example of Country and City.

Since there is a semantic similarity between the words Country

and City, the attribute Country is matched with Country and

with City. However, since the similarity between Country and

Country equals 1, we delete the match Country=City.

In this step, we remove two false matches from the

semantic-based matcher: Country=City and City=Country.

In the last part of the post-processing (Algorithm 4 lines 14-

19) we deal with matches where the similarity scores between

attributes are less than 1.

We notice that in a true 1:n match between an attribute ‘a’

and a set of attributes ‘ai’ there is often a high similarity

between ‘ai’. Based on this idea, we first identify attribute ‘amax’

that has the highest similarity score with attribute ‘a’. Then,

we remove the matches in which the attribute ‘ai’ is not similar

to ‘amax’.

For instance, C-Name is matched with FirstName and

LastName which is a true match. However, ListOfSynd is

matched with ListofSyndromes and ListofLocations and

should be matched only with ListofSyndromes. The difference

between the match of C-Name and the match of ListOfSynd is

that there is a similarity between FirstName and LastName,

but no similarity between ListofSyndromes and

ListofSyndromes. For this reason, we only keep the match

ListofSynd=ListofSyndromes since it has the highest

similarity score (amax). As a result, in this step, we remove the

false match: ListOfSynd=ListofLocations from the string-

based matcher results.

Another case is also handled in this part using the condition

isHierarchical (amax, aj). In this case, if there is a hierarchy

between ‘ai’ and ‘amax’ we only keep the match a=amax. For

instance, Contact and Email are hierarchical, and they are both

matched to ContactEmail in the result of the semantic-based

and string-based matchers. Thanks to this condition we delete

the false match Contact=ContactEmail.

The post-processing of our approach helps in improving the

outcomes of the various matchers by identifying and removing

misleading findings. After applying the post-processing, the

final result of each matcher is the union of all results of the

post-processing step and the set of 1:1 matches (Ms).

The final result of the schema matching phase is the union

of the three matchers results after applying the post-processing.

The matching attributes are used to define the global schema

in the schema integration phase as provided in the following

section.

3.3 Schema integration

The schema integration phase enables the generation of the

global schema of a set of local schemas. This phase exploits

the results of schema matching to decide which concepts are

merged in the global schema.

The concepts that have many matching attributes are more

likely to be similar. Based on this idea, we define the similarity

score of each two concepts as the ratio of their matching

attributes over the total number of attributes.

Let, for a concept, NMA be the Number of Matching

Attributes and NA be the Number of Attributes, we first define

a Directed Concept Similarity score (DCS) for each concept as

defined in Eq. (1):

321

DCSconcept1 =
NMA

NA
 (1)

Then, we calculate the Concept Similarity score (CS) of two

concepts as the average of their Directed Concept Similarity

scores as defined in Eq. (2):

CSconcept1,concept1 =
DCSconcept1 + DCSconcept2

2
 (2)

The global schema is generated by merging the concepts

that have a Concept Similarity score higher than a threshold.

The choice of the threshold is based on a series of experiments

in which the best results were obtained when the threshold is

set to 0.6.

To illustrate the effectiveness of the schema integration

phase, we return to the example of Figure 5. In this example,

the concepts Cases and NewCases are supposed to be merged,

and Deaths should be merged with NewDeaths.

Table 6. CS scores of Covid-19 databases

Concept1 Concept2 Positives CS score

Cases NewCases 5
1.25+0.83

2
= 1.04

Cases NewDeaths 0
0+ 0

2
= 0

Deaths NewCases 0
0+ 0

2
= 0

Deaths NewDeaths 6
0.86+ 1

2
= 0.93

Figure 6. The Global schema of Redis and Cassandra

databases

The results shown in Table 6 demonstrate a considerable

difference in the Concept Similarity scores (CS) of Cases and

NewCases as well as of Deaths and NewDeaths when

compared to the other two scores. Therefore, the global

schema is defined using the unified representation and

composed of two concepts: Cases which is the merge of Cases

(Redis) and NewCases (Cassandra), and Deaths which is the

merge of Deaths and NewDeaths. As shown in Figure 6, each

concept of the global schema contains concept attributes of the

first local schema (Cases) in addition to the unmatched

attributes of the concept of the second local schema

(NewCases).

Moreover, the schema integration phase enables also to

delete some false matches. For instance, if the CS score of two

concepts C1 and C2 is less than 0.6, the false matches (1:1 or

1:n matches) between these concepts are eliminated because

the two concepts are not merged. Thus, the schema integration

phase enables the definition of the global schema and

consequently reduces the number of false matches.

The three phases of the proposed approach enable the

automatic definition of the global schema of databases stored

in two NoSQL systems. We provide in the following section,

the implementation of our approach using a real Covid-19 use

case and a set of benchmarks.

4. IMPLEMENTATION AND RESULTS EVALUATION

To prove the effectiveness of the proposed work, we first

evaluate our approach using a real use case that uses Covid-19

related data. Then, we use a set of existing benchmarks.

4.1 Use case

We propose, in this paper, a use case based on Covid-19

related data to illustrate the effectiveness of our approach. This

use case evaluates the results of the proposed approach and

illustrates some possible situations that can arise in the

definition of the global schema.

4.1.1 Databases

We use real Covid-19 databases which are SarsCov2Data

[17, 18], CovidData [17, 19], and CovidGlobalData [17] as

shown in Figure 7.

Figure 7. Local schemas of MongoDB, Couchbase, and Neo4j

322

The database SarsCov2Data is stored in MongoDB as two

collections of BSON documents: Vaccinations (86.936

records) and CovidTests (13.000 records). The database

CovidData is stored in Couchbase using two collections:

CovidCasesDeaths (187.180 records) and VaccinationsData

(166.554 records). However, the database CovidGlobalData is

stored in Neo4j as three nodes: Cases (166.554 records),

Deaths (166.554 records), and Tests (166.554 records).

In order to obtain the global schema of these three databases,

it is necessary to go through the three phases of the proposed

approach: Schema extraction, schema matching, and schema

integration.

4.1.2 Schema extraction

The initial phase in the approach provided in this work is to

extract the local schemas of various NoSQL systems as shown

in Figure 7.

For MongoDB, we use Mongo-inspector, a Python package

that allows us to extract the schema of a MongoDB database.

It provides a list of the names and types of characteristics of

the database collections [20]. In Neo4j, apoc.meta.schema()

allows the extraction of information about nodes, relations,

and properties [21]. For Couchbase, we define a python script

that scans the database and extracts attribute names and types

because no schema extraction tool is provided by this system

[22].

The unified representations of the extracted schemas are

defined similarly to the example in Figure 4.

4.1.3 Schema matching

The second phase of the proposed approach aims at finding

matching attributes between the three local schemas

previously generated by the schema extraction phase. We

evaluate the schema-matching results using Precision, Recall,

and F-measure metric [23].

According to the evaluation values presented in Table 7, the

proposed approach achieves interesting results by finding all

matching attributes. The false positives generated by our

approach can be explained by the fact that the attribute names

in the same schema are close to each other, for instance,

daily_vaccinations_raw and daily_vaccinations in

SarsCov2Data database.

4.1.4 Schema integration

The last phase of the approach is schema integration where

we automatically define the global schema.

The first step of this phase is to compute the concept

similarity scores (CS) as shown in Table 8. In this phase, we

merge concepts that have a concept similarity score (CS)

greater than 0.6.

CovidCasesDeaths is matched with two concepts Cases and

Deaths. As a result, the concept CovidCasesDeaths is merged

with Cases and Deaths. Consequently, as presented in Figure

8, the global schema is composed of three concepts

Vaccinations, CovidTest, and CovidCasesDeaths which is a

correct global schema.

This use case shows that in concrete situations, our

approach allows to unify the representation of local schemas

and the definition of the global schema in order to query and

analyze heterogeneous databases which is not proposed by

existing approaches.

Table 7. Results evaluation of schema matching of Covid-19 use case

Local schema 1 Local schema 2 True matches Positives True positives Precision Recall F-measure

Vaccinations VaccinationsData 15 19 15 0.79 1 0.88

CovidCasesDeaths Cases 5 6 5 0.83 1 0.91

CovidCasesDeaths Deaths 5 6 5 0.83 1 0.91

CovidTests Tests 5 5 4 0.8 0.8 0.8

Table 8. Concept similarity scores of Covid-19 use case

Local Schema 1 Local Schema 2 Positives CS Score

Vaccinations VaccinationsData 19 1.15

CovidTest Tests 5 0.73

CovidCasesDeaths Cases 6 0.75

CovidCasesDeaths Deaths 6 0.75

Figure 8. The global schema of the Covid-19 use case

4.2 Benchmark tests

In addition to the use case, we use two different benchmarks

to evaluate the schema matching phase. Due to the lack of

benchmarks that can be used to validate the definition of the

global schema in the context of NoSQL systems, we use two

XML-based benchmarks to evaluate our approach.

The first benchmark is XBenchMatch [24] which has a set

of matching attributes defined in different scenarios.

The second benchmark is the Purchase-Order benchmark [9]

which contains a set of matching attributes between various

Purchase and Order schemas.

Because there is no data to evaluate our instance-based

matcher in these two benchmarks, we use just the string-based

and semantic-based matchers.

323

Table 9. The evaluation metrics of the schema matching phase for the benchmarks

Benchmark Positive True Positive Precision Recall F-measure

XBenchMatch 6 6 1 1 1

Purchase-Order benchmark 30 26 0.87 0.93 0.89

Using only the string-based and the semantic-based

matchers in addition to the post-processing, we have the same

matching attributes as the XBenchMatch benchmark.

For Purchase-Order benchmark, we identify 30 matches

using our schema matching approach, 26 of which are true

matches. The four false positives are caused either by the

semantic similarities of words. The false negatives, which are

the matches that should be identified but are not, have high

similarity scores but fall short of the threshold.

Due to the lack of space, we only present in Table 9 the

evaluation metrics of the schema matching phase for the used

benchmarks.

Using these two benchmarks in addition to the use case, we

prove the effectiveness of our approach in schema extraction,

schema matching, and schema integration.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the problem of defining the

global schema for data analysis in the context of NoSQL

systems.

As presented in related works (Section 2), the majority of

existing schema integration solutions are either manual or

semi-automatic. The automatic approaches are proposed in the

context of relational or XML systems. Our approach, however,

enabled the automatic definition the global schema of data

stored in various NoSQL systems by providing solutions for

schema extraction, schema matching, and schema integration.

In schema extraction, we proposed a method to generate the

local schemas and present them in a unified representation

which solves the data model heterogeneity problem of NoSQL

systems.

We provided a hybrid schema matching approach that uses

type-based, semantic-based, string-based, and instance-based

matchers in addition to the post-processing that gave

interesting results according to the evaluation metrics.

We also proposed a data integration methodology that

defined the global schema by merging the concepts that have

a high similarity score. The benchmarks as well as the Covid-

19 use case presented in this paper illustrated the effectiveness

of our approach through various scenarios.

The three phases of the proposed approach allowed for the

alleviation of challenges related to NoSQL systems including

the lack of local schemas, the data models heterogeneity and

the semantic heterogeneity of data.

For future work, we are working on creating a user interface

that makes it easier to use our solution in data analysis process

and allows user intervention to build a global schema that

meets data analysis requirements. Moreover, we are working

on a query processing solution that uses the global schema

definition approach to query data across several sources.

REFERENCES

[1] El Aissi, M.E.M., Benjelloun, S., Lakhrissi, Y., El Haj

Ben Ali, S. (2022). Big data enabling fish farming data-

driven strategy. Ingénierie des Systèmes d’Information,

27(6): 949-956. https://doi.org/10.18280/isi.270611

[2] Amghar, S., Cherdal, S., Mouline, S. (2018). Which

NoSQL database for IoT applications. In 2018

International Conference on Selected Topics in Mobile

and Wireless Networking (MoWNeT), Tangier,

Morocco, 131-137.

https://doi.org/10.1109/MoWNet.2018.8428922

[3] Amghar, S., Cherdal, S., Mouline, S. (2022). Storing,

preprocessing and analyzing tweets: Finding the suitable

noSQL system. International Journal of Computers and

Applications, 44(6): 586-595.

https://doi.org/10.1080/1206212X.2020.1846946

[4] Amghar, S., Cherdal, S., Mouline, S. (2019). Data

integration and noSQL systems: A state of the art. In

Proceedings of the 4th International Conference on Big

Data and Internet of Things, pp. 1-6.

https://doi.org/10.1145/3372938.3372954

[5] Olivé, A. (2018). A universal ontology-based approach

to data integration. Enterprise Modelling and

Information Systems Architectures (EMISAJ), 13: 110-

119. https://doi.org/10.18417/emisa.si.hcm.10

[6] Guo, Y., Zhang, Y., Lyu, T., Prosperi, M., Wang, F., Xu,

H., Bian, J. (2021). The application of artificial

intelligence and data integration in COVID-19 studies: A

scoping review. Journal of the American Medical

Informatics Association, 28(9): 2050-2067.

https://doi.org/10.1093/jamia/ocab098

[7] Reese, J.T., Unni, D., Callahan, T.J., Cappelletti, L.,

Ravanmehr, V., Carbon, S., Mungall, C.J. (2021). KG-

COVID-19: A framework to produce customized

knowledge graphs for COVID-19 response. Patterns,

2(1): 100155.

https://doi.org/10.1016/j.patter.2020.100155

[8] Ramadhan, H., Indikawati, F.I., Kwon, J., Koo, B. (2020).

MusQ: A Multi-store query system for IoT data using a

datalog-like language. IEEE Access, 8: 58032-58056.

https://doi.org/10.1109/ACCESS.2020.2982472

[9] Madhavan, J., Bernstein, P.A., Rahm, E. (2001). Generic

schema matching with cupid. In VLDB, pp. 49-58.

[10] Mahdi, A.M., Tiun, S. (2014). Utilizing wordnet and

regular expressions for instance-based schema matching.

Research Journal of Applied Sciences, Engineering and

Technology, 8(4): 460-470.

https://doi.org/10.19026/rjaset.8.994

[11] Radwan, A., Popa, L., Stanoi, I.R., Younis, A. (2009).

Top-k generation of integrated schemas based on

directed and weighted correspondences. In Proceedings

of the 2009 ACM SIGMOD International Conference on

Management of Data, pp. 641-654.

https://doi.org/10.1145/1559845.1559913

[12] Doan, A., Halevy, A., Ives, Z. (2012). Principles of data

integration. Elsevier. ISBN: 9780123914798

[13] Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.

(2016). Foundations of JSON schema. In Proceedings of

the 25th International Conference on World Wide Web,

pp. 263-273. https://doi.org/10.1145/2872427.2883029

[14] Bellahsene, Z., Bonifati, A., Duchateau, F., Velegrakis,

324

Y. (2011). On evaluating schema matching and mapping

pp. 253-291. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-16518-4_9

[15] Miller, G.A. (1995). WordNet: A lexical database for

English. Communications of the ACM, 38(11): 39-41.

https://doi.org/10.1145/219717.219748

[16] Rahm, E., Bernstein, P.A. (2001). A survey of

approaches to automatic schema matching. The VLDB

Journal, 10: 334-350.

https://doi.org/10.1007/s007780100057

[17] Hannah Ritchie, E.M., Rodés-Guirao, L., Appel, C.,

Giattino, C., Ortiz-Ospina, E., Hasell, J., Roser, M.

(2020). Coronavirus pandemic (COVID-19). Our World

in Data. Available:

https://ourworldindata.org/coronavirus.

[18] https://www.ecdc.europa.eu/en/publications-data/ covid-

19-testing, accessed on Feb. 20, 2023.

[19] https://covid19.who.int/info, accessed on Feb. 20, 2023.

[20] https://pypi.org/project/mongo-inspector/, accessed on

Feb. 20, 2023.

[21] https://neo4j.com/labs/apoc/4.1/overview/apoc.meta/ap

oc.meta.schema/, accessed on Feb. 20, 2023.

[22] https://docs.couchbase.com/server/current/n1ql/n1ql-

language-reference/infer.html, accessed on Feb. 20, 2023.

[23] Dhar, J., Jodder, A.K. (2020). An effective

recommendation system to forecast the best educational

program using machine learning classification

algorithms. Ingénierie des Systèmes d’Information,

25(5): 559-568. https://doi.org/10.18280/isi.250502

[24] Duchateau, F., Bellahsene, Z., Hunt, E. (2007).

XBenchMatch: A benchmark for XML schema matching

tools. The VLDB Journal, 1: 1318-1321.

325

https://covid19.who.int/info

