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ABSTRACT
Over the last few years, Cross-Laminated Timber (CLT) panels have become increasingly popular 
in many structural applications. The growth in CLT uptake by the construction sector is likely to 
continue in line with the pressing need for sustainable construction. Although current design methods 
exist for CLT, often these have limits of applicability. In order to gain upmost efficiency, there is 
a need for improved analytical methods to fully determine the structural behaviour of CLT. In this 
article, CLT panels will be investigated as a novel application of the State Space Approach (SSA). 
As CLT is a laminated composite panel, the 3D analytical approach provided by the SSA is highly 
applicable. Comparison with existing experimental results for different CLT panels are explored for 
simply supported orthotropic CLT panels under different types of loading. The effect of the plate 
thickness on displacements and stresses is described quantitatively. The results demonstrate the capa-
bility of the SSA method to capture the nonlinear distribution of the stresses through the depth of 
the plates over a range of thicknesses, thus offering an improved understanding of CLT structural 
behaviour.
Keywords: analytical approach, cross-laminated timber, laminated composite panel, state space 
approach.

1  INTRODUCTION
Cross-Laminated Timber (CLT) is an engineered wood product enabling the production of 
large-scale load-bearing panels. The panels consist of at least three layers of boards cross-
stacked in alternate grain orientation and glued together on their faces, typically in a 
symmetric lay-up. The resulting wood product is suitable for both in-plane and out-of-
plane loading, and used in structural engineering applications forming walls, floors and 
roofs etc.

The key advantages of CLT panels such as quick erection time and ease of handling, high 
strength to weight ratio and good thermal and sound insulation etc. make them highly appeal-
ing in structural engineering applications.

As a result of the increased usage of CLT panels and with a view to having a better under-
standing of their mechanical behaviour, new analytical approaches are needed to improve the 
existing design methods in terms of both accuracy and design efficiency. Towards this, sev-
eral researchers have aimed at applying different analytical approaches to enhance the 
accuracy of the results for CLT panels. By considering the CLT as a laminated composite 
material, many composite plate approaches have been used including classical plate theory 
(CPT) and shear deformation plate theories according to Reddy [1]. Of these standard 
approaches, 2D theories have been most commonly investigated.

Due to the limitations of 2D plate theories, as will be explored in this article, research is 
ongoing to develop and apply 3D approaches to analyse and fully understand the behaviour 
of CLT. From a fundamental viewpoint, the accurate behaviour of the composite material 
should be based on 3D approaches rather than 2D approaches. However, the mathematical 
description of the structural behaviour of CLT in terms of accurate calculation for engi-
neering purposes is not fully developed yet. In view of this, here we will present the SSA 
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as an analytical, theoretically precise approach, which combines accuracy in defining all 
the displacements and the stresses in the plate with computational efficiency. A compari-
son of experimental tests undertaken by Hochreiner et al. [3] and existing 2D and 3D 
analytical methods studied by Sturzenbecher et al. [4] aims to demonstrate the potential of 
the SSA in capturing the behaviour of the plate for any thickness with different types of 
loading.

As a 3D solution, the SSA considers all displacement and transverse stress components as 
the primary state variables simultaneously. The boundary conditions on the top and the bot-
tom surfaces are directly related to them. The approach originated from the Vlasov [5] state 
variable equation for the solution of 3D elasticity problems by using the method of initial 
functions. Later, it was developed by Bahar [6] as the state space approach for homogeneous 
and isotropic plates. As one of the pioneering researchers in 3D elastic theory, Wu [7] intro-
duced SSA to a 3D thick plate analysis. Fan and Ye [8] presented a theoretically exact solution 
based on the state space method for statics and dynamics of orthotropic thick plates with 
simply supported edges. All fundamental equations of three-dimensional elasticity can be 
exactly satisfied and the nine elastic constants for orthotropic materials can be considered. 
Besides that, the approach extended by Fan and Ye can be applied to the buckling of a thick 
orthotropic plate. Likewise, Wu and Wardenier [9] achieved an exact 3D elasticity solution 
for simply supported thick, orthotropic and rectangular plates subjected to arbitrary loading. 
In fact, they obtained a sixth-order differential equation governing the transverse displace-
ment for the first time in comparison with the fourth-order differential equation that is used 
in CPT.

1.1  Experimental and theoretical investigations for CLT

To understand CLT itself, a significant amount of experimental investigations have been 
undertaken over the last 10 to 15 years. To gain an insight into the accuracy of current design 
approaches, particularly for bending, Hochreiner et al. [3] focused on the global failure 
mechanisms and the different rupture patterns in three- and five-layered CLT plates. Czader-
ski et al. [10] investigated the mechanical behaviour of three-layered CLT plates with 
different thickness to width ratios from 0.025 To 0.25 under three different types of loadings. 
The aim of the tests was to estimate the actual modulus of elasticity and the strength of the 
bonded panels. They also compared their data with existing beam and plate methods. Simi-
larly, a detailed plate-bending experiment on CLT panels was carried out by O’Dowd et al. 
[11]. For their experiment, they measured the accurate bending stiffness for three different 
sample sizes of a five laminae CLT panel with samples from each lamina being subject to 
three separate bending tests. In addition, three different theoretical methods (Gamma-method, 
K-method and shear analogy method [12]) were compared with the bending stiffness obtained 
experimentally. O’Dowd et al. [11] found that the Gamma method gives reliably conservative 
results while the K-method and shear analogy method underestimate the experimental stiff-
ness. In another experiment investigated by Sikora et al. [13] the effect of the thickness of the 
CLT panels on the bending and shear strength was studied using the same three theoretical 
methods investigated by [11]. It was found that the bending strength decreased as the thick-
ness of the CLT panel increased, and similar effects were observed for the rolling shear 
strength. It should be noted that [13] considered only thin plates. In addition, it was also 
noticed that the type of failure was determined by the bonding process used to form the CLT 
panel and the resulting quality of the bond.
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From the theoretical viewpoint, Sturzenbecher and Hofstetter [2] and Sturzenbecher et al. 
[4] applied 2D and quasi-3D approaches to several CLT laminate lay-ups of three to seven 
layers and different thickness to width ratios from 0.25 to 0.025 under various transverse 
loading conditions, comparing the accuracy of each. 2D theories such as CPT, First order 
Shear Deformation Theory (FSDT) and more advanced theories as outlined in Ren [14] were 
applied. The results from the 2D theories were compared with the quasi-3D elasticity solu-
tions given by Pagano [15] and a good agreement was obtained. However, the focussed 2D 
approaches had limitations: for example,  the effect of the transverse normal stress (sz) is 
neglected and the deflection (w) is assumed constant across the thickness of the plate. 
Although in [2, 4], the Pagano solution was defined as an exact solution, it is still considered 
as a quasi-3D solution as it did not include the normal transverse stress in the equilibrium 
equation. Note here that the term ‘exact solution’ refers to a solution that captures the entire 
physics of the problem within the context of an idealised, perfectly elastic material [16]. In 
addition, they compared the various analytical results with experimental data by Czaderski 
et al. [10], and they found that the 2D theories fail to get accurate solutions in comparison to 
the numerical and experimental results for thick CLT plates with a thickness to width ratio of 
0.2 and more, as well as for concentrated loads.

Developing more advanced theoretical solutions for the analysis of CLT panels is an active 
research topic due to the complicated behaviour of the CLT elements. More accurate theories 
have the potential to provide a better understanding of CLT panel structural performance and 
enable their efficient and safe application in construction. The following sections introduce 
the SSA method considering it as a theoretically ideal solution and its application to CLT is 
explored via two case studies from refs. [3, 4] comparing the experimental test results and the 
different approaches described by these two references.

2  SSA GOVERNING EQUATION

2.1  Formulation of the equation

Consider an elastic homogeneous orthotropic rectangular plate of length a, width b and uni-
form thickness h as shown in Fig. 1, the elasto-static equilibrium equations of the plate [17] 
can be written as
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Where sx, sy and sz are normal stresses along x, y and z axes, and txy , tyz  and txz  are shear 
stresses with respect to x-y, y-z and x-z planes respectively.

Since Hook’s law can be applied to elastic materials, the stress–strain relation becomes

Figure 1: Geometry of a plate.
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In eqn (2), the strain-displacement relations can be written as
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and
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Where E1, E2 and E3 are the Young’s moduli of the plate among the material coordinates.
The subscripts 1, 2 and 3 indicate fibre direction, transverse and perpendicular to the plate 

respectively. G12, G23 and G13 are shear moduli with respect to 1-2, 2-3 and 1-3 planes respec-
tively. v12, v23 and v13 are the Poisson’s ratios correspondingly.

From eqn (2), all stress components can be expressed explicitly:
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Three displacements in x-y-z directions, labelled with u, v and w, respectively, and the trans-
verse stresses sz, sxz and syz, are solved with respect to the z coordinate directly from eqns 
(1), (3) and (5),
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Denoting
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and rearranging eqn (5) leads to a matrix form as:
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Ts t t  is called the state vector of the plate and [G] is named as the 

system state matrix
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Once the state vector containing the three displacements and the transverse stresses 
[ , , ]s t tz xz yz  has been found, the three in-plane stresses in the x-y plane can be calculated from 
eqn (5) as follows:
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To consider a rectangular plate with the boundary conditions for the four sides of the simply 
supported plate (Fig. 1), the following boundary condition should be satisfied:
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	 sx = v = w = 0 (at x = 0, a) and sy = u = w = 0 (at y = 0, b)	 (10)

In order to satisfy the boundary conditions specified in eqn (10), the following six state 
variables of the state vector can be expressed by:
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Let z p= m a  and h p= n b  where m and n are the number of loops of the analytical solution 
in the x and y directions respectively and substituting eqn (11) into eqn (7) yields for each 
combination of m and n
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with the number of looping m-nth and the system matrix is
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2.2  Solution of the equation

By solving the differential eqn (12) based on classical solution method of a linear differential 
equation [18], the solution can be found as:

	 { ( )} ( ) { ( )}F D Fmn mn mnz z= [ ] 0 	 (14)



840	 A. S. Albostami, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 6 (2017)

where [Dmn (z)] = exp {[Gmn]z}, and when z = h,

	 { ( )} ( ) { ( )}F D Fmn mn mnh h= [ ] 0 	 (15)

{ ( )} { ( )}F and Fmn mn h0  are the values of the state variables on top (z = 0) and bottom (z = h) 
surfaces. They can be determined uniquely based on the load conditions on the top and bot-
tom surfaces of the plate. For example, if the plate is subjected to an arbitrarily distributed 
external transverse pressure q(x,y) on the top surface only, the state vectors on the top and 
bottom surfaces of the plate can be expanded into a Fourier series as shown in eqns (16) and 
(17), respectively:
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and
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Substituting eqns (16) and (17) into (15), it is easy to get all displacement components on 
the top and the bottom surfaces of the plate, that is U V Wmn mn mn( ), ( ), ( )0 0 0  and

( ), ( ), ( )U h V h W hmn mn mn .
After finding all the displacements and the transverse stresses, the in-plane stresses can be 

found by using the following equation:
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Further formulation simplifications can be used if q(x,y)=q is a constant. The SSA method 
has previously been applied to a generic composite plate by the authors [19] and the same 
basic geometry (Fig. 1) shall be used henceforth. For laminated plates as shown in Fig. 2, eqn 
(15) will be extended to:

{ ( )} ( ) { ( )}F d G d Fmn j j j j mn j=   0

and for (j+1)th layer;

{ ( )} ( ) { ( )}F d G d Fmn j j j j mn j+ + + + +=  1 1 1 1 10
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Therefore,

	 { ( )} ( ) ( ) { ( )}F d G d G d Fmn j j j j j j mn j+ + + +
=    1 1 1 1

0 	 (19)

Due to { ( )} { ( )}F F dmn j mn j j0 1+ = , eqn (19) can be summarised as the following equation:

{ ( )} [ ]{ ( )}Fmn d Fmnj j j+ + +=1 1 10Π

Where;

	 ∏ =    + +
G d G dj j j j

( ) ( )1 1
	 (20)

3  APPLICATION TO CLT
In the following section, two case studies with CLT panels under different types of loadings 
will be analysed by use of the SSA. For these cases, the CLT panels are considered as an 
orthotropic material with three principal axes, longitudinal axis parallel to the grain, radial 
and tangential axes. The last two axes are treated to be the same in value and regarded as 
having properties equivalent to those perpendicular to the grain [20]. Also, the boundary 
conditions are simply supported on all sides.

3.1  Case study (1)

For this case study, the panel has the same geometry and properties as the experiment tested 
by Hochreiner et al. [3]. The panel is symmetrical with five layers of alternate grain orienta-
tion i.e. [0, 90, 0, 90, 0]° under central concentrated loading acted uniformly on a patch area 
(c, d) as shown in Fig. 3. Each layer has a thickness of 19 mm, so the total plate thickness is 

Figure 2: Nomenclature of an orthotropic rectangular laminated plate.

Figure 3: Geometry of a panel under central concentrated loading.
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95 mm. The in-plane dimensions of the plate are a = b and h/a is equal to 0.05. Here, a and b 
are the length of the plate along the x axis and y axis, respectively and h is the total thickness 
of the plate (z-axis) as shown in Fig. 3. The set of elastic material parameters used for the 
timber layers are as the following and as per reference [3]: E1 = 11000 MPa, E2 = 370 MPa, 
E3 = 370 MPa, G12 = 690 MPa, G13 = 690 MPa, G23 = 50 MPa, µ12  = 0.44, µ13 = 0.44 and  
µ23 = 0.64.

As shown from Fig. 4a, the SSA gives very good agreement with experimental results for 
the out-of-plane displacement (w). From this point of view, the SSA can be adopted for this 
case study and the out-of-plane displacement (w) can be drawn through the thickness of the 
CLT plate as shown from Fig. 4b. From this figure, the nonlinear behaviour of (w) is clearly 
noticed.

As h/a is equal to 0.05, the CLT plate is considered as a thin plate; however, by applying 
the SSA for this case study, the actual behaviour of the in-plane stresses (sx) through the 
thickness can be noticed as shown in Fig. 5 and the application can be extended to thicker 
plates where the 2D methods are unable to capture the stresses accurately. Also, as shown in 
the same figure, the in-plane stresses (sx) decreased as the thickness of the plate is increased. 
In addition, in the first layer as the thickness is increased the stresses will change sign from 
negative to positive.

Figure 5: �The effect of different h/a on the in-plane stress (sx) through the thickness for case 
study (1).

Figure 4: �(a) Load-displacement curves for the experimental and SSA and (b) SSA out -of- 
plane displacement (w) distribution through the thickness.
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3.2  Case study (2)

For this case study, the panel has the same geometry as that examined analytically by 
Sturzenbecher et al. [4] The panel is symmetrical with five layers as in case study (1) under 
a bi-sinusoidal load with a maximum magnitude of 0.5 MPa as shown in Fig. 6. Each layer 
has a thickness of 30 mm, so that the total plate thickness is 150 mm. The in-plane dimen-
sions of the plate are a = b and h/a is equal to 0.1. The set of elastic material parameters 
used for the timber layers are as case study (1). All the calculations are based on C24-grade 
timber [21] as the constituent of CLT boards, with properties in accordance with BS EN 
338 [22].

In Fig. 7, the SSA is compared with CPT and Pagano solutions for the in-plane and out-of-
plane displacement (u and w). For both scenarios, the SSA gives a very good agreement with 
Pagano results. CPT gives a linear distribution through the thickness as shown in Fig. 7a. 
From Fig. 7b, it can be seen that while the SSA and Pagano results have good agreement, 
there is a large difference with the CPT results, thus highlighting the limitations of the CPT 
method.

In this case study, h/a is equal to 0.1, thus the plate is considered as a thin CLT plate. As 
the CLT becomes thicker, the SSA is capable of accurately capturing all the elastic stresses 
and the displacement through the thickness as shown from Figs 8 and 9.

Figure 7: �Displacement distribution through the thickness of CLT-5 ply plate for: (a) in-plane 
u and (b) out-of-plane w displacements.

Figure 6: Geometry of a panel under bi-sinusoidal loading.
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4  CONCLUSION
The SSA has the potential to improve accuracy and range of applicability over commonly 
used methods as the existing analytical approaches have limitations in applicability and accu-
racy. Towards that, an analytical investigation has been carried out for a simply supported 
orthotropic CLT panel under two types of loading, a central concentrated loading and a bi-
sinusoidal load. A comparison between the SSA, experimental test and various existing 
analytical approaches has been carried out. The following conclusions can be drawn:

•  By using the SSA, thicker CLT panels can be modelled in both case studies and all the 
stresses and the displacements can be analysed at any location along the x and y directions 
and through the thickness.

•• As the method used by Sturzenbecher et al. [4] neglects sz and w is assumed constant 
through the thickness of the plate, by applying the SSA to the CLT panels, the transverse 

Figure 8: �The effect of different h/a on the in-plane stress (sx) through the thickness for case 
study (2).

Figure 9: �In-plane and out-of-plane displacements and stresses states of CLT-5 ply plate for 
h/a = 0.1 by SSA.
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normal stress sz is included in the calculations and the out-of-plane displacement w can be 
calculated exactly at any location through the thickness. Also, the nonlinear behaviour of 
w is clearly noticed by using the SSA.

•• The SSA gives a very good agreement with the experimental test result in the first case 
study and a good agreement with the Pagano method in the second case study.
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