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ABSTRACT
This article concerns a reduced order model of unconstrained glass plate exposed to low-velocity 
impact. First, three-parametric model consisting of two masses connected with elastic spring is intro-
duced, its calibration procedure is described, and the simulation of its response to force impulses with 
different duration is shown. Then a five-parametric variant of the reduced order model is presented, 
calibrated and tested. Combined with the Hertzian theory of non-adhesive contact, the model allows us 
to determine the time evolution of contact force for arbitrary mass, stiffness and initial velocity of the 
impactor. The simulated results are compared to experimentally obtained data and observations about 
the model properties and accuracy are made.
Keywords: dynamic analysis, force impulse, glass plate, Hertzian contact, impact loading, reduced 
order model.

1  INTRODUCTION
To properly account for damage evolution in glass plates caused by low-velocity impacts, it 
is necessary to evaluate the time evolution of contact force. This force obviously depends on 
velocity, stiffness and mass of the impactor but also on the dimensions of the glass plate, its 
material properties and supports. To simulate the phenomenon, it is essential to properly 
incorporate the dynamic forces acting on the impactor and the glass plate. The motion of the 
plate is often highly influenced by its supports because these may not be ideally stiff and/or 
may introduce significant damping. From this point of view, the experimental setup often 
avoids as much supports as possible especially in the direction of expected displacements. An 
advantageous setup that aims to eliminate the effect of imperfect supports consists of a verti-
cally positioned glass plate freely hanging on suspension cables and being impacted 
horizontally to its center, see Fig. 1a. Such an idealized setup is assumed throughout this 
article. The experimental device is shown in Fig. 1b.

Figure 1: Experimental setup of impactor and glass plate. The plate is 
unsupported in the direction of impact to minimize damping 
and other uncertainties attributed to imperfect supports.

(a) Schema of impactor and glass plate (b) Top view



	 T. Janda, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 8, No. 1 (2020)� 37

2  REDUCED ORDER MODEL
When a force acts for a short time on its center, the unconstrained glass plate starts to accel-
erate. Due to the plate’s flexibility, its center accelerates faster than its edges and the plate 
bends. Nevertheless, as the plate deforms, its edges start to accelerate too, and its center 
decelerates due to the internal forces. Thus the unconstrained plate starts to translate in the 
direction of the impact and also oscillate in its symmetric eigenmodes.

The simplest model able to describe such motion is an unconstrained system with two 
degrees of freedom consisting of two masses m1 and m2 and one spring with stiffness k as 
shown on the right-hand side of Fig. 3. This reduced order model for the plate is denoted here 
as the 2DoF model. Our goal is to determine these parameters so that the motion of mass m1 
corresponds to the motion of the center of the plate during and after the impact. The calibration 
procedure is based on three requirements:

1.	 The total mass of the 2DoF model has to be the same as the total mass of the plate, i.e.

	 m1 + m2 = mtot	 (1)

where m1 is mass of the impacted DoF, m2 is mass of the other DoF and mtot is the mass 
of the plate.

2.	 The eigenfrequency of the 2DoF model ω2DoF  has to be equal to the lowest eigenfrequency 
of the plate for which the eigenmode is non-zero at the center of the plate. This means that 
motion in this mode can be induced by force acting in the middle of the plate. Examining 
the first few eigenmodes in Fig. 2 suggests that this is, in fact, the third eigenfrequency 
but here denoted as ω1. The requirement of equal eigenfrequencies is therefore written as

	 ω2DoF = ω1	 (2)

3.	 Finally, we require that the energies stored in the oscillating systems are equal. More 
specifically, when the mass m1 oscillates with the same amplitude as the center of the 
plate, then the energy attributed to oscillations is the same in both models

	 U2DoF = U1	 (3)

Next section describes how to compute the eigenfrequencies of the plate and the 
corresponding energy attributed to the chosen eigenmode. These values are later utilized for 
model calibration.

2.1  Equations of motion and modal analysis of plate

The equations of motion for elastic body are written in weak form as

	
d r d s d du u u u b u t⋅ Ω + ∇ Ω = ⋅ Ω + ⋅

Ω Ω Ω∫ ∫ ∫ ∫��d d d d: Γ
Γ 	 (4)

Figure 2: Bending eigenmodes of unsupported rectangular plate.

(a) First eigenmode (b) Second eigenmode (c) Third eigenmode (d) Eight eigenmode
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where u is the field of displacements, ü the second derivative with respect to time t, i.e. the 
acceleration, ρ the material mass density, b the body forces and t the tractions on the body’s 
boundary. The field δu is the virtual displacement vanishing on those parts of boundary where 
u is prescribed. The stress σ is given by

	 σ = λ tr(ε)I + 2µε	 (5)

with the strain ε being the symmetric part of the displacement gradient

	
e = 1

2
∇ + ∇( )T u u 	 (6)

Discretizing the weak form gives a system of algebraic equations in the form

	 Mr Kr F��+ = 	 (7)

where M is the mass matrix, K the stiffness matrix, r the vector of nodal displacements and F the 
vector of nodal load. Then the eigenfrequencies and eigenmodes result from [−ω2M + K ]u = 0. 
First six eigenfrequencies are equal to zero and correspond to rigid body modes. Let us denote 
ω1 the first non-zero eigenfrequency with non-zero eigenmode at the center of the plate. The 
corresponding eigenmode is dented u1. The potential energy attributed to oscillations in this 
eigenmode is

	
U u Kun

T
n1 1 1

1

2
= , , 	 (8)

where the subscript n denotes normalized eigenmode with the deflection at the center 
equal to 1.

2.2  Modal analysis of 2DoF model

The equations of motion of the 2DoF system are
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where m1 and m2 is the mass of the first and second degrees of freedom, respectively, sym-
bol k denotes the stiffness of the spring, F1(t) the time-dependent force acting on the first 
mass and u1 and u2 the displacements of the two masses, see Fig. 3. The eigenfrequencies 
ωi, i = 0,...,1 of the 2DoF system solve the equation

	
− +  =wi iM K u2 0 	 (10)

where ωi is the ith angular eigenfrequency and ui is the corresponding eigenmode. For this 
particular system, ω0 = 0 corresponds to the rigid body mode and the frequency of the 
oscillations ω2DoF = ω1 depends on the model parameters according to

	

w2
1 2

1 2
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m m
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By substituting the above expression into eqn (10), we obtain eigenmode u = {ξ/m1, ξ/m2}
T 

for any real ξ. After normalizing the eigenmode such that the displacement of the first mass 
equals 1, we get u = 1, m1/m2. The elastic energy stored in the spring when the two masses are 
displaced according to the normalized eigenmode becomes
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2.3  Calibration

To recapitulate, we are searching for m1, m2 and k while knowing m, ω1 and U1 calculated for 
the plate. Let us express the masses of 2DoF model as

	 m1 = αm,    m2 = (1 − α)m	 (13)

Next, expressing k from eqn (11), substituting it into eqn (12) and further substituting m1 
and m2 from eqn (13) leads to
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Rearranging the above equation gives
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The distribution of mass between the two degrees of freedom now follows from eqn (13) 
and the stiffness from eqn (11).

2.4  Numerical tests of 2DoF model for plate

The response of the 2DoF model was compared to the response of an equivalent 3D finite 
element model. The FEM model of the plate was created in FEniCS package [1], discretized 
with quadratic tetrahedral elements and integrated over time using generalized α method [2]. 
Dimensions of the square plate are 0.5 × 0.5 × 0.015 m, Young’s modulus of glass is assumed 

Figure 3: Schema of the 1DoF model for impactor and 2DoF model for plate.

Impactor Plate

m1 m2m0
kFc Fc

u0 u1 u2
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E = 72.0 × 109 Pa, Poisson’s ratio ν = 0.22 and mass density ρ = 2500 kg/m3 corresponding 
to total mass m = 9.375 kg. The parameters of the 2DoF model are m1 = 2.378 kg, m2 = 6.997 kg 
and k = 9.12 × 106 N/m. Responses to force impulses of 1 N with different duration are com-
pared in Fig. 4. Figure 4a demonstrates high accuracy of the time evolution of displacement 
u1 computed by the 2DoF model for relatively long force impulse. Note, that the acceleration 
during the force impulse is followed by linear motion with superposed harmonic oscillations. 
The match between predicted energies is also perfect, see Fig. 4b. Most of the energy added 
into the system transforms into kinetic energy attributed to the linear motion with only small 
fraction of the energy attributed to oscillations. This energy alternates between kinetic and 
potential depending on the current phase of the oscillations. Figures 4c and d show the evo-
lution of displacements and energies during and after force impulse with shorter duration. In 
this case, the oscillatory part of the motion is more significant. The slight difference in total 
energy added to the system is caused by the fact that the simple 2DoF model does not vibrate 

Figure 4: Comparison of 2DoF model and FEM model of glass plate.

(a) Displacements due to force impuse 0.01s (b) Energies due to force impulse 0.01s

(c) Displacements due to force impulse 0.001s (d) Energies due to force impulse 0.001s

(e) Displacements due to force impulse 0.0002s (f) Energies due to force impulse 0.0002s(e) Displacements due to force impulse 0.0002s (f) Energies due to force impulse 0.0002s
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on higher eigenfrequencies while the full 3D FEM model does. This phenomenon is even 
more visible for 0.2 ms impulse, see Figs. 4e and f, when the FEM model accumulates more 
than twice the energy accumulated by the 2DoF model. This is again attributed to strict kin-
ematic restrictions enforced by the simple 2DoF model. This motivates the next section 
where one additional degree of freedom is added to the reduced order model to allow for 
oscillation in two eigenmodes.

2.5  3DoF model for plate

In this section, we add yet another degree or freedom to the model described in Section 2.2 so 
that the plate itself consists of three degrees of freedom with masses m1, m2 and m3. The masses 
are connected with springs k2 and k3. We denote this version of the reduced order model for plate 
as the 3DoF model. Computing the values of its parameters follows rules analogous to rules in 
Section 2: (1) sum of masses equals the mass of the plate, m1 + m2 + m3 = mtot, (2) the two non-
zero eigenfrequencies of the 3DoF model correspond to the first two eigenfrequencies of the 
plate that have non-zero eigenmode at center of the plate, i.e. vibration in these eigenmodes can 
be induced by impacting the center of the plate, see the eigenmodes in Figs. 2c and d for clarifi-
cation, (3) oscillations in these normalized eigenmodes store same energies as corresponding 
oscillations of the plate. The motion of the 3DoF model is governed by system of three equa-
tions. Although the eigenfrequencies and the energies can be easily expressed in closed form, the 
same does not hold for parameters m1, m2, m3, k2 and k3. Therefore, we cannot follow procedure 
in Section 2.2. Instead, the parameters were determined by minimization of objective function

	 fobj (m2, m3, k2, k3) = RT R	 (16)

where the vector of residua is written as
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counterparts obtained by modal analysis of the plate. Thus calling function fobj involves 
solving the eigenvalue problem of 3 × 3 matrix and computing the energies while assuming 
m1 = mtot m2 m3. The Nelder–Mead method implemented in scipy.optimize package 
was used to minimize the objective function and obtain the parameters of the 3DoF model.

2.6  Numerical tests of 3DoF model for plate

Analogically to Section 2.4, we present numerical tests in which the 3DoF model is subjected 
to force impulse and compare the results with the reference FEM solution. The model 
parameters were determined according the procedure described in Section 2.5, their values 
are m1 = 1.408 kg, m2 = 1.578 kg, m3 = 6.413 kg, k2 = 2.523 × 107 N/m and k3 = 1.164 × 107 N/m. 
Figure 5a shows just a slight improvement of the displacement evolution computed with the 
3DoF model when compared to the 2DoF model in Fig. 4c. The slight difference of the dis-
placements evolution during the period when the force impulse is applied might, however, 
qualitatively influence the system behavior during impact as shown in the following sections. 
For shorter impulse, the difference between the 3DoF model and the 2DoF model is even 
more visible, compare Figs. 5c and 4e. Even though the model is still stiffer than the refer-
ence FEM model and thus underestimates the energy absorbed by the system during force 
impulse, the error in total energies in Fig. 5d was substantially reduced.
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3  LOADING BY IMPACT
Closed form solutions exist for frictionless contact, see e.g. [3]. In particular, the force on the 
contact between spherical and flat surface is expressed as a function of penetration depth d of 
these two objects
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where R is the diameter of spherical surface that impacts the glass plate and the effective 
Young’s modulus E* is given by
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where E1 and E2 are Young’s moduli of the two potentially different materials and ν1 and ν2 
are Poisson’s ratios. For negative penetration depth d < 0, the contact force is obviously zero. 
Writing equations of motion, i.e. the equilibrium conditions at any time, for each degree for 
freedom in the system in Fig. 3 gives us

Figure 5: Comparison of the response of the 3DoF model to a force 
impulse with different duration with the response of the 
reference FEM model.

(a) Displacements due to force impulse 0.001s (b) Energies due to force impulse 0.001s

(c) Displacements due to force impulse 0.0002s (d) Energies due to force impulse 0.0002s
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m u F u uc0 0 0 1 0�� + −( ) = 	 (20)

	
m u F u u k u kc1 1 0 1 1 2 0�� − −( ) + −( ) = 	 (21)

	
m u k u k2 2 1 2 0�� − −( ) = 	 (22)

Furthermore, we assume an unsupported glass plate loaded only by the impactor with 
known initial velocity v ui i= �0(t = 0) = vimp. Such system can be easily integrated by suitable for-
ward integration scheme, for example, the one implemented in scipy.integrate.
odeint. The only remaining technicality is to convert the system of second-order differen-
tial equations into standard form �y F y t= ( ), . This is done by defining velocities v ui i= �  and 
using them to get rid of the second derivatives of displacement. Now the system becomes
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	 �u v0 0= 	 (26)

	 �u v0 0=1 = v1	 (27)

	 �u v0 0=2 = v2	 (28)

The initial condition for such system is v0(t = 0) = vimp and the initial values of the remain-
ing components are zero.

3.1  Numerical tests of model for impactor and plate

In this section, we assume either 2DoF or 3DoF model for plate with the parameters presented 
in Sections 2.4 and 2.6. The model presented in previous section assumes the impactor being 
stiff and its motion being described by a single degree of freedom. Nevertheless, the finite 
stiffness of the impactor is taken into account in equn (18). Parameters E0 = 210 × 109 Pa, 
ν0 = 0.3, m0 = 52 kg, R = 0.05 m and v0,in = 0.4429 m/s were assumed for the impactor. Figure 
6a compares the displacement of the impactor u0 and the displacement of the center of glass 
plate u1 between 2DoF and 3DoF models. At time t = 0 s, the impactor touches the glass and 
the spherical head starts to penetrate the glass surface. A series of several such contacts accel-
erated the plate so it finally departs the impactor and moves faster in linear motion. Slight 
oscillations are being superposed onto the linear motion. A detail of this data in the period of 
the impact is displayed in Fig. 6b. Note that the moments when the u1 line is below the u0 line 
correspond to positive penetration depth and thus presence of contact force Fc. Figures 6c and 
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d show the evolution of velocities. It can be observed again that the glass starts at rest and is 
accelerated by series of short contacts impactor. The impactor on the other hand decelerates 
slightly but still moves in its original direction with lower velocity than the glass plate.

3.2  Comparison with measured data

The presented two variants of the reduced order model were compared wviith results of the 
preliminary non-destructive test performed at the Experimental Center of the Faculty of Civil 
Engineering, Czech Technical University in Prague. A plate made of float glass positioned 
according to the schema in Fig. 1a was repeatedly impacted by an impactor with steel spher-
ical head. The acceleration of the impactor and several points on the glass surface were 
measured by accelerometers. The motion during and after the impact was also recorded by 
high-speed camera in order to compute the displacement field by means of digital image 
correlation. At the time of writing, only the data from the accelerometers were available. For 
both, the reduced order models and the experimental data, the contact force was computed 
from the acceleration of the impactor according to

	
F t m u tc ( ) = − ( )0 0�� 	 (29)

The measured acceleration was stripped of noise using CFC600 filter [4]. The filter is a 
standardized Butterworth low pass filter commonly applied to acceleration signals obtained 
during impact measurements. The evolution of contact force computed with the 2DoF and 

Figure 6: Simulation of impact using 2DoF and 3DoF model for 
glass plate.

(a) Displacement of the impactor and the center
of the galas plate

(b) Detail of displacement during impact

(c) Velocity of the impactor and the center of the
galas plate

(d) Detail of velocity during impact
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3DoF models for the plate is compared in Fig. 7a to three series of experimentally obtained 
values. It can be observed that both models predict several consecutive contacts between the 
glass plate and the impactor. On the other hand, the measured accelerations suggest that the 
impactor is in contact with the glass plate during the entire duration of impact. Nevertheless, 
it is not clear to what extent is this observation influenced by the applied filter. The total dura-
tion of the impulse is predicted quite accurately by both models. On the other hand, this does 
not hold for force magnitude which is about two times overestimated for 3DoF model and 
even more for 2D of model.

Figure 7b compares the computed velocities of the plate center point to the measured val-
ues. The measured values of velocity were obtained by integrating the filtered acceleration 
signals. Again, the predicted velocity during the impact fluctuates more than the observed 
data but the moment at which the glass detaches from the impactor and the subsequent 
velocity evolution is predicted accurately.

4  CONCLUSIONS
Two variants of very simple reduced order model for unsupported glass plate exposed to 
low-velocity impact were described. The 2DoF resp. 3DoF model is calibrated to mimic the 
oscillation of the plate in one resp. two chosen eigenfrequencies. The simple 2DoF variant of 
the model requires just three model parameters. The calibration procedure is based on the 
equivalence of energies stored in the oscillating systems and written in closed form. 
Calibration of the 3DoF model with five parameters is based on identical principles, but the 
parameters were obtained by minimization of an objective function. Numerical tests show 
that both models accurately simulate the response to longer force impulse. Simulations of a 
very short force impulse are less accurate because such impulse activates higher harmonic 
frequencies which these models, with just two or three degrees of freedom, cannot cover.

Modeling of impact is governed by Hertzian Law for frictionless contact between the 
elastic spherical surface and flat surface. This law is written in simple power law and relates 
the contact force to the penetration depth while accounting for the elastic parameters of the 
two materials and radius of the spherical surface.

The models were calibrated for 0.5 × 0.5 m glass plate 15 mm thick to simulate its behavior 
during a low-velocity impact. Accelerometers attached to the impactor and the glass plate 
monitored the acceleration during tests. These signals were used to express the evolution of 

Figure 7: �Computed contact force and velocity of the center of the 
plate compared to the experimentally obtained values.

(a) Computed contact force compared to the val-
ues obtained experimentally from measured
impactor accelerations

(b) Computed and meassured velocity
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the contact force and the velocity of the center point on glass plate. Comparison of the com-
puted values to the measured ones not only validates the model but also shows its limitations. 
The main drawback is higher stiffness of both reduced order models given by the fact that 
their motion is limited only to one or two eigenmodes. On the other hand, the duration of the 
impact and the subsequent velocity of the plate is predicted quite accurately. Given what we 
have learned, the presented reduced order model would be more accurate for modeling impact 
between softer bodies which are in contact for a longer period than stiff objects. On the other 
hand, using the model to evaluate the loading effect caused by mid- to high-velocity impact 
of relatively hard bodies would significantly overestimate the peak value of the contact force.
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