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ABSTRACT
This study presents a shape optimization approach for sound barrier using the isogeometric boundary 
element method based on subdivision surfaces. The geometry model is constructed through the subdi-
vision scheme, and different control polygons/meshes describing the same curve/surface are used for 
geometry representation, boundary element analysis and optimization. The gradient-based optimiza-
tion is implemented to minimize the sound pressure in the reference region. By subdivision coarsening 
treatment, the secondary processing improves the direct optimization results in reducing the oscillation 
of the optimized structure. The influence of different subdivision schemes on the obtained optimized 
configurations is studied in detail, which shows the potential of the secondary reverse processing for 
engineering prototype design.
Keywords: boundary element method, shape optimization, subdivision surfaces.

1  INTRODUCTION
As an effective and economical noise reduction tool, the sound barrier has been widely used 
in traffic noise control. The noise reduction effect of a sound barrier is related to the shape, 
size and material properties of the barrier [1, 2]. The optimization design of sound barrier can 
effectively improve its noise reduction effect. The isogeometric BEM based on NURBS has 
been applied to the structural optimization [3–5]. Subdivision surface can construct discon-
tinuous discrete meshes of any topology into an overall smooth surface. In essence, a certain 
subdivision rule is used to repeat the subdivision processing of the polygonal mesh until the 
subdivision convergence limit is reached. At present, the optimization by means of subdivi-
sion surfaces is mainly applied to the distribution of sound absorbing materials [6], 
electrostatics [7] and elasticity problems [8]. This work aims to extend the shape optimiza-
tion approach based on the subdivision surfaces BEM for sound barrier problems. We use 
fine control meshes for BEM discretisation and coarser control meshes for geometric 
modifications. The optimization is started from the coarsest initial control mesh, and the finer 
control meshes are gradually obtained. A key treatment of the present optimization approach 
is that a reverse processing is applied to the original optimized structure for reducing its 
oscillation.

2  SUBDIVISION ALGORITHM AND MULTIRESOLUTION
Constructing a subdivision curve requires a control polygon and a subdivision algorithm. A 
recursive refinement scheme is used to generate new polygons from the initial control poly-
gon. The result of the limiting process is a smooth subdivision curve. The subdivision 
algorithm is a corner cutting scheme which can successively cut the corner with a fixed ratio. 

Given an initial control polygon ( )P P P Pn0
0

1
0

2
0 0, , ,..., , for Chaikin algorithm shown in Fig. 

1a, ith level of refinement on jth segment adopts the following equations: 
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For Catmull–Clark algorithm shown in Fig. 1b, ith level of refinement on jth segment 
adopts the following equations:
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It has been shown that the limiting of a Chaikin curve is identical to a quadratic B-spline 
curve, while the Catmull–Clark curve converges to a cubic B-spline one. Figure 2 shows 
different levels of the subdivision curves from a concave polygon, obtained by the Chaikin 
and Catmull–Clark algorithms. 

Here, we write the subdivision process as a linear mapping that maps a coarser control 
mesh at level l  to a finer control mesh at level l +1 

	 x Axl l+ =1 � (3)

where xl  and xl+1 are two vectors containing the coordinates of all the vertices of the coarser 
and its refined polygons. A is the subdivision matrix and it contains the weights given by the 

Figure 1: Computing new control points through the Chaikin and Catmull–Clark algorithms.

Figure 2: �The concave polygons using two subdivision algorithms. The upper processing uses 
Chaikin algorithm, while the lower one applies the Catmull–Clark algorithm. The 
columns from left to right correspond to the initial control polygons, subdivision 
once, subdivision twice and the convergent curves, respectively.
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subdivision stencils. The subdivision process can be interpreted as the chain of linear map-
pings for obtaining increasingly finer control meshes. 

In this work, we introduce the coarsening of control meshes that are also obtained with 
subdivision. The linear coarsening matrix B maps the given control points at level l +1 to the 
control points at its coarser level l  

	 x Bxl l= +1 � (4)

The coarsening matrix B is formed by a least-squares fitting

	

x x Ay
y

l l l

l

= || − ||+argmin 1 2
� (5)

which leads to A Ax A xT Tl l= +1. By comparing with eqn (4), A and B have the following 
relationship: 

	 B A A A= −( )T T1 � (6)

In words, one step of subdivision refinement of a given control mesh followed by coarsen-
ing does not change the nodal coordinates. The refinement and coarsening processes enable 
us to use different control meshes of the same geometry for optimization and analysis. 

3  ACOUSTIC BEM AND SENSITIVITY ANALYSIS
For acoustic scattering problem, the total acoustic pressure is the sum of acoustic pressures 

caused by scattered acoustic wave and incident wave, i.e. p x p x p xinc scat( ) ( ) ( )= + . The Bur-
ton–Miller method that combines the conventional boundary integral equation and its normal 
derivative formulation overcomes the so-called fictitious eigenfrequency problem [3]. The 
two equations are as follows: 

	
c x p x G x y q y F x y p y p xinc( ) ( ) ( ) ( ) ( ) ( ) ( )= , − ,  +∫Γ

Γd � (7)
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n x
inc( ) ( ) ( ) ( ) ( ) ( )

( )
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∂
∂∫Γ

Γ1 1 d � (8)

where x  is the source point, y  is the field point, q y p y n y( ) ( ) ( )= ∂ / ∂  and n y( ) denotes the 
outward normal vector at point y . The coefficient c x( ) = /1 2 if the boundary Γ is smooth 

around the source point x. The kernel functions G x y( ), , F x y( ), , G x y1( ),  and 1( )F x y,  can 
be found in [3]. In this study, the geometry can be expressed by B-spline curves as follows: 
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where mi  is the number of B-spline basis functions and Pi  is the control point for the geometry. 
The quadratic and cubic B-spline basis functions can be expressed as 
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Similarly, the sound pressure and flux at the boundary are interpolated using B-spline basis 
functions as follows: 

	
p B p q B q
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where pi and q si represent the nodal parameters associated with the sound pressure and nor-
mal flux, respectively. The Burton–Miller formulation can be discretized in matrix form as: 

	
Hp Gq pi= + � (13)

Acoustic sensitivity analysis is a critical step in the shape optimization of acoustic struc-
tures. Using the direct differentiation method, the equations are given as 

c x p x G x y q y F x y p y y( ) ( ) [ ( ) ( ) ( ) ( )] ( )� � �= , − ,∫Γ
Γd

               
+ , − ,∫Γ

Γ[ ( ) ( ) ( ) ( )] ( )G x y q y F x y p y y� � d

                                                 
+ , − , +∫Γ

Γ[ ( ) ( ) ( ) ( )] ( ) ( )G x y q y F x y p y y p xincd � �
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(14)
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where the upper dot (
.
) denotes the differentiation with respect to the design variable. The 

shape sensitivities of sound pressure and its flux are interpolated from their respective nodal 
values 
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Here, the matrix form of the combined Burton–Miller formulation of eqns (14) and (15) 
can be expressed as 

	
� � � � �Hp Hp Gq Gq pi+ = + + � (17)

where �H and �G are the corresponding sensitivity coefficient matrices and �p and �q are the 
sensitivities of p and q.

4  SHAPE OPTIMIZATION
The acoustic shape optimization problem can be formulated as
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where pf  is the sound pressure vector at the reference point x f  and pf  denotes its complex con-
jugate. In this work, the coordinates of control points are set as design variables. Π  is the 
objective function. The optimization constraint is the designed area A smaller than the initial area 
A 0

, and x i
l and x i

u represent the lower and upper limits of the design variables, respectively. 
The sensitivity of the objective function to the design variable can be expressed as
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where Π  is the real part of the complex number. The expression for the sound pressure vec-
tor pf  in the acoustic domain can be calculated by the discretized formulation:

	
p Hp Gq pif = − + + � (20)

By differentiating pf  with respect to design variable x i, the following formulation can be 
obtained:

	
p Hp Hp Gq Gq pif = − − + + +� � � � � � (21)

Here, we employ the method of moving asymptotes (MMA) as the optimizer to update the 
design variables as shown below:

	

Π Π

Π

t t

t

+ −
<
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t � (22)

where t  denotes the iteration step and Πt  represents the value of objective function at t th 
iteration. t  is the iterative convergence criterion, set as 1 0 10 4. × − . 

5  NUMERICAL TESTS
To demonstrate the validity and applicability of the developed optimization algorithm, we 
consider the analysis and design domain of a vertical noise barrier shown in Fig. 3. The thick-
ness of the barrier is set as 0.25 m and a monopole source is located at ( )0 1, m. As the figure 
shows, the left vertical boundary of the noise barrier is selected as the line to be optimized. 
The design variables are the horizontal coordinates of the N control points of the designing 
vertical line, and the optimization objective is to minimize the mean sound pressure on the 
reference plane. 

The acoustic scattering of the sound barrier is a half-space problem, and the kernel func-
tion can be written as

	
G x y

i
H kr

i
H kr( ) ( ) ( )( ) ( ), = + ′

4 40
1

0
1 � (23)

where ′ =| ′ − |r x y  and ′x  is the mirror point of the source point x . Make the same changes 
to other kernel functions in the above formulations. After obtaining the basic sound pressure 
and sensitivity information, use the MMA solver to iterate the design variables until the iter-
ation convergence accuracy is satisfied. 
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Figure 4 shows the objective function varying with the iteration step for different numbers 
of control points. Obviously, with an increase in design variables, the number of iteration 
steps also tends to increase. A larger N produces a smaller optimal value of the objective 
function, where the convergent value is 0.00122 when N = 30 and 0.00117 when N = 60. 
Figures 5 and 6 show the shape configurations of the sound barrier at different control points 
N with frequency 300 Hz. Adding geometric control points can improve the flexibility in 
shape optimization, and we can find that the oscillation of the optimization line increases 
obviously. In order to eliminate this feature, the reverse matrix processing method is used to 
reduce the local oscillation of the optimized boundary. Figure 7 shows the detailed optimiza-
tion process in Fig. 6. After the directly optimized Chaikin curve 1 is obtained, the boundary 
consisting of control points is coarsened once through the coarsening matrix, so as to obtain 
the boundary of the third subgraph shown in Fig. 7, and finally it is subdivided into a Chaikin 
curve 2 to meet the design requirements of the structure. 

The sensitivity distributions of the control points at different frequencies are different, and 
the corresponding optimization results are also different. Now the number of geometric 

Figure 4: �Objective function with iteration step for numbers of inserting control points 30 and 
60; the computing frequency is 300 Hz.

Figure 3: Initial sound barrier.
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control points is fixed at N = 60. Figures 8 and 6 show the final shapes of the sound barrier 
after optimization at 150 and 300 Hz, respectively. For the optimized boundary, more peaks 
and valleys are found in higher frequencies. Table 1 shows the comparison of the noise reduc-
tion effect before and after optimization. The optimization value 1 represents the result of the 
direct optimization of the initial sound barrier, and the optimization value 2 represents the 
optimization result obtained through the inverse matrix processing. It can be found that the 
two optimized results are basically the same, indicating that the method is feasible and 
effective. 

Figure 5: �Final optimal solution and coarsening matrix processing solution for N = 30  with 
frequency 300 Hz.

Figure 6: �Final optimal solution and coarsening matrix processing solution for N = 60 with 
frequency 300 Hz.

Figure 7: �Optimize the initial sound barrier and reverse processing operation to obtain a 
reasonable structure.
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6  CONCLUSIONS
A shape optimization approach based on subdivision surfaces is proposed for the sound bar-
rier in this work. Numerical tests show the validity of the proposed approach and the necessity 
of an optimal design. The optimal noise reduction structure is obtained through the refine-
ment of the optimization results and the reverse operation processing, which provides a set of 
reasonable solutions for the production and design structure. 
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