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ABSTRACT
One of the most challenging modelling problems in modern engineering is that of a particle crossing 
a continuous phase (air). In sprinkler irrigation practice this may refer to a water droplet travelling in 
air from the nozzle to the ground. The challenge mainly refers to the diffi culty in designing and solv-
ing the system of governing equations for that very complicate process, where many non-linearities 
occur when describing the relations and dependences among the parameters that rule the phenomenon. 
The problem becomes even more complicated when not just a single droplet alone is assessed but a 
multi-droplet system is accounted for. In addition to the inter-parameter dependencies, an inter-droplet 
reciprocal connection is also observed, mainly due to electrical interactions between the hydrogen and 
the oxygen atoms of the different water molecules. An alternative to traditional classic approaches 
to analyse water droplet dynamics in sprinkler irrigation has been recently proposed in the form of a 
quantum approach, but the whole classic-quantum and single-droplet versus multi-droplet alternatives 
need to be discussed and pinpointed which are among the main aims of the present paper which focuses 
on the theoretical part of the issue, thus highlighting the new perspectives of a deeper comprehension 
in the spray fl ow related phenomena. 
Keywords: Classic and quantum mechanics, mathematical modelling, single- and multi-droplet  systems, 
spray particles kinematics, sprinkler water droplets.

1 INTRODUCTION
Albeit the process of a liquid particle moving within a gaseous phase may describe many 
different technical applications, broadly investigated in many scientifi c sectors and from 
many different points of view, a complete, clear and generally applicable mathematical 
modelling is still far from having been achieved. Very recently Molle et al. [1] made an 
extremely useful experimental contribution in the fi eld of irrigation, which will be of sub-
stantial usefulness for future investigations and modelling attempts. The results of the 
present paper were mainly reached by featuring the sprinkler irrigation context. The out-
comes, if suitably adapted, may also apply to other fi elds and aims, such as pesticides 
distribution, heat removal or fi re suppression, to name but a few. The fundamental problem 
is not just that of solving the equations ruling the development of the system and of the 
phenomenon but, upstream of that, it lies in the characterization of such equations. Accord-
ing to the authors of this paper, such hurdle can be attributed to incomplete understanding 
of the system-process evolution. This of course should not be taken as a form of underesti-
mation of the analytical diffi culties due to the mutual interrelationships between the 
parameters that govern the process, on the one hand, and the characteristics of the particles 
involved, on the other. In fact the main thematic scientifi c literature [2–6] tries to overcome 
such computational complication binding the solutions achieved to the specifi c case studies 
faced. In general, however, the kinematic analysis of sprinkler water droplets during their 
aerial path is devised adopting a Newtonian approach and considering a single-droplet 
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 system. A ballistic form of the same viewpoint, based on a Newtonian approach for a single- 
droplet system, was also proposed by the authors [7–9]. This approach will be described in 
the paper as a classic/single-droplet model. Coming again to the “not complete understand-
ing of the system-process evolutions” quoted above, the issue has very recently led the 
authors of the present work to the belief that to fully comprehend and describe the phenom-
enon, another viewpoint could be considered: the quantum one [10]. The results which were 
arrived at [11] were in the form of the time-dependent Schroedinger’s equation and of the 
scale relativity theory [12] written as a Riccati equation. The former, in particular, was writ-
ten for single-droplet systems, seen as waves and material particles [13] and considering a 
Lagrangian or Eulerian description for both steady and transient states. The present paper, 
therefore, will treat further possibilities to study the kinematic behaviour of both single- and 
multi-droplet systems during their aerial path in/(according to) both the classic (i.e. Newto-
nian) and quantum approach.

2 THE CLASSIC MECHANICAL PICTURE
We do not wish to review the whole classic approach, as reported in the literature, but to 
explore the modelling possibilities in relation to the topic of the present paper. Anyway to 
further deepen the state-of-the-art, one could refer to other publications by De Wrachien and 
Lorenzini [7–9]. Some more information on spray kinematics modelling (mainly  Lagrangian) 
both in sprinkler irrigation and in chemical sprays contexts are also available [3,14–16], 
while spray drift Lagrangian modelling is treated in Hewitt et al. [17], and in Bird et al. [18]. 
Recently the authors [7–9] defi ned and validated (see also; [2,6]) the following simplifi ed 
analytical model feasible to solve water droplets kinematics, based on the second principle 
of dynamics:
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being: f the friction factor according to Fanning [19]; g the gravity; h [m] the initial y co- 
ordinate; 2k f Ar=  the friction coeffi cient; m the particle mass; n the droplet actual mass 
(buoyancy); t the time; v0x and v0y the initial horizontal and vertical velocity components;  
, , , , ,x y x y x y� � �� ��  the co-ordinates, velocities and accelerations along the horizontal and vertical 

axes, respectively. Being the model analytical, albeit simplifi ed, it is applicable to a variety of 
problems but the more reliable results were obtained for high Reynolds numbers. Obviously, 
as mentioned above, the model presented is one of the possible ones which can describe a 
single-droplet system from a classic viewpoint: the choice was mainly due to the fact that 
such model is tightly related to the second law of dynamics, as previously mentioned. To 
complete the topic, anyway, one may in general face the kinematic analysis of a multi-droplet 
system (i.e. composed of N droplets) from a classic viewpoint by means of the following 
analytical expression [20]: 
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where mk (1 ≤ k ≤ N) is the k-th particle mass, Q is the classic trajectory, V is a potential func-
tion accounting for time dependence [20] and ∇k is the 3-D gradient operator referred to the 
k-th particle.

2.1 Validation of the dynamic model

The validation of the classical procedure needs a quantitative approach to check how reliable 
the predictions are: this can be done introducing other authors’ data in the model. The works 
chosen for these comparison purposes are Edling’s [2] and Thompson et al.’s [6]. Their date 
set are reported in Table 1.

Comparisons of fi eld measurements and theoretical values are presented in Tables 2, 3 
and 4 in terms of travel distance (Tables 2 and 3 for Edling’s and Thompson et al.’s cases 
respectively), and of time of fl ight (Table 4 for Thompson et al.’s cases only, since some 
data required for the computation were missing from Edling [2]). Table 2 shows reasonable 
agreement in two cases, but poor agreement with a droplet diameter of 0.5 mm. Tables 3 
and 4 present a comparative analysis on the basis of Thompson et al.’s [6] data in terms of 

Table 1: Reference data set for the comparative analyses of results.

Edling [2] Thompson et al. [6]

Flow rate exiting from the sprinkler (dm3/s) 1.4 × 10–4 5.5 × 10–4

Nozzle diameter (mm) 3.96 4.76
Jet inclination with respect to horizontal (°) 0

10
–10

25

Nozzle height (m) 1.22
2.44
3.66

4.5

Air temperature (°C) 29.4 38
Wind No No
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Table 2: Travel distance of sprinkler droplets: Edling’s [2] data vs Lorenzini’s [8].

Nozzle 
height 
(m)

Jet 
inclin. 
(deg)

Droplet diameter (m)

0.5 × 10–3 1.5 × 10–3 2.5 × 10–3

Edling 
[2]

Lorenzini 
[8]

Edling 
[2]

Lorenzini 
[8]

Edling 
[2]

Lorenzini 
[8]

1.22 10 1.53 2.11 4.04 4.29 5.08 5.22
0 1.52 1.77 3.55 3.38 4.19 3.98

–10 1.46 1.35 2.91 2.48 3.22 2.85
2.44 10 1.55 2.20 4.62 4.81 6.00 6.00

0 1.55 1.92 4.31 4.08 5.37 5.00
–10 1.50 1.52 3.86 3.27 4.57 3.96

3.66 10 1.55 2.22 4.95 5.11 6.60 6.50
0 1.55 1.96 4.73 4.47 6.10 5.62

–10 1.50 1.57 4.36 3.71 5.41 4.64

Table 3: Travel distance of sprinkler droplets: 
Thompson et al.’s [6] data vs Lorenzini’s [8].

Droplet diameter (mm) Thompson et al. [6] Lorenzini [8]

0.3  1.30  2.73
0.9  5.22  6.77
1.8 10.00 11.56
3.0 13.48 16.66
5.1 17.83 23.59

Table 4: Time of fl ight of sprinkler droplets: 
Thompson et al.’s [6] data vs Lorenzini’s [8].

Droplet diameter (mm) Thompson et al. [6] Lorenzini [8]

0.3 2.63 0.84
0.9 1.54 1.35
1.8 1.63 1.73
3.0 1.75 2.00
5.1 1.84 2.26

travel distance and time of fl ight, respectively. A difference can be seen with a droplet 
diameter of 0.3 mm. This is due to the fl ow description adopted in Thompson et al. [6] for 
smaller droplets, which was not shared in the present approach with regard to the diffusion 
effects. The other data, particularly those referring to the range of the intermediate droplet 
diameters, instead show reasonable agreement both in the values obtained and in the trends 
determined.
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Facing a comparative approach, it can be stated that the model here defi ned proves to be 
kinematically reliable in its predictions from a qualitative and quantitative points of view, 
particularly when droplets having a “not too small” diameter are considered. This, being the 
model defi ned by neglecting most of the parameter typically introduced in the others, can be 
considered as a fi rst relevant result. The comparisons performed with Thompson et al.’s data 
show that when the droplet gets close to a condition of Stokes’ fl ow law, the model provides 
less accurate results. This is the limit to the model and it somehow defi nes the fi eld of accepta-
bility of the method presented here. The model becomes weaker when it moves away from 
Newton’s fl ow law because of the approximation used to defi ne k in the other two fl ow pat-
terns. The dependence of the results on the fl ow state criterion of small diameter can easily 
explain the different results obtained for the smallest droplets in the present work and in 
Thompson et al. [6].

3 THE QUANTUM MECHANICAL PICTURE

3.1 Quantum mechanics for a single particle

The discrepancies between a classic vs. quantum description, on the one hand, and between 
a single-droplet vs. multi-droplet one, on the other, may be highlighted examining the follow-
ing expressions for single- and multi-droplet systems (respectively) as compared to those in 
the previous section of this paper [11,20]: 
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potential,  the Dirac constant. Comparing eqn (5) with (3), the fi rst useful consideration is 
that, if the quantum potential assumes a value which is in the vicinity of zero, then the quan-
tum and classic kinematic pictures tend to coincide. But as a quantum viewpoint presumes 
that the “object” evaluated is not just a material particle but also a wave, then for each  element 
of a multi-droplet system one may write the time-dependent Schroedinger’s equation as:

 

2 2 1( , ) ( , ) ( , ) ( , )
2

D x t m V x t x t i D x t
t

y y y
∂⎛ ⎞∇ − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅⎜ ⎟⎝ ⎠∂

� � � �
 (6)

where D is the diffusion coeffi cient, ( , ) ( , ) [ ( , )]x t R x t exp S x ty = ⋅� � �
, R is the wave amplitude, S 

is the wave phase. Equation (6) can be re-written in the form of continuity and Euler-type 
“quantum fl uid-dynamic equations”, respectively [11,21,22]:
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(r is density, v�  is velocity, V is the classic potential, Q is the quantum potential). Equation (6) 
can be re-worked by means of Nottale’s scale relativity theory [12] using a probability den-
sity function for a semi-infi nite domain [23] for writing the second law of dynamics in the 
complex fi eld (u is a scalar potential, W is a complex velocity):

 
u m W

dt
−∇ = ⋅

ð
 (9)

Dividing the real and imaginary parts in eqn (9) (U is the imaginary part of W) one gets:
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which (fi rst equation) may be re-written for a 1-D path as a Riccati equation [24], being c a 
constant and y(x) an arbitrary function of x:
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Both are very powerful tools as they allow for quantum particles computations avoiding the 
time-dependent Schroedinger’s equation, even if it just for 1-D domains, which is useful in 
particular cases as for instance a droplet vertical downfall. 

3.2 Quantum mechanics for many-particle systems

Considering multi-droplet systems, the time-dependent Schroedinger’s equation needs to be 
suitably re-written, provided that water has a V-shaped molecule resulting in a magnetic fi eld 
due to the electric potential between oxygen and hydrogen. This results in [21]:
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 the electric potential, ( ),jx t
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f  the external time-dependent scalar potential, 
Nx
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 the N-particle coordinates. This may be transformed similarly to single-droplet 
 systems as:
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then giving the continuity equation:
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and the Euler-type equation:
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where ∇k is the gradient operator related to the coordinate kx
���

 of the k-th particle; 
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external magnetic fi eld. The fi rst integrations of eqns (15) and (16) were carried out by 
Madelung [25], and the work was successively extended by Bohm [26,27].

4 THE DYNAMICAL AND NUMERICAL APPROXIMATIONS
In any case an analytical “closed form” solution of the equations describing the quantum 
kinematics of particles is obviously extremely diffi cult and even the most advanced tech-
niques often fail to achieve such purpose, albeit in the years to come this attempt will not be 
abandoned. This is why, recently, different forms of approximation have been introduced to 
treat the “quantum fl uid-dynamic equations”: among those, literature reports numerical and 
dynamical approximations [28–30], which are both currently being developed. The formers 
may rely on Eulerian, Lagrangian or arbitrary Lagrangian–Eulerian descriptions, all charac-
terised by advantages and disadvantages. Lagrangian descriptions are easier in the form 
through which they write down the equations, as the grid moves with the particle and fol-
lows its evolution; but they become diffi cult to handle as, step after step, the grid becomes 
non- uniform with problems in the accuracy of the fl ow solution. Eulerian descriptions are 
complicate at the beginning of the simulation, due to an increased analytical complication, 
but prove to be more practical afterwards as the grid does not change with time. A uniform 
grid following the fl ow evolution is instead met in the arbitrary Lagrangian–Eulerian 
descriptions, also adopted in some computational fl uid dynamics codes. The dynamical 
approximations do not rely in a mathematically-simplifi ed description of the problem but in 
a physically-simplifi ed one by superimposing some particular conditions (e.g. incompressi-
ble fl ow) or neglecting some other characteristics considered not so relevant to the whole 
picture. Obviously it would not be inconceivable to imagine a mixed numerical–dynamical 
approximation approach and we feel that on this aspect research will invest a part of its 
future resources: in relation to this challenge one should highlight that quantum trajectories 
can be treated quite similarly to the classic ones when considering, for the particles treated, 
the  suitable relations among the dynamic and the potential part of the problem.

5 CONCLUSIONS
Describing in an analytically and physically correct way, the phenomenon of a water droplet 
travelling from the exit of a sprinkle nozzle down to the ground is an extremely diffi cult task, 
as many studies performed in the last decades have broadly demonstrated, trying to fi nd a 
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solution via different means and approaches. The present investigation starts from a recent 
hypothesis made by the same authors of this paper: a water droplet could be treated as a 
quantum object, characterised both by material particle and wave properties. Thus the 
time-dependent Schroedinger’s equation may be employed to study the process and a parallel 
classic-quantum description may be achieved, both for single-droplet and for multi-droplet 
systems. The latter systems are not only affected by the usual fl uid-dynamic parameters but 
the mutual repulsions and attractions between particles are to be accounted for, in the form of 
electric–magnetic potentials bound to the molecular structure of water: this allows one to 
re-write the time-dependent Schroedinger’s equation and the so-called “quantum fl uid- 
dynamic equations” in a novel and more complete form. In addition, the paper provides a 
general overview of the numerical and dynamical approximations currently available to treat 
the systems of equations arrived at. Future studies will deepen the novel modelling approach 
suggested to make it more and more suitable for practical applications.
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