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ABSTRACT
The planning of a rail system requires the definition of travel demand in terms of passenger (or freight) 
flows for sizing physical and technological elements (such as number of trains, signalling system type, 
length and width of platforms). Moreover, once a system has been set up and functional elements have 
been acquired, system management in terms of services and related timetables requires knowledge of 
travel demand flows. Much has been written about the methods and techniques for estimating travel 
demand by means of analytical models (calibrated by surveys), statistical processing of survey data and/
or correcting model results by using properly collected traffic counts. However, whatever the adopted 
approach, it is necessary to proceed with survey campaigns to acquire experimental data. Obviously, the 
greater the number of detected data (and related acquisition costs and times), the greater the accuracy of 
travel demand estimations. Hence, in real cases, a fair compromise between survey costs and estimation 
accuracy has to be struck.

In this context, we propose an analytical methodology for identifying space–time relations between 
passenger counts to reduce the amount of data to be surveyed without affecting estimation accuracy. 
In particular, our proposal is based on defining analytical functions to provide boarding and alighting 
flows depending on the station (space component) and the time period (time component) in question. 
Finally, in order to show the feasibility of the proposed methodology and related improvements with 
respect to traditional approaches, we applied our proposal to the case of a real metro line in Naples 
(Italy) by comparing different levels of detail in passenger surveys.
Keywords: OD matrix estimation, public transport management, traffic count accuracy, travel demand 
estimation.

1 INTRODUCTION
The promotion of public transport may be viewed as one of many useful strategies to 
reduce negative externalities on road networks (see, for instance, European Commission 
[1]). Indeed, although numerous policies have been applied to improve road system condi-
tions in terms of safety (as shown by Dell’Acqua and Russo [2] and Dell’Acqua et al. [3]) 
or analysis of driver behaviour (as proposed by Bifulco et al. [4] and Pariota et al. [5]), the 
most successful strategies are based on the variation in user modal choices which allows 
sharp reductions in accidents, energy consumption, traffic congestion and air and noise 
pollution. In this context, adoption of interventions aimed at increasing the attractiveness 
of public transport (see Ca-scet-ta et al. [6, 7]) or reducing mass-transit operator costs and 
passenger disutilities (D’Acierno et al. [8], Gallo et al. [9] and D’Acierno et al. [10]) may 
represent a useful way for achieving the intended purposes.

However, whatever the adopted approach, it is necessary to estimate travel demand in 
terms of potential or expected passengers (or freights) with related features (i.e. starting and 
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arrival stations, adopted time slot, trip duration, etc.). Indeed, such information is useful 
both for planning and management phases of transportation systems. This has generated an 
extensive literature on the estimation and forecasting methodologies of travel demand, which 
is summarized below.

In general, estimation of current and future demand can be performed by (Cascetta [11]) 
direct estimations, disaggregated estimations and aggregated estimations. The first approach, 
indicated in the literature (see, for instance, Smith [12], Brog & Ampt [13] and Ortuzar 
& Willumsen [14]) as direct estimation, can be adopted to determine only ‘present’ travel 
demand. It is based on the application of sampling theory in the case of mobility choices. 
The main limits of this methodology consist in the huge number of information to be col-
lected and the inability to predict future developments due to transportation network or socio-
economic variations.

The second approach, known as disaggregated estimation (see, for instance, Domencich & 
McFadden [15], Horowitz [16], Manski & McFadden [17] and Ben-Akiva & Lerman [18]), 
consists in specifying (i.e. providing the functional form and related variables), calibrating 
(i.e. determining numerical values of model parameters) and validating (i.e. verifying the 
ability of the model to reproduce original data) a model by means of proper data. These data 
express disaggregate information related to a sample of individuals, where the size and the 
sample characteristics generally differ from those used in the first approach. This methodol-
ogy allows mobility choices to be simulated in current conditions (based on the ability to 
reproduce sampling data) and in the case of future conditions (based on the ability to simulate 
user reactions to transportation network or socio-economic variations). The above disaggre-
gated approach is referred to in the literature as the revealed preference approach (Cascetta 
[11]) since it is based on the use of data related to real behaviour of travellers. Recently (see, 
for instance, Ben-Akiva & Morikawa [19] and Ortuzar [20]), the stated preference approach 
has been developed, based on the statements of travellers about their appropriately described 
and designed preferences in hypothetical scenarios. With the use of this second approach the 
prediction abilities of the calibrated demand models can be improved.

Finally, the last approach (see, for instance, Lo & Chan [21], Cascetta  et al. [22] and 
Lu  et al. [23]), known as aggregated estimation, is based on modifying demand model 
results after correcting them by means of traffic counts (i.e. vehicular or passenger flows). 
The aim of this approach is to identify an origin-destination (OD) matrix which is closest 
to its estimation by model and, once it is assigned to the network, generates flows closest 
to the counting data.

The brief analysis of methods for estimating travel demand shows that it is always neces-
sary to conduct survey campaigns to acquire experimental data. In particular, the greater the 
number of surveyed or detected data (and related acquisition costs and times), the greater 
the accuracy of travel demand estimations. Hence, in real cases, a fair compromise between 
survey costs and estimation accuracy should be achieved.

In this context, our proposal is to provide an analytical procedure for identifying some 
space–time functions in order to reduce the number of data to collect without significantly 
affecting estimation accuracy. In the particular case of a metro system, we aim to identify 
analytical relations which express boarding and alighting flows of passengers depending on 
the station (space component) and the time period considered (time component).

The article is organized as follows: Section 2 provides general features of the proposed 
approach; Section 3 applies the methodology in the case of a real metro line; finally, conclu-
sions and research prospects are summarized in Section 4.
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2 DEFINITION OF SPACE–TIME RELATIONS
The proposed methodology is based on the assumption that the spatial correlation (i.e. the 
correlation among different stations) and temporal correlation (i.e. the correlation among dif-
ferent time periods) of passenger flows is generally not null. The reason lies in the framework 
of travel demand and its temporal distribution.

In the literature, the definition of functions for determining travel demand can be 
addressed through two main approaches (Cascetta [11]): descriptive and behavioural. The 
former (see, for instance, Oi & Shuldiner [24] and Wilson [25]) provides relations among 
variables without any assumption on users’ behaviour; the latter (see, for instance, Ortuzar 
& Willumsen [14], Domencich & McFadden [15] and Ben-Akiva & Lerman [18]) is based 
on explicit assumptions of users’ choice behaviours. Our proposal is based on adopting the 
first approach.

In particular, in order to investigate whether it is possible to identify one or more space–
time functions to calculate passenger flows with a descriptive approach, we propose the fol-
lowing five-step procedure:

•	 design and execute a survey campaign in order to acquire a sufficient amount of data for 
applying the following statistical analyses;

•	 define a partial set of data, obtained by hiding (i.e. assuming not detected) some data with 
a predetermined sampling rate;

•	 perform a mono-dimensional statistical analysis on the partial data set in order to identify 
the optimal functional form;

•	 perform a multi-dimensional statistical analysis on the partial set of data, in order to spec-
ify, calibrate and validate one or more space–time functions;

•	 validate the methodology by comparing the simulation of the metro system by using data 
of the whole set (assumed as ‘absolute truth’) and those in the case of data obtained by 
space–time functions identified.

The first step consists in analysing the main features of the context such as the number and 
location of stations, the layout in terms of platforms and accesses of any station, operat-
ing hours and timetables, and rolling stock characteristics. This information allows a proper 
survey plan to be designed, indicating ‘when’ and ‘where’ passenger flows must be counted. 
Obviously, this phase includes the execution of surveys, whose appropriately noted results 
can be shown as in Fig. 1.

Since the aim of the procedure is to provide a tool for reducing the amount of data to be sur-
veyed, the second phase consists in determining a partial data set to be analysed. In particular, 
we simulate the adoption of a prefixed sampling rate during surveys, for instance 50%, by 

Figure 1: Surveyed data (i.e. real surveyed data).
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hiding some detected data. In this way, we apply the proposed methodology in the case of a 
limited subset of surveyed data (see Fig. 2).

With the information collected and properly processed, the first kind of statistical analysis 
can then be implemented, that is the mono-dimensional approach. It consists in checking the 
class of functions which best describes the simulated survey data. This procedure is indicated 
as mono-dimensional because the analysed functions are defined in an R2 space, where the 
abscissa is the sequence of stations or the time periods and the ordinate is the surveyed flow 
(as shown in Fig. 3).

Hence, for each class of functions, it is necessary to analyse (n
st
 × 2) × n

tp
 set of data, 

where n
st
 is the number of the stations (multiplier 2 is required to consider outgoing and 

return trips separately) and n
tp
 is the number of time periods considered. Since there are two 

flow types (i.e. boarding and alighting flows) to be considered, assuming n
fc
 as the number of 

function classes to be analysed, the second phase requires the calibration and the validation 
of n

f
 mono-dimensional functions, where

 ( )= ⋅ ⋅ ⋅ ⋅n n n n2 2f fc st tp. (1)

Obviously, for each class of function, suitable validation tests have to be performed.
Having defined the best class of mono-dimensional functions, the fourth phase consists in 

providing the specification, calibration and validation of four surfaces, where the independ-
ent parameters are the stations and the time periods, while the surface expresses the value of 
passenger flows. The number of functions to be defined, which is equal to four, is related to 
the fact that we have to consider two kinds of passenger flows (boarding and alighting flows) 
and two kinds of trips (outgoing and return trips). Obviously, also in this case the calibration 
set consists in the simulated (i.e. partial) surveyed data, shown in Fig. 2.

Figure 2: Partial set of surveyed data (i.e. simulated surveyed data).

Figure 3: Organization of data for mono-dimensional analyses.
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The last phase consists in comparing application results obtained by using the whole set of 
the survey data and those using the data of calibrated functions properly combined with the 
data of calibration subsets. Three different combinations of sets may be obtained for compar-
ison: only the calibration subset (Fig. 2), the calibration subset extended by replacing missing 
data with function data (Fig. 4) and only function data for all values (Fig. 5).

3 APPLICATION OF THE PROPOSED METHODOLOGY
In order to show the feasibility of the proposed methodology, we applied it in the case of 
Metro Line 1 in Naples (Italy) which is about 18 km long and consists of 18 stations (further 
details can be found in Botte et al. [26]) from the suburbs (Piscinola) to city centre (Gari-
baldi).

Survey activities were implemented in July 2015 to collect data related to daily flows on an 
average working day in summer. It is worth noting that investigations were organized to detect 
flows for each single access (gate, stair, elevator, etc.) which were subsequently grouped 
according to platforms and travel directions. Finally, data were organized by considering 
three time periods and 18 stations; therefore we obtained four matrices of dimensions 3 × 18, 
whose framework is shown in Fig. 1.

3.1 Calibration of analytical functions

As described in the previous section, the calibration phase was divided into two sub-phases: 
a mono-dimensional phase and a multi-dimensional phase. Obviously, it was first necessary 
to define the simulated surveyed rate which was assumed equal to 50%.

The first analysis consisted in dividing each of the four survey matrices into 54 (i.e. 3 ×× 18) 
vectors and testing the goodness of fit (i.e. the discrepancy between surveyed data and function 
data). The following classes of functions were tested: linear, quadratic, cubic, fourth-degree 
polynomial, fifth-degree polynomial, power, logarithmic and exponential functions. However, 
due to the scarcity of data along the matrix columns (i.e. there were at most two data), linear 
functions were adopted only in row analyses.

Figure 4: Subset extension by means of function data.

Figure 5: Function data for all values.
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The goodness of fit of each class of function was estimated by means of the coefficient of 
determination ℜ2 , calculated as follows:

 ∑ ∑φ φ φ( ) ( )ℜ = −
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i
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  (2)

with

 
∑φ φ= ni

i ,
 (3)

where ϕ
i
 is the i-th simulated survey data (i.e. known value of Fig. 3), n is the number of 

simulated survey data ϕ
i
,ϕ is the mean of data ϕ

i
 and f

i
 is the i-th value assumed by the 

calibrated function.
The class which provided the best R2 values were polynomial functions. Hence, we imple-

mented the multi-dimensional phase by adopting this category of functions, obtaining the 
following formulations:
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with
 k ∈{AG; BG; AP; BP}, (6)

where x represents the time period; y represents the sequence of stations (y = 1 in the case of 
Piscinola and y = 18 in the case of Garibaldi); AG represents alighting flows (A) in the case 
of the outgoing trip (i.e. Garibaldi direction); BG represents boarding flows (B) in the case 
of the outgoing trip (i.e. Garibaldi direction); AP represents alighting flows (A) in the case of 
the return trip (i.e. Piscinola direction); BP represents boarding flows (B) in the case of the 
return trip (i.e. Piscinola direction).

It is worth noting that eqn. (4) is defined in the case of k ∈{AG; AP; BP}, while eqn. (5) is 
defined only in the case of k = BG. Therefore, values f

i
 are calculated by means of eqn. (4) or 

eqn. (5) according to the values assumed by parameter k.
However, we adopted as global statistical tests: ℜ2  (formulated as eqn. (2)); adjusted ℜ2  

(indicated as ℜ2) and F-test (indicated as F), formulated as follows:

 ( ) ( )ℜ = ℜ − −ℜ ⋅ − −p n p1 12 2 2 , (7)

 ( )( )( )= ℜ ⋅ − − −ℜ ⋅F n p p1 12 2

, (8)

where p expresses the number of function parameters, which is equal to 5 in the case of func-
tion (4) and equal to 15 in the case of function (5). Moreover, we also performed the t-student 
(indicated as t) test of coefficients, calculated as

 ( )=t a aVari
k

i
k

 or ( )=t b bVari
k

i
k

, (9)
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where Var(), or equivalently Var(ai
k), is the i-th element of the main diagonal of variance–

covariance matrix S, obtained as

 ε ( )Σ = − ∂ ∂ ∂




−

a ai
k

j
k2

1
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 ∑ε φ( )= −fi i

i

2

. (11)

Table 1 reports the results of the global statistical tests; Tables 2–5 describe the results of 
statistical tests of coefficients.

Table 1: Global statistical tests.

Function type 
(k)

ℜ2 ℜ2 F-test

F value Threshold

Confidence 
level 
(%)

AG 0.764 0.701 12.273 8.018 99.90
BG 0.829 0.572 3.220 3.190 94.00
AP 0.621 0.521 6.218 5.967 99.50
BP 0.514 0.386 4.023 4.016 97.00

Table 2: Coefficient statistical tests of coefficients: AG condition.

Parameter ak
1

ak2 ak3 ak4 ak5

Value 0.0624 0.0184 –0.5150 –0.0272 0.7285
t-Value 489.62 588.89 706.461 398.376 588.973
Threshold 5.077 5.077 5.077 5.077 5.077
Confidence 
level (%) 99.99 99.99 99.99 99.99 99.99

Table 3: Coefficient statistical tests: AP condition.

Parameter ak1 ak2 ak3 ak4 ak5

Value –0.0552 0.0096 0.0677 –0.0585 0.7942
t-Value 375.497 184.120 69.562 525.132 468.483
Threshold 5.077 5.077 5.077 5.077 5.077
Confidence 
level (%) 99.99 99.99 99.99 99.99 99.99
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3.2 Validation of the proposed procedure

In order to validate the proposed procedure, the daily travel demand, estimated by authors 
for the previous studies (see D’Acierno et al. [27] and Ercolani et al. [28]) in the case of an 
average working day in winter, was adapted in the case of new surveyed data by adopting 
an aggregated estimation approach. Details on the a priori travel demand estimation and 
related improvement by means of surveyed data can be found in Botte et al. [29].

The travel demand estimated by means of the whole set and assumed as ‘absolute truth’ 
was compared with OD matrices obtained by adopting three different counting sets: the par-
tial survey set (Fig. 2), the set obtained by replacing missing data with function outputs (Fig. 
4) and the set obtained by using only function outputs (Fig. 5). The comparisons were imple-
mented by identifying the optimal intervention strategies in the case of metro system fail-
ures. Details on the considered breakdown and related intervention strategies can be found 
in D’Acierno et al. [10].

Table 5: Coefficient statistical tests: BP condition.

Parameter ak1 ak2 ak3 ak4 ak5

Value –0.0400 –0.0006 0.1864 –0.0142 0.1726

t-Value 332.221 14.512 234.541 165.639 124.745

Threshold 5.077 5.077 5.077 5.077 5.077

Confidence level (%) 99.99 99.99 99.99 99.99 99.99

Table 4: Coefficient statistical tests: BG condition.

Parameter bk1 bk2 bk3 bk4 bk5

Value 136.82 –71.15 3.82 1.05 0.16

t-Value 2.381·106 908.94 367.44 2.892·106 1.845·108

Threshold 6.412 6.412 6.412 6.412 6.412

Confidence level (%) 99.99 99.99 99.99 99.99 99.99

Parameter bk6 bk7 bk8 bk9 bk10

Value –557.32 362.08 –48.62 –8.59 129.16

t-Value 7,285.76 958.53 1,220.60 5,718.63 3,016.26

Threshold 6.412 6.412 6.412 6.412 6.412

Confidence level (%) 99.99 99.99 99.99 99.99 99.99

Parameter bk11 bk12 bk13 bk14 bk15

Value –201.01 172.87 380.50 –970.94 2,035.15

t-Value 342.91 3,513.05 465.52 1.040 ·108 1.063 ·105

Threshold 6.412 6.412 6.412 6.412 6.412

Confidence level (%) 99.99 99.99 99.99 99.99 99.99



 R. Di Mauro et al., Int. J. Transp. Dev. Integr., Vol. 1, No. 3 (2017) 597

Table 6: Objective function values for each different calibration set.

Inter-
vention 
strategy

Complete  
survey data

Partial  
survey set

Replaced  
missing data

Function data

0 € 231,034.54 € 253,518.18 € 208,026.81 € 168,733.07 
1 € 245,446.51 € 268,782.33 € 243,390.79 € 229,185.58
2 € 245,446.51 € 268,782.33 € 243,390.79 € 229,185.58
3 € 244,296.97 € 267,618.70 € 241,918.38 € 228,309.20
4 € 245,378.78 € 268,671.10 € 243,344.24 € 229,131.18
5 € 245,378.78 € 268,671.10 € 243,344.24 € 229,131.18
6 € 244,362.09 € 267,724.45 € 241,952.16 € 228,324.68
7 € 243,316.37 € 268,612.45 € 243,414.95 € 229,163.03
8 € 245,107.97 € 268,431.45 € 242,980.34 € 228,863.49
9 € 245,031.45 € 268,338.34 € 242,614.05 € 228,665.49
10 € 244,295.08 € 267,631.59 € 241,938.04 € 228,309.45
11 € 226,969.63 € 248,628.12 € 203,790.44 € 165,513.24
12 € 226,969.63 € 248,628.12 € 203,790.44 € 165,513.24
13 € 225,819.36 € 247,460.93 € 202,974.86 € 164,773.21
14 € 226,901.90 € 248,516.89 € 203,685.02 € 165,427.05
15 € 226,901.90 € 248,516.89 € 203,685.02 € 165,427.02
16 € 225,885.21 € 247,570.24 € 203,024.01 € 164,822.67
17 € 226,839.49 € 248,458.24 € 203,741.70 € 165,473.23
18 € 226,631.09 € 248,277.24 € 203,599.50 € 165,342.21
19 € 226,554.57 € 248,184.13 € 203,490.71 € 165,242.52
20 € 225,818.20 € 247,477.38 € 202,967.43 € 164,769.11

Table 7: Objective function accuracy for each different calibration set.

Intervention  
strategy

Partial  
surveyed set (%)

Replaced missing  
data (%)

Function  
data (%)

0 9.73 9.96 26.97
1 9.51 0.84 6.63
2 9.51 0.84 6.63
3 9.55 0.97 6.54
4 9.49 0.83 6.62
5 9.49 0.83 6.62
6 9.56 0.99 6.56
7 10.40 0.04 5.82
8 9.52 0.87 6.63
9 9.51 0.99 6.68
10 9.55 0.96 6.54
11 9.54 10.21 27.08
12 9.54 10.21 27.08
13 9.58 10.12 27.03
14 9.53 10.23 27.09

(Continued)
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Table 6 provides the objective function calculation for each different calibration set (the value 
in dark gray identifies the first best solution, light gray shows the second and third best strate-
gies). Table 7 shows variation in the objective function with respect to the ‘absolute truth’.

4 CONCLUSIONS AND RESEARCH PROSPECTS
By following the proposed methodology the amount of data to be collected can be reduced 
without significantly compromising estimation accuracy. The space–time functions allow 
missing data to be replaced, providing an accuracy reduction of less than 6%.

In terms of future research, we propose to apply the proposed methodology in other con-
texts both for different time periods (for instance by collecting winter data) and different 
networks. A further research aim would be to verify the performance of different spatial 
reference systems such as curvilinear abscissa or polar coordinates.
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