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ABSTRACT
A special topology optimization problem is considered whose objective functional consists of tan-
gential derivative of the potential on the boundary for two-dimensional Helmholtz equation. In order 
to derive the adjoint problem, the functional of the conventional topology optimizations required a 
boundary integral of the potential and its flux. For the present objective functional having the tangential 
derivative, integration by parts is applied to the part having the tangential derivative of the variation of 
the potential to generate a tractable adjoint problem. The derived adjoint problem is used in the varia-
tion of the objective function, and the topological derivative is derived in the conventional expression.  
Keywords: adjoint problem, boundary element method, tangential derivative of potential, topological 
derivative, topology optimization.

1 INTRODUCTION
The boundary element method (BEM) is useful for topology optimization problems for linear 
problems, especially wave propagation problems and those for open domains [1,2]. Level-set 
method [3–7], which uses level-set function for expressing and controlling material distribu-
tion, is one of the popular methods among topology optimization methods, and the BEM can 
be effectively used with it by extracting the boundary of the material from the distribution of 
the level-set function [8]. 

Topology optimization problem in which BEM is advantageous to use has an objective 
functional consisting only of a boundary integral of the primary variable and its derivative 
quantity, which is the normal flux in potential problems and the traction in elastic problems. 
There is a case in which we have to consider a boundary functional consisting of the stress 
components. For example, when we detect the defects in the material from the measurement 
data of stresses on the boundary [9], this inverse problem can be treated as a topology opti-
mization problem of searching the distribution of the material by minimizing a boundary 
objective functional of the stresses. There are also shape optimizations whose objective func-
tional is defined with stress distribution (e.g. [10]). The boundary functional of stress has not 
been appropriate as the stress components involve not only the traction, but also the displace-
ment gradients. However, because the displacement gradients are not the boundary quantities 
either given as the boundary condition or obtained as the direct boundary unknowns, the 
adjoint boundary value problem for calculating the sensitivity of the objective functional 
cannot be derived in the conventional manner. 

The target of the present paper is derivation of the new adjoint problem required for calcu-
lating the topological derivative. As a test case, we consider a two-dimensional problem 
governed by the Helmholtz equation. The objective functional of the topology optimization 
problem is assumed to consist only of the tangential derivative of the potential on some part 
of the boundary. In the derivation process of the topological derivative, which is used for the 
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level-set method [6], an adjoint problem is newly derived by integrating by parts some term 
of the objective functional. 

2 BOUNDARY INTEGRAL EQUATIONS
We consider the following boundary value problem for two-dimensional Helmholtz equa- 
tion: 

 ∇ + = , ∈ ,2 2 0u x k u x x( ) ( ) Ω  (1)

 u x u x x u( ) ( )= , ∈ ,Γ  (2)
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where u is the potential, k is the wave number, q is the normal flux, n is the outward normal 
direction to the boundary ∂ = ∪Ω Γ Γ( )u q , and u x( ) and q x( ) are known functions, respec-
tively. When Ω is an open domain, a radiation condition for u u− in, where u in  is the incident 
wave, is also needed in addition to eqns (2) and (3). 

The boundary integral equation for two-dimensional Helmholtz equation is given as
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where c  is a constant, and when x  is on the smooth part of the boundary, c = /1 2; u∗ and q
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are the fundamental solution of the Helmholtz equation and its corresponding normal flux, 
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where r x y= − , and Hm
( )1  is the Hankel function of the first kind of the m-th order. 

3 LEVEL-SET METHOD AND TOPOLOGICAL DERIVATIVE
We consider using the level-set method [6,8], which uses the level-set function f( )x  for rep-
resenting material distribution. The level-set function is defined here as
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The boundary of the material can be extracted from the isoline corresponding to f( )x = 0. 
Hence, we find the shape of the material domain in accordance with the change of the distri-
bution of f( )x . The level-set method being used here uses the following differential equation 
defined in a fixed domain for the evolution of the level-set function: 

 

∂
∂

= + ∇( )f t f( )
( ) ( )

x

t
K T x x2  (8)

where K and t  are both positive constants and T (x) is the topological derivative which is the 
rate of the value of the objective functional when an infinitesimal region centered at x is 
removed from the original domain. 
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4 TOPOLOGICAL DERIVATIVE FOR STANDARD OBJECTIVE FUNCTIONAL
The objective functional of the standard form for topology optimizations can be written as 
follows:

 
J f u q d g u u d= , + ,∇ ,∫ ∫Γ Ω

Γ Ω( ) ( )  (9)

Because the above expression contains a domain integral, when the functional g is 
expressed by means of Dirac’s delta functions, the BEM is a strong tool to use for calculating 
the field quantities. We consider here a form which is more useful for BEM as

 
J f u q d= , .∫Γ

Γ( )  (10)

In this case, the topological derivative can be derived by using the same method given in 
[8] and can be related to the potential u and its gradients ∇u and the adjoint potential �u  and 
its gradients ∇ �u  by

 T x u x u x k u x u x( ) ( ) ( ) ( ) ( )= ∇ ⋅∇ − ,2 2� �  (11)

where the adjoint potential �u is the solution of the following boundary value problem.
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5 TOPOLOGICAL DERIVATIVE FOR A BOUNDARY FUNCTIONAL OF THE 
TANGENTIAL DERIVATIVE OF THE POTENTIAL

In this section, we consider a non-standard boundary functional of the tangential derivative 
of the potential as follows:

 
J f u x ds x= ,∫ ,

Γ
Γ( ( ))  (15)

where u s
u
s,

∂
∂

= . In eqn (15), although f u s( ),  is defined over the entire boundary Γ Ω= ∂ , it is 
assumed to have a finite support Γs

 in Γ as shown in Fig. 1.
Let us consider the case where an infinitesimal circular region Ω of radius  centered at x o 

is removed from Ω as shown in Fig. 2. Because the potential is the solution of the Helmholtz 
equation, J is augmented as

J J u x u x k u x d x= + ∇ +( )∫Ω
Ω�( ) ( ) ( )2 2

                            
= + ∇ +( )∫ ∫,

Γ Ω
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 (16)

where �u x( ) is a Lagrange multiplier. 



 P. Tang, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 1 (2021) 77

In what follows, the symbol indicating the point x is omitted unless necessary. Integrating 
by parts the second term of the right-hand side of eqn (16) gives 

 
J f u d uqd u ud k uuds= + − ∇ ⋅∇ + .∫ ∫ ∫ ∫,

Γ Γ Ω Ω
Γ Γ Ω Ω( ) � � �2  (17)

We consider the case in which the boundary condition on Γ, which is the newly generated 
boundary after Ω is removed, is the perfect reflection. 

By removing an infinitesimal region Ω from Ω , u in Ω  and on Γ will change to u u+ d  and 
q on Γ will change to q q+ d . On the newly generated boundary Γ, we observe that  u at the 
corresponding point in Ω will change to u u+ d  on Γ, and q calculated at the point on the 
circle of the broken line oriented to the center of the circle x o  will change to q q+ d  on Γ. 
The boundary condition on Γ is given as 

 q x q x x( ) ( )+ = , ∈ .d 0 Γ  (18)

Also, the objective functional is considered only on the original boundary Γ even after a 
new boundary Γ is generated. The variations of u and q cause the change of J  to J J+ d , i.e. 
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Figure 2: Removal of an infinitesimal circular region.

Figure 1: Boundary functional of u s,  defined on some part of the boundary.
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From eqns (19) and (17), we obtain the variation of J  as follows:
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By integrating by parts the fourth term on the right-hand side of eqn (20), we have 
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Because on Γu  and Γq, u and q are prescribed as the boundary conditions, respectively, we 

find du = 0 on Γu and dq = 0 on Γq. Applying them and eqn (18) to eqn (21), we obtain 
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In eqn (22), du s,  on Γ Γs ∈ , dq on Γu , du on Γq , and du in Ω Ω� ε, and on Γ are all 
unknown quantities. 
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In order to convert du s,  on Γ Γs ∈  to du for combining it with the third term of the right-
hand side of eqn (22), we integrate by parts the term containing u s,  to obtain 
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where Ps
 and Qs are the start and end points of the interval Γs. 

In eqn (23), there still remains unknown du  at Ps  and Qs , however, by discretizing the 
boundary into constant elements and extending Γs

 by one element before Ps  and after Qs , we 
can neglect the first term. 

For the second term to fourth term of eqn (23), we consider the following adjoint boundary 
value problem for �u : 

 
∇ + = , ∈ ,2 2 0� �u x k u x x( ) ( ) Ω  (24)

 
�u x x u( ) = , ∈ ,0 Γ  (25)

 

�q x
s

f u

u
x x

s

s
u( )

( )
( )= −

∂
∂

∂

∂









 , ∈ ,

,

,
Γ  (26)

By using the adjoint function �u  in eqn (23), dJ  is simplified to result in 
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In order to evaluate the above integrals, we consider the behaviors of �u  and du  in the 
neighborhood of the center point x o of Ω . 

From the Lebesgue differentiation theorem, when   tends to 0, we observe
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where u u xo o:= ( ) and 
o o� �u u x:= ( ). Because u and �u  are defined in Ω, we have their Taylor 

series expansions about x 0 as follows: 
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where a, b, and c are constants.
On Γ, we have the boundary condition q q+ =d 0; therefore, from q q= −d  for r = , we 

have 
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By comparing the coefficients of cosq , sinq , and the remaining order terms, we have 

 a ux= ∇2 o  (36)
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Finally, we obtain du  on Γ  as 
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Thus, the first integral on the right-hand side of eqn (27) is evaluated as follows:
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Using eqns (40) and (28) yields 
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Thus, the topological derivative is obtained as follows:
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Thus, the topological derivative is obtained like that of the standard cases of eqn (11) by 
using the solutions of the new adjoint problem defined by eqns (24) ∼ (26).

6 CONCLUDING REMARKS
In this paper, we have investigated a topology optimization problem for the field governed by 
two-dimensional Helmholtz equation. The objective functional of this problem has been 
assumed to consist of the tangential derivative of the potential, the solution of the Helmholtz 
equation, on some part of the boundary. In order to eliminate the tangential derivative of the 
variation of the boundary potential, integration by parts has been applied, resulting in a new 
adjoint problem. Further discussions are needed concerning the effective discretization and 
interpolation of the boundary objective of the tangential derivative for the solution of the 
derived adjoint problem. 
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