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ABSTRACT
We apply the Kansa–radial basis function (RBF) collocation method to two– dimensional nonlinear 
boundary value problems. The system of nonlinear equations resulting from the Kansa–RBF discretiza-
tion is solved by directly applying a standard nonlinear solver. In a natural way, the value of the shape 
parameter in the RBFs employed in the approximation is included in the unknowns to be determined. 
The numerical results of some examples are presented and analysed.
Keywords: collocation, Kansa method, radial basis functions

1 INTRODUCTION
Radial basis function (RBF) methods have become popular in recent years in approximation 
theory as well as in the numerical solution of partial differential equations. The most widely 
used RBF method for the latter class of problems is the RBF collocation method due to Kansa 
[1], known as the Kansa method. The popularity of this method is due to its meshlessness 
which means that only a set of points is required in the discretization of the continuous prob-
lem. This renders the implementation of the method particularly easy, especially for problems 
in complex geometries and/or in three dimensions. A disadvantage of the method is the 
(unknown) optimal choice of the shape parameter which is found in most RBFs. Various 
techniques have been proposed for the determination of an appropriate value of the shape 
parameter, see e.g. [2–5].

We apply the Kansa RBF method to two-dimensional nonlinear boundary value problems. 
The discretization of such problems leads to systems of nonlinear equations which may be 
solved by using standard software. Moreover, we include the (unknown) value of the shape 
parameter in the set of unknowns of the nonlinear problem. The solution of the nonlinear 
problem thus yields not only the coefficients in the RBF approximation but, also, an appro-
priate value of the shape parameter. The implementation of the proposed technique is very 
simple and the results of several numerical experiments reveal it is satisfactorily accurate.

2 THE PROBLEM
We consider the boundary value problem in R2

 Lu = f in Ω, (1a)

subject to the boundary condition

 Bu = g on ∂Ω, (1b)

where L is a nonlinear elliptic operator and B is a linear (or nonlinear) operator describing 
the boundary condition.

3 THE KANSA METHOD
In the Kansa method [1] we approximate the solution u of boundary value problem (1) by a 
linear combination of RBFs [6–8]
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In this work we shall be using the normalized multiquadric basis function
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and the points {( , )}x yn n n
N
=1 are usually referred to as centers. Moreover, c is the shape param-

eter and such parameters are often present in RBFs and the determination of their optimal 
value remains a major challenge.

The coefficients { }an n
N
=1 in equation (2) are determined from the collocation equations

 LuN(xm,ym) = f(xm,ym), m=1,…,Mint , (4a)

 BuN(xm,ym) = g(xm,ym), m=Mint+1,…, Mint + Mbry , (4b)

where Mint+Mbry = M and the points {( , )}x ym m m
M
=
∈1 Ω are the collocation points. Note that, 

in general, the collocation points are not the same as the centers and M≥N.
Since the operator L is nonlinear, the system of M equations resulting from equations 

(4a)–(4b) is nonlinear and will be solved in a (nonlinear) least squares sense. Moreover, we 
shall include the value of the shape parameter c of the RBF in the unknowns. We shall there-
fore be minimizing of the functional
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where the vector a = [a1, a2, . . . , aN]T. Thus the goal is to determine not only the vector of 
coefficients a but also the value of the shape parameter c. The minimization of functional 
(5) is carried out using the MATLAB© [9] optimization toolbox routine lsqnonlin which 
solves nonlinear least squares problems using, by default, a subspace trust region method. 
The routine lsqnonlin does not require the user to provide the gradient and, in addition, 
it offers the option of imposing lower and upper bounds on the elements of the vector of 
unknowns x = [a, c]T through the vectors lb and ub. We can thus easily impose the con-
straints on the values of the coefficients and in particular on the values of the shape parameter. 
In all numerical experiments we chose the constraints 0 < c < 8 and took the initial vector 
of coefficients a = 0.

4 NUMERICAL RESULTS
In the numerical examples considered in this section, we calculated the approximate solution 
uN at L test points on a grid in Ω. In the case of Examples 1 and 2 the analytical solution is 
known. Hence, we calculated the maximum relative error E defined by
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u
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and the root mean square error (RMSE) from

 ε =

−

=

∑[ ( , ) ( , )]
.

u x y u x y

L

l l l l
l

L

N
2

1  (7)

4.1 Example 1

We first consider an example from [10, 11] where

Lu u u u= − − +ε
2 3
∆ Ω in ,

subject to the homogeneous Dirichlet boundary condition

Bu u= = ∂0 on Ω,

where Ω = (0, 1) × (0, 1), the exact solution is given by

u x y x x y y( , ) ( )( )( )/ ( )/
= + − − + − −

− − − − − −1 11 1 1 1e e e e e e/ / / /ε ε ε ε ε ε

and e is a known constant. Clearly, the function f in (1a) is obtained by calculating Lu for the 
u given above. We chose a uniform M × M grid in Ω for the collocation points and a uniform 
N × N grid in Ω for the centres. This arrangement means that we have a total of M = M2 col-
location points and N = N2 centres. Moreover, we have Mint = M2 – 4M + 4 interior collocation 
points and Mbry = 4M–4 boundary points.

The set of test points was taken to be a uniform 51 × 51 grid in Ω. Then, for the routine 
lsqnonlin we chose the initial value of the shape parameter c0 = 4 and the maximum 
number of iterations niter equal to 100. We performed calculations for e = 0.1, 0.15, 0.25, 
0.5 and 1. It was observed that the accuracy of the results obtained was poor for e = 0.1. How-
ever, when using continuation from e = 1 to e = 0.5 to e = 0.25 to e = 0.15 to e = 0.1, 
satisfactory results were obtained as is shown in Table 1. By continuation we mean that the 
final values of all the unknown parameters in lsqnonlin for e = 1 were saved and used as 
the initial values for the unknown parameters in lsqnonlin for e = 0.5 and so on.

Table 1: Example 1: Results with continuation.

M N M N e c E RMSE

15 14 225 196  1.000 1.959 8.616(-3) 2.544(-5)
0.500 2.078 5.492(-3) 1.911(-4)
0.250 2.444 1.207(-2) 4.176(-3)
0.150 2.784 1.548(-2) 6.299(-3)
0.100 2.906 2.937(-2) 1.408(-2)

16 15 256 225  1.000 4.006 3.502(-3) 5.884(-5)
0.500 4.049 4.258(-3) 5.331(-4)
0.250 4.095 8.841(-3) 3.863(-3)
0.150 4.175 1.331(-2) 7.524(-3)
0.100 4.210 2.736(-2) 1.341(-2)

(Continued)
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4.2 Example 2

We next consider an example from [12, 13] where the governing equation is

 Lu=∆u–4u3=0 in Ω, (8)

subject to Dirichlet boundary conditions corresponding to the exact solution

u x y
x y

( , ) =
+ +

1

4
.

The computational domain Ω is peanut shaped and its boundary ∂Ω is defined parametrically 
by

x r y r r= = = + −( )cos , ( )sin , ( ) . cos . sinϑ ϑ ϑ ϑ ϑ ϑ ϑ  where 0 3 2 1 1 22 , 

0 2≤ ≤ϑ π . The collocation points are distributed as follows:

 ( , ) cos . sin cos ,sinx y rij ij j i i i i= + − ( )2 1 1 22
ϑ ϑ ϑ ϑ , (9)
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A more uniform distribution of points is obtained as follows, see e.g [14]. We first calculate 
the length of the boundary curve from

 S r r d= + ′∫ ( ) ( )ϑ ϑ ϑ
π 2 2

0

2
, 

which may be evaluated using the MATLAB© routine quadl which evaluates an integral 
using adaptive Lobatto quadrature within a user–prescribed accuracy. Since there will be MJ 

Table 1: (Continued)

M N M N e c E RMSE

22 21 484 441  1.000 4.016 7.360(-4) 1.271(-5)
0.500 4.096 9.611(-4) 1.237(-4)
0.250 4.280 2.643(-3) 1.153(-3)
0.150 4.420 1.076(-2) 5.360(-3)
0.100 4.658 1.434(-2) 6.366(-3)

24 23 576 529  1.000 4.014 6.191(-4) 7.844(-6)
0.500 4.123 7.583(-4) 8.109(-5)
0.250 4.311 4.237(-3) 1.041(-3)
0.150 4.411 1.595(-2) 5.992(-3)
0.100 4.686 1.821(-2) 5.606(-3)
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collocation points on the boundary, we take the length of each subsegment to be S/MJ. 
The angles Jk which give such a distribution are obtained by choosing J1 = 0 and then 
solving, serially for k = 1,…, MJ-1, the nonlinear equations

 F t r t t r r t t r
S

Mk k k k( ) ( ( )cos ( )cos ) ( ( )sin ( )sin )= − + − − =ϑ ϑ ϑ ϑ

ϑ

2 2 0,  

to yield t = Jk, k = 2,…, MJ , respectively. The solution of the nonlinear equations may be 
carried out using the MATLAB© routine fzero. The angles Jk ,k = 1,…, MJ, define equally 
spaced points on the boundary curve.

The collocation points are now distributed as follows:

( , ) cos . sin (cos ,sinx y rij ij j i i i i= + −2 1 1 22
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The parameter p∈ ( , )0 1  is chosen so that the collocation points are pushed away from the 
centre of the domain to yield a more uniform distribution of collocation points. An appropri-
ate value of p was found to be 2/3. The centres are chosen in an identical way with MJ and 
Mr replaced by NJ and Nr, respectively. This arrangement means that we have a total of  
M = MJMr collocation points and N = NJNr centres. Moreover, we have Mint = MJ(Mr–1) 
interior collocation points and Mbry = MJ boundary points. An even more uniform distribu-
tion of collocation points and centres maybe obtained by using the Halton points [8, Appendix 
A.1]. These may be generated using the MATLAB© code haltonseq.m. In this approach 
we take Mb boundary collocation points and Mi interior points, and Nb boundary centres 
points and Ni interior centres. A typical distribution of collocation points using the first dis-
tribution, the more uniform distribution and the Halton points is presented in Fig. 1. The 
maximum relative error E and RMSE were calculated on a 21×21 grid in Ω generated using 
a distribution similar to (9) and clearly different than the collocation points. The maximum 
number of iterations in lsqnonlin was set to 100 and we took c0 = 4. In Table 2 we present 
some numerical results for various numbers of degrees of freedom. The corresponding results 
with the improved distribution of collocation points and centres are presented in Table 3. The 
results obtained with comparable numbers of degrees of freedom using Halton points are 
presented in Table 4.

Figure 1: Example 2. Computational domain and typical distributions of collocation points.
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Table 2: Example 2: Results for various numbers of degrees of freedom.

MJ  Mr M NJ Nr N c E RMSE

12 10 120 10 8 80 2.095 3.574(-3) 2.395(-4)
14 12 168 12 10 120 2.134 4.099(-3) 2.550(-4)
16 14 224 14 12 168 2.730 7.854(-3) 6.251(-4)
18 16 288 16 14 224 2.862 6.227(-3) 4.396(-4)
20 18 360 18 16 288 2.854 8.104(-3) 6.215(-4)
22 20 440 20 18 360 3.086 5.796(-3) 2.717(-4)
24 22 528 22 20 440 3.102 5.296(-3) 2.931(-4)
26 24 624 24 22 528 3.172 7.541(-3) 5.154(-4)
28 26 728 26 24 624 2.770 4.691(-3) 3.456(-4)
30 28 840 28 26 728 2.668 3.088(-3) 2.255(-4)

Table 3: Example 2: Results for various numbers of degrees of freedom with improved  
distribution of points.

MJ  Mr M NJ Nr N c E RMSE

12 10 120 10 8 80 2.416 9.236(-3) 1.192(-3)
14 12 168 12 10 120 2.830 9.333(-3) 1.162(-3)
16 14 224 14 12 168 2.934 7.185(-3) 6.291(-4)
18 16 288 16 14 224 2.367 2.620(-3) 1.979(-4)
20 18 360 18 16 288 2.380 1.820(-3) 1.406(-4)
22 20 440 20 18 360 2.762 3.773(-3) 3.266(-4)
24 22 528 22 20 440 3.064 2.369(-3) 1.059(-4)
26 24 624 24 22 528 3.168 2.274(-3) 1.327(-4)
28 26 728 26 24 624 3.133 2.054(-3) 1.571(-4)
30 28 840 28 26 728 3.197 2.046(-3) 1.648(-4)

Table 4: Example 2: Results for various numbers of degrees of freedom with Halton points.

Mb Mi M Nb Ni N c E RMSE

12 67 79 10 42 52 2.426 4.365(-3) 2.459(-4)
14 107 121 12 67 79 2.358 3.143(-3) 2.234(-4)
16 158 174 14 107 121 2.485 2.244(-3) 1.240(-4)
18 206 224 16 158 174 3.117 6.190(-3) 2.983(-4)
20 247 267 18 206 224 3.162 2.011(-3) 1.597(-4)
22 300 322 20 247 267 3.192 3.187(-3) 2.046(-4)
24 370 394 22 300 322 3.171 3.519(-3) 1.976(-4)
26 452 478 24 370 394 3.173 4.830(-3) 2.480(-4)
28 545 573 26 452 478 3.109 3.735(-3) 1.908(-4)
30 616 646 28 545 573 3.095 1.760(-3) 1.446(-4)
32 692 724 30 616 646 3.164 1.825(-3) 1.557(-4)
34 786 820 32 692 724 3.091 2.929(-3) 1.960(-4)
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5 CONCLUSIONS
A Kansa–RBF collocation method has been applied for the solution of nonlinear boundary 
value problems. The discretization leads to a system of nonlinear equations which is solved 
using the nonlinear least–squares minimization MATLAB© routine lsqnonlin. The deter-
mination of the shape parameter, which remains a challenging problem in the application of 
Kansa–RBF collocation methods, is resolved by taking the unknown value of the shape 
parameter to be part of the unknowns in lsqnonlin. The main advantage of the proposed 
technique is the ease with which it can be implemented while the results of several numerical 
experiments reveal that it leads to accurate numerical results with a relatively small number 
of iterations.
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