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Abstract
Signalling and communications facilities in the railway are installed not in one place but scattered out 
along track-side between adjacent stations. For this reason, a great deal of labour is currently required 
in maintenance work for performing individual inspections, and in facility management work for as-
certaining the installed positions and their types. For example, when repairing or improving for signal 
equipment, we have to update a database such as a management ledger based on the drawings. However, 
since the workers manually update the ledgers, there is a concern that input or deletion omission possi-
bly occurs. In order to reduce human errors and the workload in maintenance, there is a requirement for 
a system that can automatically recognize and inspect the equipment without going to the site. Although 
there are methods to grasp the position and state of the equipment using distinctive sensors such as a 
LiDAR sensor and a stereo camera, it is necessary to prepare a dedicated vehicle, expensive sensors, or 
both. Therefore, we are developing a system that supports the maintenance work of signal equipment 
using only a handy camera. To use the system, all you need is a camera and a camera mount, such as a 
tripod. Our system is that assists ledger management by recognizing signal and communication equip-
ment from the video obtained by the handy camera and estimating the location of the equipment. This 
paper describes the outline of our system and the fundamental elemental technologies for building it.
Keywords: deep learning, handy camera, image processing, maintenance, signal equipment.

1 I ntroduction
In the railway, due to the nature of its role, some pieces of equipment related to signal com-
munication are not installed in one place spatially but are distributed and installed along 
track-side between adjacent stations. As a result, many workers are now working for mainte-
nance, such as individual inspection for each facility, management work, recording the posi-
tion, and type of facilities in the entire line section.

For example, when repairing or improving signal equipment, a database such as a facil-
ity management ledger is updated based on the drawings. However, if manual updating is 
performed based on the drawings on paper, there might be possible omissions in input or 
deletion. Also, in the work of construction design, it is necessary to consider how to arrange 
a cable route and calculate the number of troughs to be opened and closed back on the route. 
Such detailed information necessary for studying the design is often not registered in the 
database, so the designer has to go to the site and check it.

In order to reduce human error and workload in the maintenance work described above, it 
is required that a system can automatically recognize equipment and consider construction 
design without going to the site. For such a system, distinctive sensors are often used, such 
as a LiDAR sensor that irradiates a laser beam to sense the position of the object and a stereo 
camera that obtains three-dimensional information of the object based on the parallax of the 
image. Several methods for grasping the location and condition of equipment have been pro-
posed [1]–[3]. However, because they use a dedicated vehicle, expensive sensors, or both, the 
cost may be awkward to use in rural areas.
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Therefore, we are developing a system that supports maintenance work for signal equip-
ment using only one commercially available handy camera [4], [5]. To use our system, all 
users need is a video camera and a camera platform such as a tripod as hardware. The pro-
posed system is effective for line sections, where the scale is small, and expensive systems 
cannot obtain the merit of introduction.

This system recognizes signal communication equipment from images of the front of the 
train acquired by a handy camera and estimates the location of the equipment to assist in 
checking ledgers and drawings. In this paper, we describe the outline of the system and ele-
ment techniques for constructing it. Our method converts front images into birds-eye view 
images, estimates the distance for each frame, and recognizes names of some pieces of equip-
ment from the forward images.

2 S ystem overview
The proposed system requires only one handy camera. The user places the handy camera in 
a position to capture a picture from the front of a train in the same way as the driver sees. For 
installation, use a camera mount that can be installed on the front glass with a suction cup, 
etc., and fix it so as to be stable. Figure 1 shows an example of an installation.

Figure 2 shows the flow of our system process after shooting. The captured view image 
files from train cab are processed by a data generation unit to generate data used in our 
viewer application. The data is input to the viewer application together with the images, and 
the equipment information is displayed. The data generation unit consists of three processes 
using the cab view images: a unit that generates top view images, a unit that estimates the 
shooting position of each frame, and a unit that extracts the signal equipment.

The top view image generation unit takes each frame of the images as an input and converts 
the region of the track in it into top view images. In a front image, things in the top part of 

Figure 1: �S hooting a video sequences on the front of commercial train (source: Nagamine 
et al., 2020) [5].
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the picture means far from the train, which makes the pixels for the rail width smaller in the 
top part. However, by converting to a top image, the pixel size becomes the same regardless 
of the distance, making it easy to handle when measuring distance.

For the unit that estimates the distance from cab view images, the flow speed of each frame 
is measured from the top view images, and the amount of pixels movement concerning the 
frame is estimated. Then, by integrating the estimated velocities, the cumulative movement 
amount for each frame is estimated. The shooting position of each frame is estimated by 
dividing the cumulative movement amount of pixels concerning the total travelled distance. 
Since the actual distance concerning the moving amount of the pixels is computed, the speed 
for each frame can be estimated at the same time.

The signal equipment recognition unit detects the signal equipment by a deep learning 
from each frame of a video. It also recognizes the installation distance of the equipment by 
using the position found by the distance estimation unit.

The details of the processing unit and the viewer application will be described below.

3 G enerating a top view image
In the moving images taken towards the front of the train, the objects far from the camera are 
taken small and the near objects become large. For example, as shown in Fig. 3, the sizes of 
the rail width vary depending on the distance from the camera although they should be the 
same. It is not intuitive for users to measure a distance between facilities in an image where 
the actual scales change depending on the object positions. Therefore, for ease of handling, a 
top view image of the track plane is generated so that the relationship between the pixel and 
the actual scale is the same at any position in the image.

A top view image can be generated by using projective transformation. The projective 
transformation is represented by a matrix that transforms coordinates x y,( )  into coordinates  
′ ′( )x y, as follows.

			           
′
′


















x

y

h h h

h h h

h h h1

11 12 13

21 22 23

31 32 33

~ 



















x

y

1

. 			                   (1)

Figure 2: P rocessing flow of our system.

Train cab view images

Viewer application

Generates top view images

Estimates shooting positions Extracts signal equipment

Top view images

Image shooting positions Extraction results



	 Hiroki Mukojima & Nozomi Nagamine, Int. J. Transp. Dev. Integr., Vol. 4, No. 3 (2020)� 267

432 px

165 px

54 px

Gauge: 1,067 mm

Figure 3: E xample of difference in gauge on a train cab view image.

Projective transformation

Figure 4: P rojective transformation of trapezoid to rectangle.
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In Eqn. (1), the number of effective parameters is eight, so the transformation matrix can 
be found if there are correspondences of four sets of points with h

33
 = 1.

As described above, four sets of corresponding points are required to convert the track 
plane, which has been transformed into a trapezoidal shape, into a top view by the projective 
transformation. Therefore, it is important that a method of correctly selecting four points 
from a cab view image. Assuming that the camera is mounted at a roll angle of 0° with respect 
to the vertical direction, the four points forming the trapezoid shown in Fig. 4 become a 
rectangle when viewed from the top view because of the condition that the rails are parallel 
in the straight line. After that, the transformation matrix can be obtained by setting the size 
of the transformed rectangle so that railway sleepers are transformed with the correct length 
and breadth ratio. The distance can be measured as shown in Fig. 5 by converting the scale 
of pixel into actual distance using the fact that the gauge is 1,067 mm on a top view image.

Since the projective transformation matrix changes depending on the relationship between 
the camera mounting position and the track plane, it must be calculated every time when the 
camera installation conditions change. However, if the user does not move the camera instal-
lation position in one video taken, since the positional relationship with the track plane will 
not change, the transformation matrix at any one frame in the video can be use.

4 D istance estimation from video
We estimate the speed and travel distance of the train, from the video using the method [3] 
[4] [6] that we have proposed so far to estimate the speed and position of the train from the 
video in front of the train. The amount of pixel movement, ‘hereafter, optical flow’, is cal-
culated between each frame of the moving image. The actual distance per pixel movement 
is estimated from the calculated cumulative movement amount of pixels and the travelling 
distance of the train. After that, by applying the optical flow of each frame, the estimated 
actual distance per pixel is estimated as the speed and the shooting position in each frame.

4.1 O ptical flow estimation

In order to estimate the train speed and position from train cab images, our method estimates 
optical flow in each frame. If cab images are used as they are, the correspondence between 
the pixels and the actual scale changes depending on the position on the image, as described 

Figure 5: E xample of distance measurement on a top view image.
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in Chapter 3, we use the top view image generated in Chapter 3, where, the optical flow is 
obtained by the block matching method. Then, the outliers are removed from each block. 
The concept of processing is shown in Fig. 6. If the image sequence of a moving image 
is expressed as frame n (n = 1,2,3, ..., N) and the movement vector of the pixel in block i  
between frames T – 1 and  is expressed as dt

i , a set Ct  of movement vectors within the range 
of thresholds thmin  and thmax  is obtained as follows. 
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Also, using the mean value Mean Ct( )  of the set Ct  and the standard deviation Std Ct( ) , 
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Finally, the pixel movement amount d t( ) between the frames t−1  and t  is calculated as 
follows.

				    d t Ct( )= ′( )Mean 			                 (5)

Here, d 1 0( ) =  is set because calculation cannot be performed when calculation t = 1 , 
which is the first frame. Also, note that the unit of d t( )  is pixels per frames. Figure 7 shows 
an example of the result of obtaining d t( )  for each frame.

4.2 E stimation of frame shooting position using optical flow

The shooting position of each frame is estimated using computed optical flow. Users provide 
reference positions for one or more sections of cab view images. For example, the locations 
of two stations. The reference positions given by the users are ra  [km] for the a th frame 
captured at point A and rb  [km] for the b th frame captured at point B. At this time, the travel 

Figure 6: C oncept of estimation method of optical flow.
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distance between A and B is equal to r rb a− , and the position in any other frame is estimated 
by linear interpolation. When the cumulative amount of pixel movement in the t th frame is 
D t( ) , the shooting position P t( )  for the tth frame can be obtained as follows.

	   	              P t r
r r
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Figure 8 shows an example of calculating the cumulative pixel movement amount D (t) and 
cumulative movement distance P t( )  in each frame. Since the pixel and the actual distance 
can be converted using Eqn. (6), the train speed can also be calculated from the frame rate 
and the amount of pixel movement between frames.
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Figure 7: A n example of the result of obtaining pixel movement in each frame.
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Figure 8: �A n example of calculating the cumulative pixel movement amount and cumula-
tive movement distance in each frame.
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5 S ignal equipment recognition and position estimation

5.1 S ignal equipment recognition by deep learning

Our system uses Yolov3 [7], an object recognition method based on deep learning, to detect 
signal equipment from train cab view images. We manually annotated 18 classes of railway 
equipment shown in Table 1 and Fig. 9 and conducted transfer learning against the pre-
learning model. The number of added annotation data is 2,782 frames.

5.2 E stimation of equipment position

The shooting position obtained in Chapter 4 is added to each frame of cab view images. 
Installation locations of the equipment are estimated from this information. Once the equip-
ment appears in a frame, it appears in successive frames, so it is necessary to decide which 
frame position to use. Therefore, the detection target is tracked between consecutive frames, 
and the frame whose -coordinate is closest to the 20% position from the bottom edge of the 
image is adopted, and the frame shooting position is used as the equipment position.

6 V iEWER Application
Our system integrates and displays the data obtained in Chapters 3–5. The camera used for 
the system is Sony FDR-AX55. The shutter speed was set to about 1/500 to 1/1,000 s as a 
shooting parameter, and 3,840 × 2,160/30 fps progressive was set at XAVC 4K (100 Mbps) 
as a parameter for determining image quality. By setting the shutter speed low, the blurring 
of the track surface can be reduced. In addition, the references are the position of the station 
at the start and end of shooting.

Figure 10 shows the operation screen of the system. The run curve and running position 
curve for the frontal image are displayed, and the track bar displays the current frame posi-
tion. The converted track image is displayed on the upper right of the screen. Also, the equip-
ment list is displayed in another window. The user can jump to the frame where the target 
equipment is displayed by clicking the list.

Table 1:  Railway equipment classes.

No. Class No. Class

1 Signal 10 Emergency button

2 Ground coil 11 Signal call position marker

3 Emergency train stop warning light 12 Kilometres post

4 Speed limit sign 13 Gradient post

5 Obstruction warning signal 14 Electrification mast

6 Stop marker 15 Level crossing

7 Crossing gate 16 Impedance bond

8 Location box 17 Level crossing warning light

9 Point machine 18 Track-side telephone
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Run curve (Fig. 7)

Current position
Running position curve (Fig. 8)

Detected signal Top view image 

Equipment list

Jump to the frame by clicking

Figure 10: O ur system screens.

Figure 9: I mage example of each equipment corresponding to the numbers in Table 1.

7 C onclusion
As an inexpensive system to reduce the maintenance of signal and communication equip-
ment, we propose a system that uses a handy camera and image processing. It is applied to the 
train cab view images on the actual track to confirm the system operation, and it is confirmed 
that the system as whole works without problems.

In the future, it will be applied to various line sections and it will be confirmed that the 
system will operate normally regardless of the line sections. In addition, the system will be 
configured to improve the accuracy of position estimation, add learning classes, and improve 
the accuracy of equipment position estimation. With respect to position estimation, features 
such as kilometres posts and gradient posts whose positions are precise can be extracted as 
equipment. Therefore, it is possible to apply this information to position estimation from cab 
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view images to improve accuracy. As a functional addition to the system, a facility ledger 
output function based on the extracted facility information and a simple drawing generation 
function will be added. 

The system we ultimately aim to learn the changes in the appearance of each equipment 
and estimate the degradation level of equipment. It is planned to be useful for the appearance 
inspection in which a person visually judges the degradation.
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