
Optimizing the Average Hop-Count and Node Distance Using an Adjusted DV-Hop

Algorithm with a Distance Error Rate

Bedr-Eddine Benaissa1, Chahrazed Bessenouci1, Omolayo M. Ikumapayi2 , Ayad Q. Al-Dujaili3 , Ahmed I.

Abdulkareem4, Amjad J. Humaidi4 , Giulio Lorenzini5 , Younes Menni1*

1 Department of Technology, University Center Salhi Ahmed Naama (Ctr. Univ. Naama), P.O. Box 66, Naama 45000, Algeria
2 Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado Ekiti 360101, Nigeria
3 Electrical Engineering Technical College, Middle Technical University, Baghdad 10001, Iraq
4 Control and Systems Engineering Department, University of Technology, Baghdad 10066, Iraq
5 Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, Parma 43124, Italy

Corresponding Author Email: menni.younes@cuniv-naama.dz

https://doi.org/10.18280/i2m.220101 ABSTRACT

Wireless sensor networks (WSNs) are attracting great interest from a large research

community. The main function of these types of networks is their ability to collect physical

data from a given environment such as temperature, humidity and light, etc. They are mainly

designed for low-power embedded communications. One of the most felt drawbacks of

sensor nodes is their inability to recognize their own positions if they are not equipped with

a global positioning module (GPS). In this paper, we first implemented the traditional

"Distance Vector Hop" localization algorithm, known by the acronym "DV-Hop", on the

Cooja/Contiki platform, which served as a control sample. Subsequently, we developed a

new contribution in which the unknown node estimated its distance to all anchors in the

network, based only on locally available information. Our goal was to significantly reduce

the distance gap between the actual and the estimated distance. The idea of the contribution

was implemented on the Cooja/Contiki emulator, and was based on two techniques: 1-

Calculating the distance error rate (Euclidean distance/SSRI distance). 2- Converting the

type of node once located into an anchor. Our simulation results show that the proposed

DVA-Hop algorithm had a better accuracy than the native "DV-Hop"method.

Received: 1 September 2022

Accepted: 24 October 2022

Keywords:

wireless sensor network (WSN), DV-Hop,

localization node, received signal strength

indicator (RSSI)

1. INTRODUCTION

Among the most coveted areas in artificial intelligence in

the last decade have been deep learning and sensor networks

for remote monitoring and control. This major interest in data

collection and manipulation has allowed sensor networks to

take a prominent place in many applications such as

surveillance, home automation and human activity. We attach

great importance to the deployment of sensors and their

positioning, as a large event can lead to an unrepairable

disaster. So, the location of the "event triggering" sensor must

signal its position to the data sink so as it can be responded to

in record time. Thus, several improved researches have been

elaborated revealing effective results and suggesting

recommendations for deployment [1]. Localisation consists in

knowing the physical position of nodes within the network in

order to give value to the interpretations of the collected data.

Several application areas rely on localisation systems:

-Wildlife monitoring,

-Home automation,

-Industrial control and,

-Permanent monitoring.

Many researchers have addressed this issue by proposing

localisation heuristics [2, 3], based as a whole, on special

known nodes called "anchors" that are equipped with GPS that

know their positions. The importance of a localisation system

is that it allows us to sort out where the measurements were

taken by the event capture system.

Furthermore, the availability of location information would

allow for the emergence of other application areas in the future.

The cost of a sensor network plays an important role too. In

this perspective, one cannot afford to deploy only sensors with

an integrated GPS positioning module [4]. Thus, the task of

building an efficient and cost-effective network becomes very

difficult.

Nevertheless, a number of researchers have tackled this

issue, and have proposed location algorithms and/or heuristics

that are reliable enough. They were divided into two categories:

the first called "Range Based" which identifies the location of

unknown nodes based on the distance and theangle between

the anchor nodes, and then announces their position by

triangulation, i.e., the most credible three-way approximation.

The strength of this technique lies in the accuracy of locating

lost nodes, but the high resource cost and the difficult

deployment make their uses rather reduced. Among these

algorithms, we have DV-Distance, DV-Euclidean, etc. The

second category, "Range Free", is based on information about

the radio range and the hops between nodes. Note that the

"Range Free" approaches have become very successful thanks

to the following algorithms: DV-hop, Centroid, Amorphous,

APIT, DV-Hop Max and the SPA algorithm [5, 6].

New geometric techniques have emerged to complement

the previous two. Known as "distance combination":

Multilateration, trilateration and triangulation provide more

precision in the position of the node. These techniques are

widely used in the universal GPS position calculation system.

Instrumentation Mesure Métrologie
Vol. 22, No. 1, February, 2023, pp. 1-9

Journal homepage: http://iieta.org/journals/i2m

1

https://orcid.org/0000-0002-9217-8476
https://orcid.org/0000-0002-1126-3290
https://orcid.org/0000-0002-9071-1329
https://orcid.org/0000-0002-5676-8575
https://orcid.org/0000-0003-1475-3743
https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.220101&domain=pdf

Important applications (military, environmental, domestic,

and medical, etc.) use wireless sensors and rely on their

random deployments which require precise localisation of

their positions in a fixed coordinate system. The issues

highlighted in localisation are mainly: routing, quality of

service, security and mobility. Various techniques exploit

connectivity information as an aid to find unknown nodes and

estimate their distances in a randomly distributed topology.

One such method is the Distance Vector-Hop algorithm (DV-

Hop). In this paper, we will explain the DV-Hop algorithm,

and present some recent research that has studied and

improved it, and then propose a contribution in the same

context. A location system generates three components (see

Figure 1):

-A distance/angle estimation system.

-A method for calculating the position.

-A localisation algorithm.

Figure 1. Location system: Triangulation

The accuracy of node locations is one of the most coveted

problems in localisation, especially as an internal environment

does not have the same constraints as the external one. It is in

this perspective that an unknown point must inevitably have

an indication beacon, often called an anchor.

It should be noted that the most commonly used jump

algorithm in the context of localisation is the "DV-hop"

because of its simplicity, as it is based on the number of jumps

between the anchor node (whose geographical position is

known) and the unknown node. DV-hop requires at least three

anchor nodes for its animation. These anchors regularly

transmit their coordinates to their neighbors, which in turn

transmit them to the other nodes, generating various heuristics.

Many studies have been inspired by this algorithm, as it offers

autonomous localisation of all deployed sensors.

The rest of this paper (section 2) shows the DV-Hop method

to highlight the shortcomings of this algorithm. An overview

of related research work is presented in section 3 and an

attempt to propose our contribution in section 4. Interpretation

of the experimental results and a conclusion follow.

2. PROBLEMS OF THE DV-HOP LOCALISATION

ALGORITHM

2.1 Understanding the DV-hop algorithm

"DV-Hop" was cited by Niculescu et al. [7]. It is a

distributed location algorithm based on a distance routing

protocol. In its design, it relies on three phases to estimate the

hop distance between the unknown node and the anchor nodes.

But this estimation creates errors, especially in the calculation

of the average hop size of each anchor [8]. In order to correct

its location accuracy, many modifications and improvements

have been made to the basic DV-Hop. The first phase

calculates the minimum number of hops between all sensor

nodes. In the second phase, the average hop size is estimated

and the distance between the nodes is calculated. The third

phase calculates the position of the unknown node using a

latency method [9].

1st phase: Approximation of the optimal number of jumps.

During this phase, each anchor begins to flood the network

with its format packet:

"PAi = [idBeacon, (xAi, yAi), hopAi]", in order to announce its

position at a time "t":

- PAi: Anchor-specific package

- idBeacon: Beacon identifier.

- (xAi, yAi): Coordinates of the ith anchor.

- hopAi: Number of hops from the anchor node, initially set

to zero.

Each node of the network {S1, S2, S3, U?, ...} receiving a

packet {PAi}, from any anchor node "Ai", at time "t", is

instantaneously compared to the previously received packet

{PAi-1} of time "t-1". If the number of hops {hopAi} is greater

than the number of hops of the received packet {hopAi-1}, then

the packet is ignored by the said node. Otherwise, it will

update its hop table by adding a hop in the {hopAi} field of the

packet and then rebroadcast this updated packet on the

network. Each unknown node stores the packet {PAi} with the

minimum number of hops received from each anchor node.

2nd phase: Determination of the average jump size between

the anchors.

Each anchor estimates the average hop size with respect to

all anchor nodes in the network, using Eq. (1) as specified

below:

𝐻1 𝑜𝑝average(𝐴𝑖𝑗) =
∑ √(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2𝑘
𝑖≠𝑗

∑ hop
𝐴𝑖𝑗

𝑘
𝑖≠𝑗

(1)

where,

(xi, yi): Coordinates of the ith anchor node.

(xj, yj): Coordinates of the jth anchor node.

hopAij: Minimum number of hops from the anchor node {i}

to the anchor node {j}.

Note: the anchor node {j} represents all other anchor nodes

that are different (≠) from the anchor node {i}. Consider the

example in Figure 2.

Figure 2. Example of the application of the DV-hop

algorithm

2

The anchor nodes {A1, A2 and A3} know their positions. In

this case, we calculate the Euclidean distance of A1A2; A1A3;

A2A3, using Eq. (1), the results are highlighted in Table 1.

Table 1. Distance and number of hops between anchor nodes

Path according to Figure 2. A1-A2 A1 A3 A2-A3

Actual distance (metres) 50m 50m 40m

Number of jumps=Path Ai→Aj 4 4 4

The calculated average jump sizes of the anchors {A1, A2

and A3} are shown in Figure 2. For example, the Euclidean

distance of {A1} has both a Euclidean distance to {A2} and also

to {A3} of length 4 hops, so we will get a correction of the

estimated average hop size of each of the anchors by applying

Eq. (1). Note that the anchor node {A1} has the choice of either

calculating a single correction to be broadcast in the network,

or sending considerably different corrections in different

directions. In our experiments, we use the first option. For

example:

- Path A1-A2: A1→ U? → S2→ S3→ A2 = 4 jumps.

- Path A1-A3: A1→ U? → S2→ S1→ A3 = 4 jumps.

- Path A2-A3: A1→ S 3→ S2→ S1→ A2 = 4 jumps.

Thus, the average size of a hop at the anchor {A1} noted:
1
hopaverage {A1} is:

𝐻1 𝑜𝑝average(𝐴1) =
𝐷𝑖𝑠𝑡 (𝐴1𝐴2) + 𝐷𝑖𝑠𝑡(𝐴1𝐴3)

ℎ𝑜𝑝 (𝐴1𝐴2) + ℎ𝑜𝑝(𝐴1𝐴3)

=
50 + 50

4 + 4
= 12.5 m

And possibly for {A2}, {A3}:

𝐻1 𝑜𝑝average(𝐴2) =
50 + 40

4 + 4

𝐻1 𝑜𝑝average(𝐴3) =
50 + 40

(4 + 4)
= 11.25 m

Using Eq. (1), the anchor nodes calculate each other's

average one-hop distances between them. Once these

magnitudes are calculated {1hopaverage(Ai)}, the anchors

broadcast these values over the network. As a result, each

unknown node {U?m} can calculate its distance to the nearest

anchor {Ai} by applying Eq. (2).

𝑈?𝑑𝑖𝑠𝑡 (𝐴𝑚) = ℎ𝑜𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝑚)1 × ℎ𝑜𝑝𝐴𝑚 (2)

-U?dist (Am): Distance between the anchor node {Ai} and

the unknown node {U?m}.

- ℎ𝑜𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝑚)1 : Average size of a jump between anchor

{i} and anchor {m}.

-ℎ𝑜𝑝𝐴𝑚: Total number of hops from the anchor node {i} to

the anchor node {m}.

Let us observe this distance calculation on our example in

Figure 2. Suppose that an unknown node {U?} gets its

correction from the anchor {A2}. Thus, its average hop size is

estimated to be: 1hopaverage{A2} = 11.25 m, and thus by

applying Eq. (2), its distances are estimated then, relative to

the three landmarks {A1}, {A2} and {A3} as follows:

-𝑈?𝑑𝑖𝑠𝑡 (𝐴1) = 1 × 11.25 = 11.25 m

-𝑈?𝑑𝑖𝑠𝑡 (𝐴2) = 3 × 11.25 = 33.75 m

-𝑈?𝑑𝑖𝑠𝑡 (𝐴3) = 3 × 11.25 = 33.75 m

Note: We notice that the value of the average distance of a

jump is kept at the distance of the corrective anchor node,

which in our case is {A2}.

Once these values have been calculated, they are then

inserted into the triangulation procedure described by Eq. (3)

in the next phase so that the unknown node {U?}, obtains an

estimate of its geographical position (coordinates: CU?).

3rd phase: Determining the position of an unknown sensor

{U?}

Only in this phase can the position of any sensor in the

network be estimated. Here we calculate the position of the

node {U?} using the distances estimated in the trilateration or

Multilateration technique. Let us denote by (xu, yu), the

coordinates of the unknown node {U?}, and by (xAn, yAn) the

coordinates of the other anchor nodes {An}, and defining by

"ƞA" the total number of anchors, and "U?dist (𝐴i)" as the

average distance of a hop from the anchor {Ai} estimated by

Eq. (2).

The considered coordinates of the unknown sensor position

{U?}, are obtained by Eq. (3) from the Global Positioning

System (GPS) triangulation procedure [10], which we use in

its simplified version as we only compute distances without

taking into account the locking synchronisation. This

procedure starts with an estimated location, a priori, which is

then linearly corrected to an approximate real location.

[

(𝑥𝑈 − 𝑥𝐴1)

2 + (𝑦𝑈 − 𝑦𝐴1)
2 = (𝑈?𝑑𝑖𝑠𝑡 (𝐴1))

2

(𝑥𝑈 − 𝑥𝐴2)
2 + (𝑦𝑈 − 𝑦𝐴2)

2 = (𝑈?𝑑𝑖𝑠𝑡 (𝐴2))
2

⋮
(𝑥𝑈 − 𝑥𝐴n)

2 + (𝑦𝑈 − 𝑦𝐴𝑛)2 = (𝑈?𝑑𝑖𝑠𝑡 (𝐴𝑛))2]

 (3)

This last equation can also be expressed in the extended

form, generating Eq. (4) below:

[

 𝑥𝐴1

2 − 𝑥𝐴𝑛
2 + 𝑦𝐴1

2 − 𝑦𝐴𝑛
2 − (𝑈?dist (𝐴1))

2

− (𝑈?dist (𝐴𝐴𝑛))
2

= 2 ⋅ 𝑥𝑈 ⋅ (𝑥𝐴1 − 𝑥𝐴𝑛) + 2 ⋅ 𝑦𝑈 ⋅ (𝑦𝐴1 − 𝑦𝑈)

𝑥𝐴2
2 − 𝑥𝐴𝑛

2 + 𝑦𝐴2
2 − 𝑦𝐴𝑛

2 − (𝑈?dist (𝐴2))
2

− (𝑈?dist (𝐴𝐴𝑛)
2 = 2 ⋅ 𝑥𝑈 ⋅ (𝑥𝐴2 − 𝑥𝐴𝑛) + 2 ⋅ 𝑦𝑈 ⋅ (𝑦𝐴2 − 𝑦𝑈)

⋮

𝑥𝐴𝑛−1
2 − 𝑥𝐴𝑛

2 + 𝑦𝐴𝑛
2 − 𝑦𝐴𝑛−1

2 − (𝑈?dist (𝐴𝑛−1))
2

− (𝑈?𝑑𝑖𝑠𝑡 (𝐴𝐴𝑛))
2

= 2 ⋅ 𝑥𝑈 ⋅ (𝑥𝐴𝑛−1 − 𝑥𝐴𝑛) + 2 ⋅ 𝑦𝑈 ⋅ (𝑦𝐴𝑛−1 − 𝑦𝑈)]

 (4)

With good observation, we present Eq. (4) in the form [A

CU? = B], where the variables of the matrix {A} are given by

Eq. (5), {B} by Eq. (6), and that of the coordinates of the

unknown node {CU?} are presented by Eq. (7).

𝐴 = [

2 ∙ (𝑥𝐴1 − 𝑥𝐴n) 2 ∙ (𝑦𝐴1 − 𝑦𝑈)

2 ∙ (𝑥𝐴2 − 𝑥𝐴n) 2 ∙ (𝑦𝐴2 − 𝑦𝑈)
⋮ ⋮

2 ∙ (𝑥𝐴𝑛−1 − 𝑥𝐴n) 2 ∙ (𝑦𝐴𝑛−1 − 𝑦𝑈)

] (5)

3

𝐵 =

[

 𝑥𝐴1

2 − 𝑥𝐴𝑛
2 + 𝑦𝐴1

2 − 𝑦𝐴𝑛
2 − (𝑈?dist (𝐴1))

2

− (𝑈?dist (𝐴𝐴𝑛))
2

𝑥𝐴2
2 − 𝑥𝐴𝑛

2 + 𝑦𝐴2
2 − 𝑦𝐴𝑛

2 − (𝑈?dist (𝐴2))
2

− (𝑈?dist (𝐴𝐴𝑛))
2

⋮

𝑥𝐴𝑛−1
2 − 𝑥𝐴𝑛

2 + 𝑦𝐴𝑛
2 − 𝑦𝐴𝑛−1

2 − (𝑈?dist (𝐴𝑛−1))
2

− (𝑈?dist (𝐴𝐴𝑛))
2

]

 (6)

𝐶𝑈? = [
𝑥𝑈?

𝑦𝑈?
] (7)

The estimate of the coordinates of the node {U?} is given

by Eq. (8) below:

𝐶𝑈? = (𝐴𝑇 ∙ 𝐴)−1 ∙ 𝐴𝑇 ∙ 𝐵 (8)

2.2 Standard DV-Hop localisation error

The basic algorithm of "DV-Hop" amplifies the error in

calculating the position of the unknown node in two steps. One

is in the process of selecting the minimum number of hops,

and the other is in the calculation of the average distance of a

hop. In this algorithm, all unknown nodes use the

{ hopaverage
1 (Am)} to calculate the distance to the anchor

nodes, following phase 2. It is assumed that all neighboring

nodes are one hop away, regardless of their deployment in the

real environment and this is one of the causes of the error.

Illustrating this on our example in Figure 2, the unknown node

{U?} is one hop away from the anchor node {A1} and the

single node {S2}. While the average hop distance already

calculated is:

-1
hopaverage {A1} = 12.50 m,

-1
hopaverage {A2} = 11.25 m,

-1
hopaverage {A3} = 11.25 m.

We notice that the reality is quite different, the real distance

between the anchor {A1} and the unknown node is 5m instead

of the estimated 12.50m. Therefore, the positioning error for

{A1} is 7.5m = 12.50m - 5m. Thus, all unknown nodes use the

average value of the nearest anchor jump, which will definitely

impair the efficiency of the DV-Hop algorithm, as this error

will be accumulated from one unknown node to another. Thus,

the error increases and the accuracy is reduced.

In order to overcome this problem and to reduce the error

rate as much as possible, several studies have been carried out

to improve the efficiency of this algorithm. In the following

section, a background of the latest contributions on

localisation is presented in order to improve the standard DV-

Hop algorithm.

3. RELATED WORK

One of the first algorithms to improve on the traditional DV-

Hop is SDDV-HOP (Shortest Distances DV-HOP) by Hu et al.

[11]. The latter proposes to modify the average hop distance

of the network. The idea comes from the ratio between the

shortest path distance and the straight distance between nodes.

In graph theory, the shortest path problem is to find a path

between two nodes in a graph so that the sum of the weights

of its constituent edges is minimized. Another approach that

slightly improves on this program is the work of the authors of

[12], where they use a threshold "M" to manipulate weighted

average hop distances of anchor nodes in the limit "Msauts" with

unknown nodes, and other anchor nodes whose hop count is

greater than "M" are ignored. Their results show that the

optimal average positioning error results from the different

choices of the threshold values on the one hand, and the actual

network typology on the other hand. We note that optimality

is reached at 15% with "M = 6". Another temptation is exposed

with the RFDV-Hop algorithm (RFDV-Hop: RSSI and

Feedback Mechanism Based DV-Hop) by Liu and Feng [13].

This approach uses the signal strength (RSSI) to replace the

hops found in the basic DV-Hop, and thus computes the initial

location of the unknown node. Then, the algorithm calculates

the difference in distance between the actual location from the

anchor nodes and the estimated position from traditional DV-

Hop, as an adjustment factor, and infers the actual location of

the unknown node by calculating the distances between the

unknown node and the anchors, using the adjustment factor.

Another approach, based on the half-measure weighted

centroid, is proposed by Lu [8]. The algorithm follows a two-

dimensional position distribution, to design a minimum

communication radius with optimal connectivity to the

network. Subsequently, the algorithm attempts to correct the

distance between the anchor node and its neighboring node to

accurately estimate the hop distance. Other researchers [14]

have focused on reducing the range of initial Kalman filter

values that fit an emergency communication environment. For

example, a particularly deployed sensor could accurately

derive its position from the known positions of the anchor

nodes. To avoid the accumulation of errors in the network, a

distributed computation is performed to solve the global non-

linear optimisation problem and calculate the position of the

nodes. This contribution also improves the practicality and

efficiency of the multi-hop system in an emergency

communication environment. A new localisation framework is

proposed by Kanwar and Kumar [15]. They are based on DV-

Hop localisation methods using particle colony optimisation

(PSO) bringing upstream the concept of self-organisation. To

better demonstrate the applicability of their algorithm, they

integrate the irregularity model of the radio pattern into their

anisotropic network. The localisation, thus proposed,

efficiently minimizes the elapsed time.

A cross-sectional analysis of the various improvements

made to the basic DV-hop algorithm, has prompted our

curiosity to contribute to the search for a better approximation

of localisation. In this sense, we have outlined two objectives

to achieve:

-Obtaining reliable positioning of sensor nodes in the

network.

-Manage energy efficiently to sustain the life of the network.

It should be noted that procedures based on weighting the

distances of average jumps lead to location errors, especially

if the number of jumps is high enough. Therefore, the use of

weighted distance calculations should be avoided.

We note too that when we have to calculate the distance of

a node from a nearest anchor, the RSSI gives an almost exact

result when compared to the one based on the average jump

distance. Many approaches use this method with more

complex formulas, and difficult to grasp for a large mass of

4

researchers. In addition, maximum likelihood estimation

methods generally lead to uncertain results, as they lack

stability due to the fact that it is often difficult to find a fixed

statistical distribution. Also, methods based on backtracking,

such as RFDV-Hop, alter the location of nodes by

accumulating computational errors.

4. PROPOSED APPROACH

4.1 Articulation of the problem

A sensor network is closely linked to the knowledge of the

actual location of its nodes, in order to inform itself about the

area to be explored. Sensors are usually deployed randomly in

areas where it is difficult to locate their geographical

coordinates in an effort to intervene for maintenance work

(replacement, recharging their batteries, etc.). In addition, if

equipped with a GPS module, the network is more expensive

in terms of cost and energy. Therefore, we need to think about

algorithms that allow us to calculate the coordinates of the

nodes with the greatest possible precision, optimizing the

margin of error and ensuring a reduction in the flow of

messages in the network.

Our contribution is based on the calculation of the RSSI

(Received Signal Strength Indicator) to locate the neighboring

node (see Figure 3) which is one hop away from an anchor,

and to take advantage of this position as a new anchor node,

this facilitates the iteration of the position searching of the

other nodes that have not yet been located.

Figure 3. Illustration of the proposed approach

Our localisation proposal is implemented on the Contiki-OS

operating system, using its Cooja Simulator. This system

provides us with most of the basic elements needed to emulate

a sensor network. Thus, a set of nodes are deployed in an

environment with a square area of [100 m × 100 m]. We have

taken in our sample 5% of sensor-anchors, whose positions (xi,

yi) are known, among N unknown nodes that seek to estimate

their positions using these main anchors.

4.2 Problem formulation

Our work can be summarized in the following steps:

1. Calculation of the distance error rate:

-Anchor nodes broadcast "Hello|1" messages on the network,

containing location and identification information (see Table

1). This first step consists of identifying the direct neighboring

nodes.

Table 1. Structure of a "Hello|1" anchor package

IdA xi yi Hop-Count

-All nodes contain a small memory where information from

the different nodes of the networks is stored (see Table 2).

Table 2. Structure of a node's buffer

IdA x i yi CISOU drU drT Hop-Count

-IdA: identifier of the anchor node.

-(xi, yi): Geographical coordinates of the nodes.

-Hop-Count: number of hops, set to 0.

-drU: Actual distance calculated by RSSIN from the anchor

node to the unknown node {U?}.

-U?: Nodes with unknown location.

-drT: Total cumulative distance.

-Hop-Count: Cumulative hop count.

-Initially the Hop-Count field of each unknown node {U?}

is set to zero (0).

-Each unknown node receiving a "Hello|1" message from an

anchor, checks its existence in its memory. In the case where

the anchor identifier does not exist, the unknown node {U?}

updates its memory table, calculating the distance to the

sending anchor and incrementing "Hop-count" by "1", to note

that it is one hop away from the anchor, then broadcasts the

new "Hello|1" packet across the network. However, if the "IdA"

identifier exists on its table, a comparison of the minimum

hop-count is necessary to know whether or not to modify the

table.

-Anchor nodes store messages with a minimum hop-count.

-Once the convergence of the network is reached, the

anchors proceed to calculate the distance error rates according

to Eq. (9). A second "Hello|2" message will be generated (see

Table 3), and broadcast in the network.

𝜏𝐸𝑖 =

∑ [1 − (
𝐷eucl

𝐷𝑟𝑇𝑖

) /𝐻𝑜𝑝 − Count𝑖]
𝑁
𝑖=1

𝑁

(9)

-Deucl: Euclidean distance

-N: Total number of anchors in the network.

Table 3. Structure of the second "Hello|2" package.

IdA Type_id xi, yi Hop-Count 𝝉Ei

2. Calculation of the position of the nodes

-Same scenario as the previous step, only messages received

with minimum Hop-Counts will be retained and/or

incremented and broadcast.

-If an unknown node {U?} receives three or more messages

from the anchor nodes including at least one neighbouring

anchor then the unknown node calculates its coordinates

according to the following rules:

●If the distance between the unknown node and the anchor

is one hop then the node calculates the actual distance (drU)

directly via RSSI.

●If the distance between the unknown node and the anchor

is equal to more than one hop then the distance will be

calculated by multiplying the total distance by the distance

error rate according to Eq. (10).

𝐷𝑖𝑠𝑡𝑈?
𝐴 = 𝑑𝑟𝑇 ∙ [1 − (𝜏𝐸𝑖 × (𝐻𝑜𝑝–𝐶𝑜𝑢𝑛𝑡)] (10)

-Once the distance has been calculated, the unknown node

estimates its geographical position and changes its type (Type-

5

id = anchor) and in turn becomes an anchor.

- An unknown node {U?} ignores all messages sent by non-

direct neighbour anchors.

3- Update of node positions:

- If a node receives a message from another node that has

just been initiated as an anchor and the distance between them

is one hop (Hop-Count=1), then that node recalculates its

position and updates its table. Otherwise, the message is

ignored.

4.3 Our "DVA-Hop" algorithm

Our "Distance Vector Adjusted-Hop" algorithm, nicknamed

"DVA-Hop", takes its form from the traditional "DV-Hop"

algorithm but introduces an error rate calculation as follows.

5. IMPLEMENTATION AND DISCUSSION

The experiment is performed on the Contiki-OS Java

Simulator (see Figure 4) which is a sensor network emulator

supporting a compiled program in order to verify a scenario

before it is loaded into the flash memory of the real nodes as

in the TI-MSP430 platform. Thus, we configured the simulator

to a number of parameters, (see Table 4).

Table 4. Simulation parameters.

Parameters Values

Size of the map 100 × 100 m

Number of sensor nodes 100

Number of anchors 5

Communication radius (metres) 30

Number of iterations 10

Algorithm DVA-Hop;

1: Initialization of the algorithm.

2: Input N

3: For i=1 to N;

Anchors prepare the first messages « Hello|1 » with

{Coordinates, « Hop-count » = 0};

The Anchors broadcast their messages;

4: End-For

5: An unknown-node {N?} receives the message « Hello|1 » and

tests the « Hop-count »;

6: If « Hop-count » = minimum then

 « Hop-count » = « Hop-count » +1;

 Calculate the distance of the message using the

« RSSI »;

 Calculates the cumulative distance travelled by

the message;

 Update then resends the new message on the

network;

 Else do nothing;

7: End-if;

8: Each Anchor computes error rate « 𝝉Ei »;

9: Broadcast « Hello|2 » with « 𝝉Ei » on the network;

10: If unknown node has at least one neighboring anchor then

 Select the closest anchors and nodes (« Hop-

count », « drT »);

 Unknown node calculates its position;

 This knot becomes an additional anchor;

 Back to 3:

11: End if;

12: End;

Figure 4. Cooja/Contiki simulator

We used the mean square error Eq. (11) to estimate the

positioning accuracy. Thus, to calculate the mean location

error, we measure the distance of the link point calculated by

our algorithm to its corresponding real position point.

The average location error noted:

𝐸𝑟𝑟𝐿𝑜𝑐 =𝑎𝑣𝑔

100

𝑀 × 𝑅
√(𝑥𝑖

′ − 𝑥𝑖)
2 + (𝑦𝑖

′ − 𝑦𝑖)
2 (11)

(xi, yi): Actual geographical position of the sensor node.
(𝑥𝑖

′, 𝑦𝑖
′): Estimated geographical position of the node.

M: Number of unknown nodes.

R: Communication radius of the node.

5.1 Comparison of the localisation error as a function of

the number of single nodes

Figure 5. Location error comparison framework (05 fixed

anchors)

A first simulation, applying the two algorithms, "DV-Hop"

and "DVA-Hop", was carried out to demonstrate the scaling

of our experiments. In this sense, we calculated the localisation

error in meters for a number of 100(nodes?), on a stable

number of anchors equal to 5.

The results are shown in the graph in Figure 5, highlighting

a reduction in error as the number of single nodes increases.

This is explained on one hand by the increase in the number of

6

hops between neighboring nodes and consequently an

accumulation of error, and on the other hand by the use of a

small monitoring area.

We also notice that the accuracy of our "DVA-Hop"

algorithm decreases if the density of the node distribution is

low or non-uniform. Thus, the positioning gap of both

algorithms decreases as the number of nodes increases.

As a result, it is noted that the more nodes in a surface to be

monitored, the more the localisation error is minimized. Our

"DVA-Hop" algorithm shows a clear improvement in error

rate compared to the traditional "DV-Hop" algorithm.

5.2 Comparison of the error as a function of the number of

anchors

This simulation consists of calculating the location

deviation of 100 nodes with 4, 7, 10 and 13 anchors

respectively. In this experiment, we maintained the

geographical positions of the beacon nodes, with a radio

communication radius of 30 meters.

Figure 6. Location errors as a function of the number of

anchors

We observe in Figure 6 that the more the number of beacon

nodes is large, the smaller the positioning intervals of both

algorithms become, underlining the satisfactory result of our

algorithm. This is due to the fact that the information from the

unknown node transits through several hops to reach the

nearest anchor, amplifying the average error of the hop.

Finally, we can conclude that:

1. The distance difference between our "DVA-Hop" and

"DV-Hop" algorithm increases with the number of jumps.

2. The reduction in deviation, between our "DVA-Hop" and

"DV-Hop" algorithm, is the consequence of the increase in the

number of anchors.

5.3 Energy assessment of the proposed algorithm

In order to determine the efficiency of our algorithm, a

second aspect is the evaluation of the energy consumption of

unknown anchors and nodes (see Figure 7).

The number of nodes is reduced, in order to speed up the

response time of the simulation. The default radio model is the

"Unit Disk Graph Medium" or "UDGM Distance Loss". The

simulation parameters are shown in Table 5.

Figure 7. Simulation scenario: Node positions on

Cooja/Contiki

Table 5. Energy simulation parameters

Parameters Values

Radio model UDGM

Type of nodes Skymote

Unknown nodes 11

Number of anchors 04

Transmission area 30 m

Interference zone 100 m

Transmission ratio 100 %

Reception ratio 100 %

Deployment Random

Simulation time 20 min

Network dimension 100m x100m

The total energy consumed by a sensor node is given by the

following Eq. (12):

Energynoeud=EnergyCPU+EnergyLPM

+EnergyTX+EnergyRx
(12)

Knowing that the four modules of a node that consume

energy are:

-CPU: Number of clock ticks of the processor in active state,

without radio modules.

-LPM: Number of clock ticks in standby state.

-TX: Number of clock ticks in transmission state.

-RX: Number of clock ticks in reception state.

Thus, we can calculate the energy consumption of each

module in milliwatts using the following Eq. (13) using the

parameters of the node type, in our case "Skymote":

Energymodule=Emodule*C*V/(Rtimer_Second)*Runtime (13)

-Emodule: This is the difference in the Ticks number of the

"CPU module", for example, between two-time intervals.

-C (Current): Current intensity (CPU ≃ 330µA, LPM ≃

1.1µA, Tx≃ 17.4mA, Rx ≃ 18.8mA,).

-V: Voltage (≃ 3Volt).

-Rtimer_Second: Low frequency crystal frequency (≃

32768 Ticks/s).

-Runtime: Powertrace runtime (≃ 5 seconds).

-One Ticks system is equivalent to 1 millisecond.

7

After starting the simulation, Figure 8 shows some

positional information, and the information needed for the

energy calculation.

Calculation of the average consumption of the four anchors:

The energy consumed by the anchors, after extracting the

information from the Ticks, and applying Eq. (13) to calculate

the energy consumed by each module. The total energy of each

node, "anchor", is calculated using Eq. (12), the result obtained

is shown in Figure 9 below.

Figure 8. Energy simulation scenario on Cooja/Contiki

Figure 9. Energy consumed by each "anchor" node

Figure 10. Energy consumed by each module of the "anchor"

"DVA-Hop" nodes

The experiment reveals that the anchor with id:7 consumed

slightly more energy than the others, given that the

concentration of most of the nodes are in its proximity. This

slight increase in energy consumed by anchor 07 during 20

minutes of simulation, although negligible, could be justified

by the amount of energy consumed by the radio module either

in data reception (Rx), or in transmission (Tx), and more or

less in processing energy. But, as for the Idle Listening energy,

it remains almost negligible. Figure 9 shows that our approach

is still distinguished by the reduced energy consumption.

Figure 10 shows the node modules responsible for this

increase in energy consumption in our DVA-Hop algorithm.

Another geometrical interpretation can be elucidated on this

energetic elevation of the anchor id:7 and the anchor id:2. It

can be seen that these anchors have three nodes in the vicinity,

which leads to a dense communication on the network, and

therefore a higher listening energy (see Figure 10).

Average energy consumption of single nodes:

A study on the energy consumption of single nodes was

carried out to estimate the lifetime of our network. Figure 11

shows that node id:6 consumed a rather high amount of energy.

We will explain this increase by its central position, and acts

as a transit node for the rest of the network. In addition, Idle

Listening with the absence of sleep mode during periods of

inactivity of the radio module plays a very important role.

Figure 11. Energy consumed by each module of the

unknown nodes

Note: We notice that the radio reception module consumes

more energy than the others. Therefore, in order to save energy,

it is better to activate the "Duty cycle", i.e., a sleep state

(alternating between active and sleep mode).

Figure 12. DVA-Hop Latency: Wireshark

Calculation of the average latency with Wireshark:

The average latency of a network is the time taken for a

packet to travel from a sending node to a receiving node.

The simulation time is set to 20 minutes. During this time,

a fairly high communication rate of around 21301 packets was

noted, (see Figure 12), which has a direct influence on the

energy consumption of the nodes (see Table 6).

8

Table 6. Latency derived by Wireshark.

Parameters
DVA-Hop

values

DV-Hop

values

Total nodes 15 15

Simulation time ≃ 20 min ≃ 20 min

Number of distributed packages 21301 17836

Size of a packet (Byte) 57 57

Average Packets/s 17.762 14.870

Average Latency (s) 0.0569 s 0.0672s

We note that the average packet size, although fixed, is 57

bytes in our simulation, and the latency of our algorithm is

better than that of the traditional DV-hop.

6. CONCLUSION

Wireless sensor networks have been the subject of much

research, both in industry and academia. This is due to the

unprecedented breadth of possibilities offered by this

technique. However, wireless sensor networks also face

significant challenges in locating randomly distributed nodes

in hostile or inaccessible locations.

In this paper, we have presented an improvement of the DV-

Hop algorithm by a mixed approach to locate unknown nodes.

The method relies on two mechanisms for position calculation:

the received signal strength "RSSI", and the Hop averaging

principle "DV-Hop", in order to increase the geographical

accuracy of unknown nodes. This is a stimulating perspective

because the RSSI signal strength is delivered with the data

packets when they are received, which does not incur any

additional cost in terms of new hardware components or power

consumption. In addition, our algorithm gradually discovers

unknown nodes surrounding the anchors, and substitutes them

into beacons to complete the localisation process.

A comparison framework explains the encouraging result

and the clearly observed performance of our approach, not

only in the improvement of the average Hop but also in the

advantage of sustaining the network by saving energy on one

hand and optimizing latency on the otherhand.

REFERENCES

[1] Benaissa, B.E., Lahfa, F., Naima, K., Lorenzini, G., Inc,

M., Menni, Y. (2021). Detection and cooperative

communications for deployment sensor networks.

Traitement du Signal, 38(3): 555-564.

https://doi.org/10.18280/ts.380303

[2] Rabhi, S., Semcheddine, F. (2019). Localization in

wireless sensor networks using DV-hop algorithm and

fruit fly meta-heuristic. Advances in Modelling and

Analysis B, 62(1): 18-23.

https://doi.org/10.18280/ama_b.620103

[3] Yuan, R.L. (2020). Positioning of wireless sensor

network under emergency communication environment.

Instrumentation Mesure Métrologie, 19(4): 273-279.

https://doi.org/10.18280/i2m.190404

[4] Zhao, W., Shao, F., Ye, S., Zheng, W. (2018). LSRR-LA:

An anisotropy-tolerant localization algorithm based on

least square regularized regression for multi-hop wireless

sensor networks. Sensors, 18(11): 3974.

https://doi.org/10.3390/s18113974

[5] Miao, Y.S., Wu, H.R., Zhu, H.J., Song, Y.L. (2018).

Localization accuracy of farmland wireless sensor

network localization algorithm based on received signal

strength indicator, Ingénierie des Systèmes

d’Information, 23(5): 69-80.

https://doi.org/10.3166/ISI.23.5.69-80

[6] Rabhi, S., Ouahab, A., Baddou, S., Chetouah, K. (2021).

An improved algorithm based on chicken swarm

optimization for localization in wireless sensor networks.

Advances in Modelling and Analysis B, 64(1-4): 34-39.

https://doi.org/10.18280/ama_b.641-405

[7] Niculescu, D., Nath, B. (2003). DV based positioning in

ad hoc networks. Telecommunication Systems, 22(1):

267-280. https://doi.org/10.1023/A:1023403323460

[8] Lu, J.Y. (2019). A new distance vector-hop localization

algorithm based on half-measure weighted centroid.

Mobile Information Systems, 2019: 9892512.

https://doi.org/10.1155/2019/9892512

[9] Prashar, D., Jyoti, K. (2019). Distance error correction

based hop localization algorithm for wireless sensor

network. Wireless Personal Communications, 106: 1465-

1488. https://doi.org/10.1007/s11277-019-06225-0

[10] Spilker Jr, J.J., Axelrad, P., Parkinson, B.W., Enge, P.

(1996). Global Positioning System: Theory and

Applications, volume I. American Institute of

Aeronautics and Astronautics.

[11] Hu, Y., Shan, Z., Yu, H. (2012). Research on improved

DV-HOP localization algorithm based on the ratio of

distances. In Internet of Things, pp. 118-125.

https://doi.org/10.1007/978-3-642-32427-7_17

[12] Hu, Y., Li, X. (2013). An improvement of DV-Hop

localization algorithm for wireless sensor networks.

Telecommunication Systems, 53(1): 13-18.

https://doi.org/10.1007/s11235-013-9671-8

[13] Liu, F., Feng, G. Z. (2015). Research on improved dv-

hop localization algorithm based on RSSI and feedback

mechanism. In China Conference on Wireless Sensor

Networks, Xi'an, China, pp. 144-154.

https://doi.org/10.1007/978-3-662-46981-1_14

[14] Yuan, R.L. (2020). Positioning of wireless sensor

network under emergency communication environment.

Instrumentation Mesure Métrologie, 19(4): 273-279.

https://doi.org/10.18280/i2m.190404

[15] Kanwar, V., Kumar, A. (2021). DV-Hop localization

methods for displaced sensor nodes in wireless sensor

network using PSO. Wireless Networks, 27(1): 91-102.

https://doi.org/10.1007/s11276-020-02446-5

9

