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The study presents the development of an accessible, reliable, 3D printable, low-cost, and 

modular 4 degrees-of-freedom robotic arm for the automated sorting of plastic bottles from 

the waste stream. The UIArm I robot arm was designed based on the modification of an 

open-source Thor Robot model using Free-CAD with the components 3D printed using 

PLA and PETG. The forward kinematics was obtained by Denavit-Hartenberg (DH) 

method, while the analytical method was used for the inverse kinematics. The electrical 

components include stepper motors, servo motors, motor drivers, a printed circuit board 

(PCB), an Arduino Mega microprocessor, a light source for illumination, and a PC with a 

webcam. Python was used for programming the PC and C# for the Arduino 

microprocessor. TensorFlow, an end-to-end open-source, machine learning platform was 

used to develop the object detection algorithm based on a deep neural network. The object 

detection model achieved an accuracy of 91% for Pepsi plastic bottles which formed the 

bulk of training images. Other types of plastic bottles were detected with an 85% accuracy. 

The study has demonstrated the viability of a locally developed robotic arm for the 

automated sorting of plastic bottles. 
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1. INTRODUCTION

1.1 Machine vision, complex backgrounds, deep learning, 

robotic grasping, garbage sorting 

Over the years, solid waste management has remained a 

major challenge faced by developing countries. Increased 

population, urbanization, and improved standard of living are 

the leading contributory factors to the astronomic increase in 

a solid waste generation but without corresponding 

technological innovations in the management of these wastes. 

Global production of plastics has increased twentyfold since 

the 1960s, reaching 322 million tonnes in 2015. It is expected 

to double again over the next 20 years to reach over 600 

million tonnes by the year 2025 [1]. More than half (56%) of 

plastic ever produced has been made since 2020. About 40% 

of the global plastic production is used for packaging followed 

by the construction and automotive industries as shown in 

Figure 1 [2]. In the packaging industry, the beverage industry 

(soft drink manufacturers) is responsible for the larger share of 

plastic usage. International research in 2020 shows that Coca-

Cola products contributed the highest plastic bottles found in 

the environment in over fifty-one countries followed by Pepsi 

and Nestle products as shown in Figure 2 [2]. Worldwide, 

plastic bottles constitute over 50% of the volume of waste 

generation in both developed and developing nations. Every 

second, about 15,000 plastic bottles are sold worldwide, 

corresponding to about 1 million per minute and 480 billion in 

a year [2]. Coca-Cola produces 167,000 plastic bottles every 

minute [3]. However, only 7% of these plastic bottles are 

recycled, even though the material used (PET) is one of the 

easiest to recycle. More than half (about 5 billion tonnes) of 

the 9.2 billion tons of plastic bottles that have been produced 

to date has ended up as waste in landfill or has simply ended 

up in the environment [2]. Of this number, between 5 and 13 

million tonnes of plastic bottles enter the oceans. With global 

plastic production estimated to increase by 40% in the next 10 

years, if there are no decisive technological interventions 

regarding plastic bottle management, the oceans are predicted 

to carry more plastic bottles than fish (by weight) by 2050 [2]. 

The United Nations, however, has warned that marine life will 

be irreparably destroyed as the coral reefs appear to be 

particularly vulnerable to plastic pollution while the food 

supply chain of millions of people will be endangered [4].  

In Plastic Soup [4], it has been reported that the total plastic 

bottles emitted into the ocean stand at 18,640 metric tonnes 

per year in Nigeria (Figure 3). This is due largely to the fact 

that there is no mechanized sorting technology aside from 

manual sorting for the segregation of the plastic bottles from 

the waste stream as waste sorting from the source is 

uncommon in Nigeria as in developed countries. Manual 

sorting is known to be labour-intensive, time-consuming, and 

cost ineffective as well as injurious to the health of sorters. 

Hence, there is little, or no recycling of plastic bottles 

Journal Européen des Systèmes Automatisés 
Vol. 56, No. 1, February, 2023, pp. 97-103 

Journal homepage: http://iieta.org/journals/jesa 

97

https://orcid.org/0000-0001-5939-2297
https://orcid.org/0000-0001-7500-2738
https://orcid.org/0000-0002-9217-8476
https://orcid.org/0000-0003-3450-703X
https://orcid.org/0000-0001-7183-107X
https://orcid.org/0000-0001-6687-282X
https://orcid.org/0000-0003-2228-5556
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560113&domain=pdf


practiced in Nigeria. Therefore, to overcome these challenges, 

there is a need to develop a mechanized sorting system using 

the robotic arm. This study therefore presents the development 

of an accessible, reliable, 3D printable, low-cost, and modular 

4 degrees-of-freedom robotic arm for the automated sorting of 

plastic bottles from the waste stream. 

Figure 1. Global plastic usage by sector [4] 

Figure 2. The number of countries in which plastic bottles 

are found and the quantity recorded [4] 

Figure 3. Total emitted plastic into the ocean metric tonnes 

per year per country [4] 

1.2 Applications of the robotic arm in waste management 

A robotic arm is a mechanical arm designed to perform 

programmable tasks similar to those performed by human 

arms. Various configurations of robot arms have been built 

over the past several decades. Conventionally, each joint on 

the robot arm is moved by actuators that displace it linearly or 

at an angle. The actuators could be electric, pneumatic, or 

hydraulic depending on the type and conditions of work. 

Electric actuators like servos and stepper motors are the most 

common due to their low cost and simplistic design. 

Prospects of robot applications in recycling and product 

disassembly have been reported by Bogue [5]. The global 

waste sorting robots market has been reported by Goldstein 

[6]. In Bangladesh, an intelligent system using a robotic arm 

was developed for automatically sorting the waste using 11 

objects (waste) of different sizes and types. The experimental 

results showed that the proposed system was reliable and 

achieved about 82% accuracy for the categorization of 

different types of waste [7]. Noshahi [8] also presented a low-

cost locally manufactured 4 degree of freedom (DOF) pick and 

place robotic arm that can be used for industrial assembly line 

applications such as textile, automobile, and agriculture 

sectors for waste sorting. The design and fabrication of a new 

soft robot hand for grasping and sorting operations was 

proposed by Wang and Guo [9]. The robot hand was driven by 

five pneumatic actuators. A prototype of the robot hand was 

fabricated (Universal Robot UR5) and used to grasp any 

shaped object in a certain space by providing high safety and 

high adaptability. Recently, a robust system for the automation 

of municipal waste sorting using a robot arm with artificial 

intelligence was developed by Wilts et al. [10]. Chang et al. 

[11] designed an intelligent mobile garbage collection robot

based on visual recognition technology, which can carry out

path planning, traverse the given area, scan and identify and

pick up recyclable garbage. The proposed system consisted of

a navigation unit, target identification unit, and sorting control

unit. None of these research works were particularly targeted

at sorting plastic bottles from the waste stream. The purpose

of the study is to develop an affordable, reliable, 3D printable,

low-cost, and modular 4-degree-of-freedom robotic arm for

automated sorting of plastic bottles and therefore providing the

platform for pushing the limits of robotics studies and

alleviating the menace of plastic pollution in Nigeria. The

Automation and Robotic laboratory of the Faculty of

Technology, University of Ibadan are set to spearhead this

innovation. The UIArm I is our pioneering effort with great

potential that can be scale-up, modified, and trained to

accomplish complex tasks. In the nearest future, we look

forward to having more robust robotic hands with great

capabilities.

2. METHODOLOGY

2.1 Mechanical design 

The mechanical components were designed based on the 

modification of an open-source, six-degree-of-freedom Thor 

Robot, which was released in 2017 [12]. Since then, the model 

has undergone many modifications, adaptations, and 

applications by numerous researchers worldwide and more 

than 20 units have been built in at least 11 different countries 

[13-19]. FreeCAD, an open-source 3D modeling software was 

used to model the robotic arm. Thor robotic arm model was 

modified by scaling down the number of links and degree of 

freedom for simplicity and cost reduction but maintaining the 

functionality of the robotic arm. The developed model has a 4 

degree of freedom with a 2-fingered gripper for grasping. 

2.1.1 Design of Joint 1 

The joint consists of the base of the arm, with a revolute 

joint that moves the entire robot 360° rotationally on the z-axis. 

It is powered by a Nema 17 stepper motor with holding torque 

of 39.22N.cm. The motor has a shaft length of 40mm with a 
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rated current of 1.5A. The stepper motor drives an internal 

helical gear that sits within the base frame. The top of the base 

frame sits on a 55mm diameter 16014ZZ ball bearing for 

frictionless rotation. The 3D model of joint 1 is shown in 

Figure 4. 

 

 

 
 

Figure 4. 3D model of joint 1 (a) exploded view (b) 

assembled view 

 

2.1.2 Design of Joint 2 

The second joint is revolute with 1200 rotations about the y-

axis of the reference frame, powered by 2 stepper motors. The 

stepper motors are fitted with 2 helical gears which mesh with 

the inner teeth of the shoulder carrying the second link of the 

robotic arm with a 5:1 gear reduction ratio with 121.2N.cm of 

holding torque. The 3D model of joint 2 is shown in Figure 5. 

 

 
 

Figure 5. 3D model of joint 2 

 

2.1.3 Design of Joints 3 and 4 

Joints 3 and 4 are also revolute joints with 1800 rotation 

about the y-axis and 360° rotations about the z-axis 

respectively. To reduce the weight and inertia of the links, the 

2 stepper motors powering the links are located in the lower 

link. The joints are driven with GT20 belts via 2 pulleys of a 

semi-differential gear system. The 3D models of the joints are 

depicted in Figure 6. 

 
 

Figure 6. 3D models of joints 3 and 4 

 

2.2 3D printing  

 

The Free CAD models were sliced using the Ultimaker Cura 

slicer, open-source software, and the .stl files were printed on 

a commercial 3D printer in Ibadan, Nigeria. PLA was used for 

smaller components while PETG was used for the larger 

components. A total of 43 parts were printed. Figure 7 shows 

the image of some of the 3D printed components. 

 

 
 

Figure 7. 3D printed components 

 

2.3 Electrical design 

 

The electronic components include 5 stepper motors with 

A4988 motor drivers, 1 servo motor and driver, limit and 

power switches, and cooling fans mounted on a printed circuit 

board (PCB) produced by Thor Robot. The PCD has 36 input 

pins that are interfaced with an Arduino Mega microcontroller. 

The PC used was an ACER Aspire running on Windows 10 

with Intel CORE i7, 8th generation quad-core processor with 

Nvidia Graphics Card MX150. A Webcam with resolutions up 

to 800 by 600 with a frame capturing rate of 30fps was used 

for the image acquisition. For consistent illumination and 

background, an incandescent bulb was used as a light source 

and brown cardboard paper was used for the background for 

the image acquisition.  

 

2.3.1 Object detection model 

The object detection model was built using TensorFlow API 

version 1.14.0, an open source, end-to-end platform for the 

implementation and deployment of large-scale machine 
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learning models developed by Google [20]. The API was 

executed on Python v3.7which was later compiled to C++. To 

take advantage of the GPU, CUDA v10.0 and cuDNN v9.0 

which are compatible with the version of TensorFlow were 

installed. To compile and build the necessary C++ encoders, 

Microsoft Visual Studio 2017 was installed and the C++ Build 

tools v2017 were installed [21]. To generate a robust training 

dataset for the machine learning algorithm, over 200 images 

of a typical waste stream containing plastic bottles with 

random poses or orientations under a variety of backgrounds 

and lighting conditions were taken using a smartphone. The 

desired objects (plastic bottles) in the images were identified 

manually and annotated using the LabelImg tool [22]. All 

bounding boxes for the plastic bottles in each image were 

individually drawn and exported as an XML. The TFRecords 

were generated, labels were mapped, and the training was 

configured to use the Faster-RCNN-Inception-V2 model for 

transfer learning. The image dataset was partitioned randomly 

into three sets with 70% used for training, 20% for validation, 

and 10% used for testing the model. Running the training 

process on the PC was not feasible due to system 

specifications limitations. Hence, the training and other heavy 

computations were done on Google Cloud’s COLAB running 

on a virtual machine. The training was allowed to run for 9 

hours with 200 steps and the inference graph was exported for 

use on a local PC. The pose of the object detection was 

determined using the minimum area method. In this case, the 

image was rotated 90 times at one-degree intervals. The 

boundary box areas were calculated for each rotation and the 

minimum boundary box area was used approximately as the 

area of the object. The coordinate (x, y, z) of the object was 

determined by the centroid of the area, while the pose or 

orientation was determined by the angle of rotation. The 

current position of the robotic arm is then compared to the 

location of the detected object and serial information for the 

control system is fed into the Arduino Mega to control the 

required motor of the arm of the robot. The stepper motors are 

controlled with the Arduino Mega by sending HIGH and LOW 

pulses. The robotic arm was then moved to this coordinate 

based on the inverse kinematics and the gripper was then 

rotated based on the calculated pose angle in the opposite 

direction. The order and delay of these pulses determine the 

direction and speed of rotation of the motor. The Arduino code 

was written on the Arduino IDE in C#. The Python script sends 

information using the PySerial library. The script sends single 

character digits which the Arduino converts into pulses.  

 

2.4 Kinematics analysis 

 

2.4.1 Forward kinematics 

The Denavit-Hartenberg (DH) method was used to analyze 

the forward kinematics of the robot. The Kinetic structure, and 

the schematics of the robotic arm are shown in Figure 8 and 9, 

respectively. By assigning coordinate frames to the links of the 

robot, its motion can be analyzed by obtaining a 

transformation that relates the joint space to the task space. 

Using transformation matrices 𝐴𝑖 ∈ 𝑅4×4, the relative position 

and orientation of two link coordinate frames are obtained as 

shown below: 

 

1

no

n ii
T A

=
=  (1) 

 

where 

𝐴𝑖 =  [

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖 𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖 −𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

] , 𝑖 = 1, 𝑛 (2) 

 

Moreover, cθi and sθi are cos(θi) and sin(θi), and ai, αi, di, 

and θi are the link length, twist, distance, and joint variables 

respectively. 

 

 
 

Figure 8. Kinematic structure 

 

 
 

Figure 9. Schematics of the robotic arm 

 

Using the Denavit-Hartenberg (DH) convention, the joint 

parameters are shown in Table 1. 

 

Table 1. D-H parameters of the proposed robotic arm 

 
Joints αi-1(rad) ai-1(mm) θi-1(rad) di-1(mm) 

1 π/2 0 0 0 

2 0 L2 θ2 0 

3 -π/2 0 θ3 0 

4 0 L4 θ4 0 

 

The transformation matrix: 

 

𝑇0
4 = 𝐴0

1𝐴1
2𝐴2

3𝐴3
4 (3) 

 

2.4.2 Inverse kinematics 

The inverse kinematics of this robot was done analytically, 

taking advantage of the geometric configuration of the robot: 

Given below are links 1, 2, and 3 and the distance (L13) 

between the end-effector frame 3 and frame 0: L1=30mm; 

L2=15mm, L3=20mm: 

 

𝐿13 = √𝑥3
2 + 𝑦3

2 (4) 
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To simplify our analysis, we make L12=αL13. 

Taking L12=αL13, (α=1.2) we proceed thus: 

Recalling the law of cosines and sines respectively, 

 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑎𝑏𝑐𝑜𝑠𝐶, 
𝑠𝑖𝑛𝐴

𝑎
=

𝑠𝑖𝑛𝐵

𝑏
 

 

where, a, b and c are the lengths of the three sides of a triangle 

and A, B and C are the interior angles of the triangle opposite 

the sides of lengths a, b, and c respectively. Referring to Figure 

1, just as angles θ2 and θ3, angle θ2 restricted to lie in the 

interval [0, π], can be determined from the law of cosines: 

 

𝐿12
2 = 𝐿2

1
+ 𝐿2

2 − 2𝐿1𝐿2𝑐𝑜𝑠𝜃2 (5) 

 

Which follows that: 

 

𝜃2 = arccos (
𝐿12

2−(𝐿2
1

+ 𝐿2
2)

2𝐿1𝐿2

) (6) 

 

Also, from the law of sines, 

 

𝐿12𝑠𝑖𝑛𝜃′ = 𝐿1sin𝜃2 (7) 

 

Which follows that: 

 

𝜃′ = arcsin (
𝐿1𝑠𝑖𝑛𝜃2

𝐿2

) ∈ [0, 𝜋] (8) 

 

In addition, from the law of cosines, we have that: 

 

𝐿3
2 = 𝐿2

13
+ 𝐿2

12 − 2𝐿13𝐿12𝑐𝑜𝑠𝛽 (9) 

 

Hence, 

 

𝛽 = arccos (
𝐿13

2+𝐿2
12

− 𝐿2
3

2𝐿13𝐿12

) ∈ [0, 𝜋] (10) 

 

Furthermore, from the law of sines, we obtain: 

 

𝐿13𝑠𝑖𝑛𝛽 = 𝐿3sin𝛽′ (11) 

 

These yields 

 

𝛽′ = arcsin (
𝐿13𝑠𝑖𝑛𝛽

𝐿3

) (12) 

 

Since π=β'+θ'+θ3, then 

 

𝜃3 = 𝜋 − (𝛽′ + 𝜃′) ∈ [0, 𝜋] (13) 

 

Using the sine rule, we have that: 

 

𝐿12𝑠𝑖𝑛𝛾′ = 𝐿2sin𝜃2 (14) 

 

So, 

 

𝛾′ = arcsin (
𝐿2𝑠𝑖𝑛𝜃2

𝐿12

) (15) 

 

Noting that 

 

𝛾 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦3/𝑥3) (16) 

And that 

 

𝛾 = β + 𝛾′ + 𝜃1 (17) 

 

Then 

 

𝜃1 = 𝛾 − (β + 𝛾′) ∈ [0, 𝜋]  (18) 

 

2.4.3 Robot coordinate system 

The robot coordinate system used is a Cartesian coordinate 

system, which has its origin in the footprint of a robot (see 

Figure 10). It describes the position of the robot regarding the 

world coordinate system. For simple transformation, we set 

the origin of the robot coordinate system with the origin of the 

world coordinate system. The user coordinate system defines 

the coordinates of the acquired image, while the workpiece 

coordinate system defines the coordinate of the object 

identified in the image. The coordinate of the object in the 

image was transformed into the world coordinate system. 

 

 
 

Figure 10. Robot coordinate system 

 

 

3. RESULTS AND DISCUSSION 

 

The designed model is about 464 mm high with a payload 

capacity of 500 g. The configuration of the model is shown in 

Figure 11. The model is configured on its four joints to yaw-

roll-roll-yaw [23]. The joint configuration and parameters are 

shown in Figure 12 and Table 2, respectively. The 

experimental setup of the system is shown in Figure 13. 

 

 
 

Figure 11. 3D model of the proposed UIArm I Robot Arm 
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Figure 12. The joint configuration of the UIArm I robotic 

model 

 

 
 

Figure 13. Experimental setup of UIArm robotic sorting 

system 

 

Table 2. Joint parameters of UIArm Robot Arm 

 
Joint Axis of rotation The angle of rotation (°) 

1 Z 360 

2 Y 120 

3 Y 10 

4 Z 360 

 

3.1 Experimentation 

 

The custom-built TensorFlow object detection model 

achieved an accuracy of 99% for detecting Pepsi plastic bottles 

when tested with an only plastic bottles in the waste stream 

without other items (Figure 14). But when tested with other 

items in the waste stream, an accuracy of 91% detection for 

Pepsi bottles was achieved. However, other types of plastic 

bottles such as Coca-Cola, Fanta, etc. were detected with 85% 

accuracy. The high percentage accuracy for the detection of 

Pepsi plastic bottles may be due to the larger percentage of 

Pepsi plastic bottles used in the training of the model. The 

quality of the video feed significantly affects the accuracy and 

so a 720p camera was used which improved detection slightly. 

This increase in resolution however led to an increase in 

processing time and so a balance at 800 by 600-pixel 

resolution was chosen. Ten samples were tested with the 

plastic bottles partially covered up to 50% and the arm was 

able to identify and pick up 6 correctly. Significant difficulties 

were faced due to the wear of poorly printed parts [24]. The 

speed of movement was kept slow to avoid jerking motion 

which could cause unwanted forces within the structure. 

Figure 15 depicts the experimentation with the designed 

robotic sorting system. 

 

 
 

Figure 14. Detection of Pepsi plastic bottle by the 

TensorFlow object detection model 

 

 
 

Figure 15. Experimentation with UIArm I robotic arm 

sorting system 

 

 

4. CONCLUSIONS 

 

The developed model, UIArm I, is a custom built affordable, 

reliable, 3D printable, low-cost, and modular 4-degree-of-

freedom robotic arm for automated sorting of plastic bottles 

from the waste stream. The object detection model achieved 

an accuracy ranging from 85 - 91% accuracy. The study has 

provided the platform for pushing the limits of robotics 

research and an avenue for alleviating the menace of plastic 

pollution in Nigeria. This is the pioneering effort of the 

Automation and Robotic laboratory of the Faculty of 

Technology, University of Ibadan, with great potential that can 

be scale-up, modified, and trained to accomplish complex 

tasks. In the nearest future, we look forward to having more 

robust robotic hands with great capabilities. 
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