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The development of remote sensing technology has accumulated a large number of remote 

sensing image time series data for human monitoring of surface vegetation change, which 

provides a basis for vegetation change prediction. In order to improve the prediction 

accuracy of vegetation change, this paper uses discrete wavelet to decompose remote 

sensing image sequences at multiple scales, to explore the difference of influence of 

different temporal scale change characteristics on vegetation spatio-temporal change 

prediction, and find the best decomposition scale for vegetation change prediction. In this 

paper, the research object is the MODIS 13Q1 EVI image data of Hunan Province from 

2001 to 2021. The discrete wavelet is adopted to obtain multi-scale vegetation trend 

components and detailed component sequences, and then complete the LSTM modeling 

prediction and comparison. The following are the experimental findings: the predictive 

ability of the discrete wavelet decomposition sequence group is better than that of the 

original EVI time series to varying degrees. The order of prediction accuracy is: monthly 

scale > seasonal scale > annual scale > original EVI time series. Thus, it is of reference 

significance to the research of application scenarios of change prediction of other 

regionalized variables with multi-scale characteristics. 
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1. INTRODUCTION

The development of remote sensing technology has 

accumulated a large number of remote sensing image time 

series data for human monitoring of surface vegetation change, 

providing a reliable data source for vegetation change 

prediction [1, 2]. Affected by natural factors and human 

activities, vegetation change exhibits long-term, seasonal 

periodicity and short-term multi-scale changes characteristics 

[3-6]. The long-term remote sensing image data obtained by 

remote sensing technology records the complex change 

process of the vegetation on the earth’s surface. However, the 

variation features of different scales contained in the image 

sequences make the data features fuzzy due to mutual 

interference, which leads to the low accuracy of vegetation 

prediction to a certain extent. Therefore, the separation of 

these different scale features and the exploration of their 

applicability to vegetation change prediction are of great 

significance to the study of vegetation change prediction.  

With the development of wavelet theory in recent years, 

wavelet transform (WT) has been widely used in signal 

processing, image segmentation, and time-series data analysis 

due to its multiresolution analysis capability [7-9]. The 

discrete wavelet has time series data multiresolution 

decomposition and reconstruction capabilities. Time series 

data can be decomposed into time series data groups 

representing different time scales through wavelet transform. 

At present, some studies have shown that the prediction of 

time series data transformed by discrete wavelet can obtain 

relatively high accuracy [10-12]. These decomposed sequence 

group data can better retain the change trend features and 

detail features on different time scales, and enhance the 

prediction model’s ability to understand high-pass detail 

information and low-pass trend information at different scales. 

According to the domestic and foreign research on vegetation 

change, the role of wavelet transform’s multi-scale analysis 

theory in monitoring the dynamic changes of vegetation is 

demonstrated. It can be found that the wavelet analysis of a set 

of vegetation index time series can mine the dynamic change 

characteristics of vegetation within a year, as well as the 

dynamic change trend of vegetation between years [3, 13-15]. 

With the decomposition and reconstruction ability of 

vegetation time series data, discrete wavelet with great 

potential in vegetation prediction can provide a basis for multi-

scale predicting of vegetation changes and analyzing 

vegetation change prediction capabilities of different scales of 

vegetation change features. 

Early research on vegetation change prediction mainly 

established a series of simulation models by studying the 

relationship between global climate change and vegetation, 

and then related research used climate and other related data 

to simulate and predict vegetation. With the development of 

the spatio-temporal series prediction method, especially after 

the introduction of the deep learning mechanism, the deep 

Traitement du Signal 
Vol. 40, No. 1, February, 2023, pp. 123-132 

Journal homepage: http://iieta.org/journals/ts 

123

https://orcid.org/0009-0003-7220-0458
https://orcid.org/0009-0001-4853-2503
https://orcid.org/0000-0002-6243-7537
https://orcid.org/0009-0002-1141-8587
https://orcid.org/0009-0005-9091-8409
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400111&domain=pdf


 

learning method and its data-driven approach have shown 

relatively strong nonlinear learning capabilities. In this case, 

the spatio-temporal series prediction method can better 

improve the autocorrelation of explanatory variables and 

reduce uncertainty, which can achieve good prediction results 

in many fields such as finance, meteorology, and 

transportation. In particular, the long short term memory 

networks model (LSTM) has excellent performance in time 

series prediction [16], and has become a research hotspot in 

the field of deep learning in recent years. The model maintains 

a good memory for time series with a long-time span, and can 

solve the gradient disappearance and gradient explosion 

problems existing in recurrent neural networks [17, 18]. At 

present, the model has active performance in the prediction 

research of social and economic fields such as stock price 

index [19], exchange rate [20], transportation [21], energy 

consumption [22], and agricultural product price [23]. In the 

field of natural sciences, LSTM is used in the prediction 

research of water resources [24, 25], lightning [26], and air 

pollution [27], which has achieved excellent results. Some 

scholars have introduced LSTM into the research of vegetation 

change prediction [28, 29]. However, LSTM is still rare in the 

study of vegetation change, especially in the study of temporal 

multi-scale decomposition sequence vegetation change 

prediction. 

This study uses the MODIS 13Q1 EVI time series images 

of Hunan Province from 2001 to 2021. The role of 

decomposition sequences in vegetation change prediction is 

verified by combining prediction of multi-scale decomposition 

sequences of vegetation time series. The differences in the 

applicability of different time-scale change features to 

vegetation change prediction are studied. The decomposition 

sequence group with the best prediction performance will be 

found, so that the vegetation change prediction results can 

achieve higher accuracy. 
 

 

2. DATA AND PREPROCESSING 
 

2.1 Vegetation remote sensing data 

 

In this paper, the vegetation change prediction research uses 

the 2001-2021 MOD13Q1 (V006) EVI data from the official 

website of the United States Geological Survey (USGS) 

(https://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.006/).The data 

is synthesized from 16 days of data. There are 23 episodes per 

year, and the spatial resolution is 250m×250m.This paper 

takes Hunan Province as the experimental area. Hunan 

Province covers the image data of H27V05, H27V06, and 

H28V06. During the 21 years, there were a total of 483 

episodes with 1449 images. The MOD13Q1 data has a total of 

12 bands. First, MRT (Modis Reprojection Tool) software is 

used to extract EVI data and quality file, which is applied to 

image mosaic, format conversion, projection transformation, 

resampling and other preprocessing. Then, the preprocessed 

EVI file and quality file in the administrative division vector 

data of Hunan Province are extracted by mask to obtain the 

EVI spatio-temporal data and quality file spatio-temporal data 

of Hunan Province from 2001 to 2021. 

 

2.2 Vegetation remote sensing time series data 

reconstruction 

 

Clouds, fog, ice and snow, and other factors can bring noise 

to the MODIS 13Q1 data, resulting in unreliable or null values 

in the EVI time series data. The EVI pixels with unreliable 

quality are replaced by the pixel values reconstructed from 

EVI time series data Savitzky-Golay filter sequence at the 

pixel position. Invalid fields are temporarily set to null. As for 

the null value, the method of replacing the time-series data 

with the average value of the image in this period for many 

years or the average value of the 3*3 spatial neighborhood in 

the same period is used for filling. Finally, a total of 483 EVI 

image time series data were reconstructed and outliers 

removed. Figure 1 shows the processed EVI images of 2001 

and 2021 on the 209th day (July 28). 

 

 
 

Figure 1. EVI images of Hunan Province on July 28, 2001 

and 2021 after processing 

 

2.3 EVI time series data acquisition of remote sensing 

images 

 

According to the basic principle of spatio-temporal series 

prediction, the EVI image data of the study area are 

transformed in spatial dimension and structure. The image 

time series data representing the two-dimensional continuous 

space vegetation change is converted into a one-dimensional 

area center point vegetation time series data array representing 

the subspace vegetation change. Among them, the formed one-

dimensional point time series data meets the input 

requirements of the LSTM prediction model. 

 

 
 

Figure 2. Distribution of sample points and test points of 

EVI time series data of vegetation change prediction in 

Hunan Province 
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There are 3.9363 million pixels point time series within the 

effective range of the boundary of the study area. Due to 

equipment conditions limitations, in this paper, the systematic 

regular sampling method is adopted for thinning sampling. A 

total of 788 sampling points regularly distributed in the study 

area are obtained. The EVI time series data of the 

corresponding positions in the 483 EVI images are assigned to 

the sample points, with each sample time series data length of 

483. A total of 788 sample point vegetation time series data 

sets is used as the data source of vegetation change prediction. 

On the basis of 788 sample points, 8 points are randomly 

selected to test the performance of different time scale 

sequences in prediction after discrete wavelet decomposition, 

and to further evaluate the performance of the method in the 

overall sample. The distribution of EVI time series data 

sample points and test points are shown in Figure 2. The label 

of the test point is the number of the point in the EVI time 

series sample point set. 

 

 

3. RESEARCH METHODS 

 

3.1 Principle of discrete wavelet decomposition 

 

The wavelet transform (WT) is a method of multi-resolution 

analysis in time and frequency domains. It has been widely 

used in the fields of meteorology, hydrology and geophysics 

[30-33]. The basic idea of wavelet transform is the 

decomposition of a signal into different time scales with a set 

of basis functions. The set of basis functions {ψa,b(t)} can be 

generated by translating and scaling the so-called mother 

wavelet function ψ(t), according to the Equation 1: 
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where, a is the scale parameter which adjusts the dilation of 

the wavelet and b determines the location of the wavelet. For 

a time-series f(t), the Continuous Wavelet Transform (CWT) 

of f(t) can be defined as Equation 2: 
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where, 𝜓 is the mother wavelet complex conjugate. For each 

scale a, the result of the WT is a set of coefficients Wψ(a,b), 

associated with different locations b.  

In real applications, the continuous wavelet is usually 

discretized into discrete signal for processing. In Formula (1), 

we take a=2j, b=k2j, where k is the location index and j is 

referred to as the decomposition level. Thus, a discretely 

scaled and translated wavelet basis can be expressed as 

Equation 3: 
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and the discrete wavelet transform (DWT) of f(t) can be 

written as Equation 4: 
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The characteristics of the origin time series f(t) at the 

decomposition j and time location k can be represented by 

Wψ(j,k). At a lower level j, the smaller and finer component of 

the signal is accessed.  

Multi-resolution analysis (MRA) based on DWT 

decomposes a signal with different frequencies into a certain 

number of sub-signals at different time scales by successively 

translating and convolving the elements of a sequence high-

pass filter and low-pass filter associated with the mother 

wavelet. These filters preserve the details of the signal (D) and 

the approximate components (A) of the sub sequence. In the 

first level of the decomposition, f(t)=A1+D1, the signal has a 

low-pass filtered component A1, and a high-pass filtered 

component D1. In order to obtain a decomposition on a coarser 

scale, A1=A2+D2, the same procedure is performed on A1. Thus, 

we have Aj-1=Aj+Dj for j=2,...,J. Then an original time series, 

which is decomposed into J levels by DWT, can be expressed 

as follows:  

 

J J1 2( ) = D (t)+D (t)+...+D (t)+A (t) f t  (5) 

 

where, J is the highest decomposition level considered. The 

detail component Dj at a particular decomposition level j is 

given by Equation 6. 
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The approximation component Aj of the signal on the scale 

2j is written as Equation 7: 
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where, ϕj,k(t) is the scaling function and Vϕ(j,k) are the scaling 

coefficients computed by ϕj,k(t). Suppose the sum of detail 

changes after J level discrete wavelet decomposition is VJ(t), 

then VJ(t) can be calculated by the Equation 8: 

 
J

J j
j=1

(t) = DV  (8) 

 

According to Equation 5 and Equation 8, the original time 

series can be decomposed into approximate components and 

the sum of detailed components of different time scales, so f(t) 

can be expressed in the following form in Equation 9: 

 

J J

1 1

2 2

( ) = A (t) + V (t)

= A (t) + V (t) = ... = A (t) + V (t)

f t
 (9) 

 

Therefore, the original time series can be regarded as the 

sequence combination of trend and detailed change 

components on different time scales. 
 

3.2 Long short term memory networks prediction model 

 

Long short term memory networks (LSTM) is a recurrent 

neural network (RNN) improved by gating proposed by 

Hochreiter and Schmidhuber [34] in 1997, which is used to 

solve the problem of gradient disappearance or gradient 

explosion. The model introduces gated recurrent unit (GRU) 

and long short term memory unit on the basis of RNN. This 
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model captures deep connections better and improves the 

gradient disappearance problem by changing the hidden layer 

of RNN [28]. 

Similar to RNN, LSTM recurrent network structure is 

composed of multiple layers of cells, including input layer, 

output layer and hidden layer. The difference between LSTM 

and RNN lies in the design of the hidden layer. After the 

internal processing of the hidden layer cell, the hidden layer 

cell of LSTM has two transmission states, which are the cell 

state representing the current neural cell to store long-term 

information and the hidden state representing the current 

neural cell to store short-term information. The node cell 

structure of LSTM is shown in Figure 3. The node cell of the 

LSTM loop network is generally composed of input gate, 

forget gate, output gate and cell state. 

 

 
 

Figure 3. LSTM neural network cell structure diagram 

 

The control functions of each gate and cell state in Figure 3 

are as follows: 

 

Forget gate t f t f t 1 ff σ W x U h b  (10) 

 

Input gate t i t i t 1 ii σ W x U h b  (11) 

 

Newly added state data 

t c t c t 1 cc tanh W x U h b  
(12) 

 

Cell state t t t 1 t t  c f c i c  (13) 

 

Output gate t o t o t 1 oo σ W x U h b  (14) 

 

Hidden state t t th o tanh(c )  (15) 

 

In Equations (10)~(14), xt is the input data at the current 

moment and ht-1 is the hidden state output value of the cell state 

at the previous moment. These two data are simultaneously 

input to the forget gate, input gate, output gate and cell state 

functions in the LSTM node cell to jointly determine the 

output values of these functions. In Equations (10)~(12) and 

(14), W, U and b represent the input weight, loop weight, and 

bias of each gate and cell state, which are different in each 

layer. They are combined with the input variables xt and ht-1 

linear transformation and then mapped by the activation 

function sigmoid (σ) or tanh cell to obtain the corresponding 

weight value. As for the activation function, the σ function and 

the tanh function are as follows: 

x

1
sigmoid( x )

1 e
 (16) 

 
x x

x x

e e
tanh( x )

e e
 (17) 

 

In order to control the degree of forgetting, memory, output, 

hidden state and newly added state data, the Sigmoid function 

ensures that the weight value of the output of the gating 

mechanism is between [0,1]. The tanh function is a hyperbolic 

tangent function, which ensures that the element values of the 

state are between [-1,1]. When the output gate is 

approximately 1, the information contained in the cell state 

will be output. When the output gate is approximately 0, the 

information contained in the cell state will be preserved. 

 

 

4. EXPERIMENT  
 

4.1 Discrete wavelet multi-scale decomposition of remote 

sensing image EVI time series data 
 

According to Martinez and Gilabert [3] and long et al. [5], 

this paper adopts discrete Meyer wavelet (dmey) for 

decomposition, which has biorthogonal and compact support, 

and is usually used for fast discrete wavelet transformation. In 

order to select the most suitable scale for the study of the 

interannual component and intra-annual components of 

vegetation change, the period or half-period is calculated at 

different scales of the discrete Meyer wavelet MRA 

decomposition. The calculation method is shown in Eq. (18): 
 

c

Δt
p =

V

a
 (18) 

 

In Eq. (18), a is the time scale, Δt is the sampling period, Vc 

is the center frequency of the wavelet base, and p is the period 

under the corresponding scale of MRA. 

According to the discrete Meyer wavelet base center 

frequency Vc=0.6634 given by MATLAB R2018b and the 

vegetation index sampling period Δt=16 days, the half-period 

and period of each scale are calculated. As shown in Table 1, 

when the time scale a=25, the corresponding half-cycle 

p/2=386 days. Since the optimal time scale of wavelet 

transform is consistent with the half-cycle, the approximation 

component for level 5th, A5 provides information about the 

inter-annual variability over the study period. This 

approximation component signals how much change has 

occurred over time scales of 386 days or more, enabling 

identification of the long-term variation in the study period. 

Similarly, A3 and A1 represent approximate components of 

seasonal scale and monthly scale respectively, and the 

variation trend of EVI at these two scales can be seen. 

Conversely, the detail components D1~D5, with semi-periods 

ranging from 24 to 386 days, are used to analyze the intra-

annual vegetation dynamics, including monthly, quarterly, 

half-year scale changes. D1, D2, D3, D4, D5 represent the 

detailed changes of vegetation dynamics on the scale of 1-24 

days, 24-48 days, 48-96.5 days, 96.5-193 days, and 193-386 

days, respectively. 

The test point 85 (latitude of 112.3809° and longitude of 

29.3044°) located in the savanna vegetation type in the 

Dongting Lake area is selected for discrete wavelet 
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decomposition, and the decomposition results are shown in 

Figure 4. According to the A2 composition, it can be seen that 

there are multiple peaks in this pixel year. Among the A3 trend 

components representing the seasonal scale, there is an 

obvious EVI peak every year. According to D3, a more detailed 

change in the “M-shaped” seasonal scale can be seen. As the 

time scale grows, the finer components of the signal 

representing intra-annual variation are preserved in the detail 

component sequence (right column of Figure 4), and the 

smoother part is given by an approximate component sequence 

associated with the low-frequency components (left column of 

Figure 4). It can be seen that EVI data is subjected to wavelet 

multi-scale decomposition and reconstruction to obtain 

approximate component information and detailed component 

information at different time scales. MRA is used for temporal 

multi-scale decomposition of EVI image time series data. 

MATLAB is used to read 483 EVI remote sensing data from 

2001 to 2021 into a three-dimensional array. Through the 

discrete Meyer wavelet transform, the data in the study area 

were subjected to 5-level discrete wavelet decomposition and 

reconstruction pixel by pixel, so as to obtain the A5, D5, D4, D3, 

D2, D1 subsequence and complete the decomposition. 

 

Table 1. Period (p) and half-period (p/2) of discrete Meyer 

DWT under different decomposition levels of MRA with a 

sampling period of 16 days 

 
level (j) scale (a) p(period days) p/2(half-period days) 

1 2 48 24 

2 4 96.5 48 

3 8 193 96.5 

4 16 386 193 

5 32 772 386 

 

 

 
 

Figure 4. Multi-resolution analysis of the EVI time series at test point 85 (The original time series and 5 approximate 

components are shown on the left, and the 5 detail components are shown on the right) 

 

4.2 Generation of multiscale vegetation EVI decomposition 

sequence group 

 

On the basis of the subsequence obtained by discrete 

wavelet 5-level decomposition in the above section, the 

wavelet decomposition principle is used to calculate the 

approximate component A4, A3, A2, A1 of the other four levels 

of decomposition and the sum of the detailed components of 

each level of decomposition, namely V5, V4, V3, V2, V1. In this 

section, according to the law of vegetation change, the 

monthly scale (A1 and V1), seasonal scale (A3 and V3), and 

annual scale (A5 and V5) sequence group images are obtained, 

and the sampling points assigned to the system by A1 and V1, 

A3 and V3, and A5 and V5 time series data are extracted. 

Among them, the sequence group data of 8 test points are 

extracted. Figure 5 shows the original EVI time series data at 

test point 85 and its decomposed A1 and V1, A3 and V3, A5 and 

V5 component sequence data. After decomposing, the sum of 

the approximate component A and the detail component V is 

equal to the value of the EVI original time series data. In other 

words, the time series conforms to the relation 

EVI=A1+V1=A3+V3=A5+V5, and the wavelet multi-scale 

decomposition is correct. 

The data statistics data of EVI, A1, A3, A5, V1, V3, and V5 

sequence data at this point are shown in Table 2. It can be seen 

from Table 2 that the maximum value of each scale trend 

component becomes smaller, the minimum value becomes 

larger, and the value range and standard deviation become 

smaller with the increase of monthly scale, seasonal scale and 

annual scale. As for the detail components of the 

corresponding monthly scale, seasonal scale, annual scale, the 

maximum value increases and the minimum value decreases. 

Furthermore, more detail components are separated out. As the 

decomposition scale increases, the range and standard 
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deviation of the sum of detail components increase. The 

decomposed approximate components and detailed 

component sequences behave exactly the opposite way, but the 

mean value of the EVI raw series and its trend component are 

the same, and the mean value of the detail component tends to 

zero, and their performance in EVI prediction remains to be 

explored. Next, 8 test points are used for multi-time scale 

vegetation time series data prediction experiments. 

 

 
 

Figure 5. Schematic diagram of the original EVI data and its 

wavelet decomposition sequences (test point 85) 

Table 2. Statistical table of EVI time series and its 

decomposition sequences data (test point 85) 

 
 EVI A1 A3 A5 V1 V3 V5 

max 0.5563  0.5632  0.4092  0.2784  0.0653  0.1974  0.3068  

min 0.0155  0.0327  0.0657  0.2016  -0.0721  -0.1867  -0.2349  

range 0.5408  0.5305  0.3435  0.0769  0.1374  0.3841  0.5417  

mean 0.2486  0.2486  0.2487  0.2486  0.0000  -0.0001  0.0000  

Stdev 0.1203  0.1191  0.0945  0.0163  0.0169  0.0744  0.1191  

 

4.3 Multi-scale EVI time series group LSTM modeling 

 

The LSTM prediction comparison of monthly scale, 

seasonal scale, annual scale sequence group data and original 

time series data is carried out to verify whether the 

decomposition sequence prediction is better than the original 

time series prediction, and to find the optimal decomposition 

scale. First, the time series groups A1 and V1，A3 and V3, A5 

and V5, and the original EVI time series are tested and 

evaluated by LSTM modeling at the 8 test points. Then, the 

optimal decomposition scale sequence is used for 788 sample 

point predictions. The overall prediction accuracy is evaluated 

by comparing it with the original time series prediction 

accuracy. 

 

 
 

Figure 6. LSTM modeling prediction results of monthly scale, seasonal scale, annual scale sequence group and original EVI time 

series in test point 85 
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In order to compare the prediction effect of different scale 

sequence group data and the original EVI time series data 

change, LSTM, which is excellent in spatiotemporal series 

prediction, is used for modeling prediction. The construction 

of the LSTM model adopts the Pytorch deep learning 

framework. 8 test points were tested multiple times for LSTM 

model building. After comparative analysis, the main 

parameters are set as follows. The hidden layer dimension 

(hidden_size) is set to 128, the number of trainings 

(num_epochs) is set to 10000, and the batch size (batch_size) 

is set to 64. As for the learning rate (learning_rate), it is set to 

0.0004 for A1, A3, A5 approximation component prediction 

and 0.0002 for V1, V3, V5 detail component and EVI original 

time series prediction. The sliding window length is set to 69 

for approximate component prediction and 23 for detail 

component and EVI original time series prediction. The model 

optimizer chooses Adam, and the dropout is set to 0.7. In the 

time series data, a total of 368 time point data from 2001 to 

2016 are set as the training set Xtrain, and a total of 115 time 

point data from 2017 to 2021 are set as the test set Xtest. The 

LSTM with the parameter settings mentioned above is used to 

model and predict the time series of A1, A3, A5, V1, V3, V5, and 

EVI of the 8 test points. Figure 6 shows the decomposition 

sequence of each time scale in the test point 85 and the 

prediction results of the original time series.  

 

4.4 Analysis of prediction results of multi-scale EVI 

sequence group 
 

Table 3 counts the loss rate predicted by LSTM modeling 

of A1, A3, A5, V1, V3, V5, and the original EVI time series at 8 

test points. Among them, Loss_EVI, Loss_A1, Loss_A3, 

Loss_A5, Loss_V1, Loss_V3, and Loss_V5 are the predicted 

loss rates of the original EVI time series and sequences A1, A3, 

A5, V1, V3, V5, respectively. 
 

Table 3. Test point decomposition sequence and original 

time series LSTM prediction loss rate statistics (retain four 

decimal places) 
 

Point 

ID 

Loss_ 

EVI 

Loss_ 

A1 

Loss_ 

A3 

Loss_ 

A5 

Loss_ 

V1 

Loss_ 

V3 

Loss_ 

V5 

85 0.0019  0.0008  0.0001  0.0000  0.0000  0.0012  0.0026  

95 0.0113  0.0041  0.0002  0.0000  0.0004  0.0052  0.0110  

310 0.0055  0.0010  0.0001  0.0000  0.0001  0.0027  0.0054  
372 0.0089  0.0027  0.0002  0.0000  0.0002  0.0042  0.0089  

407 0.0058  0.0024  0.0002  0.0000  0.0001  0.0031  0.0057  

428 0.0058  0.0027  0.0003  0.0001  0.0001  0.0025  0.0053  
605 0.0027  0.0015  0.0001  0.0000  0.0001  0.0012  0.0025  

707 0.0048  0.0014  0.0001  0.0000  0.0002  0.0028  0.0041  

Mean 0.0059  0.0021  0.0002  0.0000  0.0002  0.0029  0.0057  

 

According to the loss rate statistics (Table 3), the predicted 

loss rate is mostly within 10‰, and the maximum value is 

controlled at about 11.3‰. Thus, the accuracy meets the 

requirements. The larger the time scale, the more approximate 

components the detail V contains, the greater the prediction 

loss rate of the detail component, and the greater the error of 

the prediction result. At the same time, the less detailed 

component the approximate component A contains, the 

smaller the error of the predicted result and the more accurate 

the prediction. The loss rate mean is found. The loss rate of V5 

is close to EVI, and the loss rates of other sequences are much 

smaller than the EVI loss rate. By summing the loss rate of A1 

and V1, A3 and V3, A5 and V5 and comparing it with the loss 

rate of the original time series of EVI, it can be known that 

Loss_A1+Loss_V1<Loss_A3+Loss_V3<Loss_A5+Loss_V5<L

oss_EVI. The sum of loss rates for all scaled sequence 

predictions is smaller than the original time series prediction. 

 

 
 

Figure 7. Monthly scale, seasonal scale, annual scale 

prediction error and original EVI time series error of test 

point 85 

 

Table 4. Comparison of prediction accuracy between the 

monthly scale, seasonal scale, and annual scale sequence 

groups at the test points and the EVI original time series 

 
pointID Series R2 MAE RMSE TIC 

85 

A1+V1 0.9430*  0.0222*  0.0286* 0.0506* 

A3+V3 0.9108  0.0284  0.0358  0.0635  

A5+V5 0.8178
△

 0.0387
△

  0.0512
△

  0.0895
△

  

EVI 0.8678 0.0328 0.0436 0.0781 

      

95 

A1+V1 0.8392*  0.0520*  0.0664*  0.0749* 

A3+V3 0.8030  0.0571  0.0735  0.0836 

A5+V5 0.5984  0.0847
△

  0.1049  0.1190  

EVI 0.5881  0.0845  0.1063  0.1214  

      

310 

A1+V1 0.9288*  0.0258*  0.0334*  0.0457*   

A3+V3 0.8192  0.0415  0.0532  0.0737  

A5+V5 0.6548 0.0557  0.0735  0.1014  

EVI 0.6464  0.0560 0.0744  0.1032  

      

372 

A1+V1 0.8689*  0.0420*  0.0544*  0.0611*  

A3+V3 0.8032  0.0524  0.0666 0.0758 

A5+V5 0.6065  0.0740  0.0942  0.1074 

EVI 0.6053  0.0740  0.0943  0.1085  

      

407 

A1+V1 0.8723*  0.0389*  0.0497*  0.0657*  

A3+V3 0.8315 0.0455  0.0571 0.0756  

A5+V5 0.7092  0.0591  0.0750  0.0978  

EVI 0.6979  0.0601 0.0765  0.1013 

      

428 

A1+V1 0.8506  0.0430  0.0539  0.0722 

A3+V3 0.8540*  0.0428*  0.0533*  0.0720* 

A5+V5 0.7314  0.0579 0.0723  0.0970 

EVI 0.7021  0.0609 0.0762  0.1054  

      

605 

A1+V1 0.9137  0.0313  0.0388  0.0617 

A3+V3 0.9211*  0.0294*  0.0371*  0.0586* 

A5+V5 0.8550  0.0386  0.0503  0.0805 

EVI 0.8436  0.0416  0.0522 0.0840  

      

707 

A1+V1 0.8295* 0.0295*  0.0373*  0.0494*  

A3+V3 0.6480  0.0408  0.0536  0.0710 

A5+V5 0.4893  0.0486  0.0646  0.0859  

EVI 0.4100 0.0528  0.0694  0.0926 

Note: *Bold marks are the best indicator results for each point. 
△

The oblique 

bold mark means that the prediction index result is less accurate than the 

original time series prediction result. 

 

The LSTM prediction results of the 2017-2021 test set data 

of A1, A3, A5, V1, V3, V5, and EVI time series of the 8 test 

points were counted separately. The monthly scale prediction 

is obtained by adding the prediction of A1 and V1. The seasonal 
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scale prediction is obtained by adding the A3 and V3 prediction. 

The annual scale prediction is obtained by adding the A5 and 

V5 predictions. The LSTM prediction results of the monthly 

scale, seasonal scale, and annual scale sequences and original 

EVI time series of the 8 test points, and the errors between 

these time series prediction results and the original EVI data 

are obtained. There are 4 error values in total, which are error 

1, error 3, error 5, and error raw. The four errors of test point 

85 are shown in Figure 7. Among them, the monthly scale 

decomposition sequence prediction result of point 85 is the 

best. The error order is monthly scale<seasonal scale<annual 

scale<original time series. 

The prediction accuracy evaluation indicators R2, MAE, 

RMSE, and TIC of the monthly scale, seasonal scale, annual 

scale, and EVI original time series of the eight test points are 

calculated and the results are summarized in Table 4. R2, MAE, 

RMSE, and TIC are coefficient of determination, mean 

absolute error, root mean square error, and Hill inequality 

coefficient, respectively. 

In Table 4, the performance of the four accuracy indicators 

on the 8 test points are respectively counted. R2 represents the 

correlation with the original time series. The closer R2 is to 1, 

the higher the accuracy. As for the three indicators of MAE, 

RMSE, and TIC that represent the error, the closer the value is 

to 0, the higher the accuracy. Among the 8 test points, there 

are 6 test points (test point 85, test point 95, test point 310, test 

point 372, test point 407 and test point 707) with the largest R2 

value and the smallest MAE, RMSE, and TIC values in the 

monthly scale sequence group prediction. The prediction 

accuracy of monthly scale is higher than that of seasonal scale, 

annual scale, and undecomposed original time series. In 

summary, the order of prediction accuracy is monthly scale > 

seasonal scale > annual scale > original time series. The 

monthly scale has the best performance. Another two test 

points (test point 428 and test point 605) have the largest R2 

value and the smallest MAE, RMSE, and TIC values in the 

prediction of the seasonal scale sequence group. The 

prediction accuracy of seasonal scale is better than that of 

monthly scale, annual scale and the original time series. In 

summary, the order of prediction accuracy is seasonal scale > 

monthly scale > annual scale > original time series. 

With the increase of monthly scale, seasonal scale, and 

annual scale, the R2 values of most test points are getting lower 

and lower, and the MAE, RMSE, and TIC values are getting 

higher and higher. In general, the prediction accuracy of the 

decomposed sequence group is higher than that of the original 

time series. For individual test points, such as test point 85, the 

prediction results on the annual scale decomposition sequence 

are worse than the direct prediction accuracy of the original 

time series, which may be related to the fixed LSTM 

parameters used in the experiment. This parameter may not be 

well suited for predicting at the annual scale of the time series 

data at that point. At the same time, the annual scale 

decomposition sequence prediction results of test points 95 

and 372 are greater than the original time series prediction 

results in terms of MAE indicators. However, the two 

sequence forecast accuracy metrics are close in numerical 

value. Therefore, it can be concluded that the prediction results 

of the annual scale sequence group are unstable. In contrast, 

both seasonal scale and monthly scale decomposition 

sequence prediction results are better than the original time 

series, with relatively stable performance. 

Table 5 further performs mean statistics on the accuracy 

evaluation indicators of these 8 test points. The monthly scale 

prediction performance index represented by the A1+V1 

sequence is average and the overall performance is the best. 

The mean values of the precision evaluation indexes of A3+V3 

and A5+V5 are better than the original EVI time series. The 

order of accuracy is monthly scale>seasonal scale>annual 

scale>original EVI time series. This also verifies that the 

sequence after discrete wavelet decomposition can facilitate 

the learning of approximate and detailed component features 

and improve prediction performance. 

 

Table 5. Comparison of the mean value of the prediction 

accuracy index between the test point multi-scale sequence 

group and the EVI original time series 

 

Index Item A1+V1 A3+V3 A5+V5 EVI 

R2 0.8808  0.8238  0.6828  0.6701  

MAE 0.0356  0.0422  0.0572  0.0578  

RMSE 0.0453  0.0538  0.0732  0.0741  

TIC 0.0601  0.0717  0.0973  0.0993  
Note: The numbers marked in black and bold are the best index results for 
each accuracy index item. 

 

According to the results of the test point prediction 

experiment, the A1 and V1 decomposition sequence groups 

with the best prediction performance and the A3 and V3 

decomposition sequence groups with the better prediction 

performance are selected to perform LSTM modeling and 

prediction on 788 sample points, and then compared with the 

prediction accuracy of the original EVI time series. The mean 

value of the accuracy evaluation indicators of all points is 

calculated to Table 6. It can be seen from Table 6 that the 

accuracy indicators of the monthly scale decomposition 

sequences A1 and V1 of 788 sample points are better than the 

seasonal scale decomposition sequences and original time 

series modeling predictions. 

 

Table 6. Comparison of the average prediction accuracy 

between the monthly and seasonal scale sequence group of 

all sample points and the original time series of EVI 

 
Index Item A1+V1 A3+V3 EVI 

R2 0.8852  0.7761 0.6741  

MAE 0.0346  0.0477 0.0568  

RMSE 0.0438  0.0607 0.0733  

TIC 0.0616  0.0853 0.1046  

 

 

5. CONCLUSIONS 

 

Through discrete wavelet transformation, the MODIS EVI 

data series with a sampling interval of 16 days in Hunan 

Province from 2001 to 2021 are decomposed into 5 levels 

pixel by pixel. The monthly scale, seasonal scale, and annual 

scale vegetation approximate components and detailed 

component sequences of each pixel are obtained. Based on the 

decomposed multi-scale EVI time series data, the LSTM 

modeling prediction and accuracy evaluation comparative 

analysis of EVI time series data monthly scale, seasonal scale, 

and annual scale discrete wavelet decomposition sequences 

are completed.  

For the collected 16d time resolution EVI data, the discrete 

wavelet decomposition method can effectively decompose the 

vegetation change sequence of approximate monthly scale, 

seasonal scale, and annual scale. Each scale sequence group of 

wavelet decomposition strips off trend features and detail 
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features. The decomposed sequence group can still reconstruct 

the original time series and retain all the information of the 

original time series. Therefore, the prediction of the sequence 

group can reflect the prediction of the original time series. 

In this paper, the monthly, seasonal and annual scale 

sequences depict the characteristics of vegetation change at 

different scales respectively. In the discrete wavelet 

decomposition, each high-level detailed components contains 

high-frequency information of each level and part of low 

frequency information of the lower level, and each high-level 

approximate components removes more high frequency 

information of the original data. Therefore, the higher the 

number of decomposition level, the greater the prediction loss 

of high-frequency detail information, and the lower the loss of 

low-frequency trend information. The different sequence 

groups have different predictive ability and efficiency. In 

general, the vegetation change prediction effect of the 

sequence group data decomposed by EVI monthly scale, 

seasonal scale, and annual scale is better than that of the 

original EVI time series. Discrete wavelet decomposition 

helps to improve the accuracy of vegetation change prediction. 

According to the experimental results, the ranking of the 

vegetation change prediction performance of the sequence 

group decomposed by monthly scale, seasonal scale, and 

annual scale is: monthly scale > seasonal scale > annual scale > 

original EVI time series.  

In the prediction experiment, the original EVI time series, 

monthly scale decomposition sequences (A1 and V1) and 

seasonal scale decomposition sequences (A3 and V3) of 788 

sample points are respectively subjected to LSTM modeling 

and vegetation time series data prediction point by point. 

Although this method takes into account the spatial 

heterogeneity of vegetation change, it takes a long time. The 

time predicted by the monthly scale series was almost twice as 

long as that predicted by the original EVI series. Therefore, the 

next step is to consider building a model that takes into account 

both the temporal and spatial heterogeneity of sample time 

series data and the time complexity of prediction modeling for 

large-scale vegetation change prediction. For example, zoning 

or classification modeling is used to reduce the number of 

models so as to reduce the total time complexity. 
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