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 The new coronavirus, which emerged in early 2020, caused a major global health crisis in 7 

continents. An essential step towards fighting this virus is computed tomography (CT) scans. 

CT scans are an effective radiological method to detecting the diagnosis in early stage, but 

have greatly increased the workload of radiologists. For this reason, there are systems 

needed that will reduce the duration of CT examinations and assist radiologists. In this study, 

a two-stage system has been proposed for COVID-19 detection. First, a hybrid method is 

proposed that can segment the infected region from CT images. The reason for this is that 

there is not always a reference image in the datasets used in the classification. For this 

purpose; UNet, UNet++, SegNet and PsPNet were used both separately and as hybrids with 

GAN, to automatically segment infected areas from chest CT slices. According to the 

segmentation results, cGAN-UNet hybrid system was selected as the most successful 

method. Experimental results show that the proposed method achieves a segmentation 

success with a dice score of 92.32% and IoU score of 86.41%. In the second stage, three 

classifiers which include a Convolutional Neural Network (CNN), a PatchCNN and a 

Capsule Neural Network (CapsNet) were used to classify the generated masks as either 

COVID-19 or not, using the segmented images obtained from cGAN-UNet. Success of these 

classifiers was 99.20%, 92.55% and 73.84%, respectively. According to these results, the 

highest success was achieved in the system where cGAN-Unet and CNN are used together. 
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1. INTRODUCTION 

 

At the end of 2019, the novel coronavirus disease (COVID-

19) caused by SARS-CoV-2 emerged in Wuhan, China [1]. 

World Health Organization (WHO) declared the outbreak as a 

Public Health Emergency of International Concern (PHEIC) 

on January 30, 2020 and subsequently declared it a pandemic 

on March 11, 2020 [2, 3]. As of December 15 2020, more than 

70 million cumulative cases and 1.6 million deaths have been 

reported globally since the start of the pandemic [4]. 

Given the highly contagious nature of COVID-19, critical 

step towards fighting COVID-19 is early detection to limit the 

spread of the virus. Reverse transcriptase-polymerase chain 

reaction (RT-PCR) is used worldwide though some reports on 

the sensitivity of RT-PCR were not clear or consistent. 

Furtrmore, the process is required to be performed in a highly 

controlled environment, there is a shortage of materials and 

also, it can take more than 4 hours to obtain the test results [5-

8].  

A complementary method for COVID-19 screening is the 

use of radiography examination on medical images like chest 

computed tomography (CT), Magnetic resonance imaging 

(MRI) scans or chest X-ray (CXR) scans. The authors of [9, 

10] noted that COVID-19 can be observed in CT images of 

patients even before some clinical symptoms appear like 

ground glass opacities, presence of pulmonary nodules, 

bronchiectasis and round cystic changes [11]. While it has 

been demonstrated in literature [12, 13] that CT scan tests 

produce higher sensitivity than the RT-PCR tests, there are 

some challenges include shortages of well-trained radiologists 

and increasing number of patients during a pandemic [14-16]. 

Furthermore, a new disease like COVID-19 requires 

radiologists to update their knowledge and learn new 

interpretation skills. This makes diagnosis even more 

challenging in remote areas where there is limited access to 

training resources. It is therefore of extreme importance to 

urgently develop artificial intelligence (AI) systems to assist 

in the diagnosis of COVID-19. 

In recent years; there has been a rapid surge in the 

development of deep learning models for the medical image 

segmentation like skin lesions, lungs, tumors and medical 

image classification can be used to determine the presence or 

absence of a particular disease [17-20]. These can aid 

radiologists in diagnosis, monitoring disease progression, 

reduction in inspection time, and improvement in accuracy 

[21]. A systematic review from the authors of [22] has shown 

that the diagnostic performance of deep learning models may 

be equivalent to that of health-care professionals. 

In this work, a deep learning based system is proposed for 

COVID-19 detection based on two main stages. The first stage 

is segmentation and the other is classification. First, some 

preprocessing techniques were applied to the original images 

and then the segmentation of the ROI is performed using a new 

cGAN-UNet hybrid method. After that, several binary 

classifiers were used to classify whether the CT scan is 

positive or negative for COVID-19. In this study, in addition 

to using various methods that increase the performance and 

stability of GANs; detection of the presence of coronavirus 
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with the dual-part mask created using cGAN-UNet was 

performed using a binary convolution neural network (CNN), 

a PatchCNN and Capsule Neural Network (CapsNet). The 

results obtained revealed that COVID-19 CT scans can be 

classified using conditional adversarial networks (cGAN), 

with high success. 

 

 

2. RELATED WORK 
 

In the past few years, machine learning has become one of 

the most popular and accurate methods for automated medical 

image analysis [17]. Deep Learning is a subfield of machine 

learning concerned with algorithms inspired by the structure 

and function of the brain called “artificial neural networks” 

(ANNs). Convolutional Neural Networks (CNNs) are deep 

learning algorithms that have mostly been used recently 

because they can automatically learn feature representation 

from a given image hierarchically. They can learn low-level to 

high level representations of an image and can then assign 

importance (learnable weights and biases) to various 

aspects/objects in the image and be able to differentiate one 

from the other. In this section, recent research that mainly 

focused on COVID-19 segmentation and classification in 

medical imaging are given. 

 

2.1 Research on COVID-19 Segmentation 

 

The goal of medical image segmentation is to identify ROIs 

such as organs or medical abnormalities by labeling each pixel 

in a medical image. Segmentation is a crucial step especially 

in COVID-19 image analysis as it can aid radiologists in 

diagnosis, disease progression monitoring, and improvements 

in speed and efficiency. However, for deep learning models to 

generalize well, they should be trained using large amounts of 

data and in certain tasks like image segmentation, the data 

must be well-labeled data.  

The highly contagious nature of COVID-19 makes the data 

collection process particularly challenging as medical staff 

have to be well protected and equipment used in the process 

have to be frequently disinfected [21]. In addition, some 

datasets are not public. Despite these challenges, several 

approaches have been proposed for COVID-19 segmentation.  

Due to the lack of annotated medical images, some 

researches involve unsupervised and semi-supervised methods. 

Zheng et al. [23] presented an unsupervised learning technique 

that generates pseudo segmentation masks from COVID-19 

CT scans. By equipping the convolutional blocks with the so-

called bottleneck blocks, Shan et al. [24] used a VB-Net to 

segment COVID-19 infection regions in CT scans. Fan et al. 

[25] proposed a semi-supervised approach called Inf-Net for 

identification of infected regions in CT slices.  

The encoder-decoder architecture is commonly used for 

semantic segmentation [26]. In encoder-decoder architecture, 

the encoder learns the feature representations of the input 

while the decoder takes this feature representation, recovers 

the location information that was lost during the pooling 

process and produces a binary mask. One of such well-known 

architectures is UNet which retains the vital information from 

input images by adding skip connections between the 

encoding and decoding layers [27]. UNet and its variants have 

been developed for the segmentation of COVID-19. The 3D 

UNet [28] replaces the layers of the conventional UNet with a 

3D version, thereby using the inter-slice information for 

segmentation. Zhou et al. [29] proposed a UNet based 

segmentation network that incorporates the attention 

mechanism to extract useful features from the encoders. They 

used spatial and channel attention to re-weight the feature 

representation and capture rich contextual relationships. But 

the result dice score was only 83.1%. After, Zhou et al. [30] 

proposed UNet++ where they modify UNet by inserting a 

nested convolutional structure between the encoding and 

decoding path. This network is adopted in Chen et al. [31] for 

lesion segmentation. They introduced a deep learning 

algorithm for automated segmentation of multiple COVID-19 

infection regions. In order to learn a robust and expressive 

feature representation they used aggregated residual 

transformations and applied soft attention mechanisms. After 

segmenting the lesion, a 3-consecutive slice and quadrant 

based post-processing methods was applied to determine 

positive and negative scans. The obvious drawback to UNet 

architectures is that learning may slow down in the middle 

layers of deeper models, so there is some risk of the network 

learning to ignore the layer. 

Wu et al. [32] developed a Joint Classification and 

Segmentation (JCS) system that performs real-time and 

explainable COVID-19 diagnosis. But their model achieved 

only a dice of 78% on a large scale dataset of 144167 CT 

images which the authors created.   

Another popular architecture for semantic segmentation is 

the Fully Convolutional Network (FCN) [33] where the fully 

connected layers of the CNN are removed. Milletari et al. [34] 

used a FCN with residual blocks as the basic convolutional 

block. Their proposed architecture called V-Net is made for 

3D volumes and Dice loss is used to optimize the network. 

FCN classifies each pixel in a spliced image as spliced or 

authentic. But it often loses or smooths detailed structures and 

ignores small objects. In turn, Oktay et al. [35] brought 

forward an Attention UNet that uses advanced attention 

mechanisms to capture fine structures in COVID-19 images. 

The network was capable of segmenting particularly variable 

small size organs such as the pancreas. 

Several approaches using Generative adversarial networks 

(GANs) also have been proposed for image segmentation. 

However, these approaches are based on augmenting the 

dataset by synthesizing COVID-19 CT scans. Zhang et al. [36] 

proposed CoSinGAN which can be learned from a single 

radiological image with the annotation mask of infected 

regions. The model was able to synthesize high-resolution and 

diverse images that match the input conditions. 

 

2.2 Research on COVID-19 classification 

 

Medical image classification aims to label a complete image 

to predefined classes and can therefore be used for diagnosis. 

Many approaches have been proposed in literature to classify 

COVID-19. Zhang et al. [37] propose a ResNet based model 

that performs anomaly detection and classification between 

COVID-19 and non-COVID-19 X-ray images. The anomaly 

score is used to optimize classification on the dataset that 

contains 10078 images. The model produces a sensitivity, 

specificity and AUC score of 96.0%, 70.7% and 95.2%, 

respectively. 

Loey et al. [38] implemented a GAN with deep transfer 

learning for the detection of coronavirus. They used the GAN 

to generate more images from publicly available X-ray images. 

These images were then classified in the first scenario using 

AlexNet, ResNet18 and GoogleNet which produce accuracies 
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of 66.67%, 69.67% and 80.56% respectively. Apostolopoulos 

and Mpesiana [39] used transfer learning for the detection of 

COVID-19 with Vgg19 obtaining the best accuracy of 96.78%. 

After, Yang et al. [40] built an open-source dataset and showed 

that a CNN model can be used for diagnosing COVID-19. 

Their proposed model achieved an accuracy and F1-score of 

89% and 90%, respectively. Hemdan et al. [41] proposed 

CovidX-Net which includes seven different transfer learning 

architectures for the diagnosis of COVID-19. Vgg19 and 

DenseNet achieved the best performance with 90% accuracy.  

Sethy et al. [42] used support vector machines (SVM) to 

classify features obtained from several convolutional neural 

networks. In their study, the ResNet50 model with SVM 

classifier achieved best results with an accuracy of 95.33%. 

Similarly, Song et al. [43] utilized a Feature Pyramid Network 

(FPN) and attention modules to extract features from CT 

images and fed the extracted features into a ResNet-50 model. 

They obtained an accuracy of 86%. Ozturk et al. [44] 

presented DarkCovidNet which automatically detects 

COVID-19 from X-ray images with an accuracy of 98.08%. 

DarkCovidNet was inspired from Darknet-19 which is the 

backbone of a state-of-the-art real time object detection system 

YOLO (You Only Look Once). Covid-Net which proposed by 

Wang et al. [8] was trained on a large dataset of 13,975 X-ray 

images. The model architecture makes used of projection-

expansion-projection design pattern which provides enhanced 

representational capacity.   

Wang et al. [45] proposed a 2D CNN model that performs 

classification between COVID-19 and viral Pneumonia. 

Experimental results showed that the proposed model achieves 

an accuracy of 73.1%, sensitivity of 74.0% and specificity of 

67.0%. Covid-Net, a deep CNN based model was proposed by 

Wang et al. [8] to detect COVID-19 in X-ray images 

producing a testing accuracy of 83.5%. Narin et al. [46] on the 

other hand, employed several transfer learning methods to 

detect COVID-19. Specifically they used ResNet50, 

InceptionV3 and an ensemble Inception-ResNetV2 on two 

different datasets. While ResNet50 attained the best 

performance with an accuracy of 98%, InceptionV3 and 

Inception-ResNetV2 achieved accuracies of 97% and 87%, 

respectively. Additionally, Ghoshal and Tucker [47] presented 

a Bayesian Convolutional Neural network that improves the 

classification accuracy of the standard VGG16 model from 

85.7% to 92.8%. The authors enhanced explainability by using 

saliency maps to point out the specific locations that the model 

focuses on to make its decisions. 

Li et al. [48] introduced Covid-MobileXpert which is a 

lightweight deep neural network based mobile app that can be 

used for the screening of COVID-19. The model consists of a 

3-player knowledge transfer and distillation (KTD) framework 

that includes a pre-trained attending physician network 

(DenseNet-121), a resident fellow network and a medical 

student network. Then, Lahsaini et al. [49] presented a 

transferred DenseNet-201 model for classification of COVID-

19 from CT images that give the classification accuracy of 

98.18%. Bargshady et al. [50] used CycleGAN to augment the 

dataset and then classified the images with a modified 

Inception model with 94.2% accuracy.   

Several proposed methods performed both segmentation 

and classification. Zheng et al. [32] employed a U-Net model 

for lung segmentation and the result is used as an input to a 3D 

CNN to predict the presence of COVID-19. A sensitivity of 

90.7%, specificity of 91.1% and AUC of 95.9% was achieved 

with this model. Similarly, Chen et al. [28] used UNet++ to 

obtain segmented lesions from CT images and, to predict 

COVID-19 and other forms of viral pneumonia.  With the 

proposed model, the reading time of radiologists shortened by 

65%. Xu et al. [51] used a V-Net to segment candidate infected 

regions and combined the resulting output with handcrafted 

features. This combination was then sent to a ResNet-18 

network that attains a classification accuracy of 86.7%. Li et 

al. [52] used a combination of U-Net and ResNet50 to extract 

lung regions and performed classification with 96% specificity, 

90% sensitivity and an AUC of 96%. Amyar et al. [53] 

proposed a multi-task deep learning model which jointly 

classifies, reconstructs and segments COVID-19 lesions from 

CT images. Their architecture comprised a common encoder, 

2 decoders and a multi-layer perceptron. Their model 

produced a dice coefficient of 96% accuracy. Karakanis and 

Leontidis [54] proposed a light weight deep neural network 

that uses synthetic images generated from a GAN to detect 

COVID-19. An accuracy of 98.7% was obtained from the 

proposed model. 

 

 

3. DATASET 
 

In spite of the growing number of COVID-19 infected 

patients, along with their volumetric CT scans, labeled CT 

scans are still only available in a limited capacity. Hence, 

publicly accessible CT scan datasets are very limited. For this 

reason, we chose to use the lung CT dataset of [55] (Dataset-

1) to train and evaluate our proposed network which is, to the 

best of our knowledge, the first publicly available data-

efficient learning benchmark for medical image segmentation. 

The first dataset (Dataset-1) [55] contains 20 CT scans as 

well as segmentations of lungs and infection masks made by 

experts. There are a total of 2112 slices in the Dataset-1; 1615 

are slices diagnosed with COVID-19 while 497 are healthy 

images. Figure 1(a) shows a sample of a CT scan and its 

corresponding mask.  

 

 
(a) Dataset 1 [55] 

 

 
(b) Dataset 2 [56] 

 

Figure 1. Sample CT images and masks from datasets 

 

The second dataset (Dataset-2) which was proposed by 

Angelov and Soares [56] was collected from real patients in 

Sao Paulo, Brazilian hospitals. The detailed characteristic of 

each patient has been omitted by the hospitals due to ethical 
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concerns. Dataset-2 contains 2481 CT scans in total. 1252 

scans correspond to 60 patients positive for COVID-19 which 

32 are male and 28 are female; while 1229 CT scans 

corresponds to 60 negative patients which 30 are male and 30 

are female. But Dataset-2 has not binary masks for image 

segmentation. In order to test the classification success in 

Dataset-2, the deep learning structures obtained from the 

segmentation results using the binary masks in Dataset-1 were 

used. Figure 1(b) shows a sample of 2 patients, infected and 

not infected by COVID-19. 

The Dataset-1 has been used to train and evaluate the 

performance of the segmentation model. The resulting 

segmentation model has been used on the Dataset-2 to 

generate mask which are then used for classification. Table 1 

shows the summary of both datasets. 

 

Table 1. Summary of datasets used in study 

 
 COVID-19 Healthy Total Used For 

Dataset-1 1615 497 2112 Segmentation 

Dataset-2 1252 1229 2481 Classification 

 

 

4. PROPOSED METHOD 

 

In medical image processing, both segmentation and 

classification studies can be performed. The purpose of 

segmentation is to identify Regions of Interest (ROI) such as 

organs or medical abnormalities by labeling each pixel in a 

medical image. On the other hand, medical image 

classification aims to label a complete image into predefined 

classes, and for this, it first divides the image into specified 

sub-domains. Thus, only the ROI is examined in medical 

images divided into sub-areas, and classification is made 

according to these areas. However, ROI areas cannot always 

be obtained in medical images. In such a case, first ROI should 

be segmented and then the classification algorithm should be 

applied. In the COVID-19 classification dataset (Dataset-2) 

used in the study, there are no ROI areas as masked image 

areas. For this reason, first of all, a successful segmentation 

algorithm based on deep learning was proposed by using 

Dataset-1 that has ground truth masked images. After the 

success of the proposed segmentation algorithm has been 

proven on Dataset-1, the resulting segmentation model has 

been used on the Dataset-2 to generate mask which are then 

used for classification. So, ROI of lung was segmented and 

According to the classification results, images could be 

classified more accurately in a short time compared to the 

literature. Since both segmentation and classification were 

made within the scope of the study, the literature studies and 

results in these two fields were examined separately and 

comparisons were made with the results. 

Our proposed method can be summarized in two main 

stages (Figure 2) as segmentation and classification. The data 

was preprocessed before feeding it into the model. 

After preprocessing, the data has been fed into a deep 

learning model to obtain a binary mask of lesions in COVID-

19 CT images in Stage-1. For this purpose; UNet, UNet++, 

SegNet and PsPNet were used both separately and as hybrids 

with GAN, to automatically segment infected areas from chest 

CT slices. The resulting binary mask was then fed into Stage-

2, where a CNN, PatchCNN and CapsNet models were used 

to predict whether or not a patient has COVID-19 or not. The 

binary masks that contain COVID-19 have white areas on a 

black background while those without COVID-19 are 

completely black. Steps of the algorithm are given in Figure 3. 

 
Figure 2. Steps of the proposed method 

 

Algorithm-1 
1) Acquiring images from Dataset-1 

2) Extracting the image slices from original images as follows: x ∈ D: {xi}i=1
2112  

3) Converting the images to gray-scale, resizing to 256x256 pixels and normalizing with min-max scaling. (xpre = Preprocessing(x)) 

4) Applying CLAHE to enhance the images (xCL = CLAHE(xpre)) 

5) Extracting ROI by drawing contours over image and then cropping out the closed boundary (𝑥𝑅𝑂𝐼 = ROI(𝑥𝐶𝐿)) 

6) Applying data augmentation strategies using standard methods like rotation, shearing, zooming and horizontal flipping 

7) Splitting data into 80% for training and 20% for testing. 

8) Constructing the proposed cGAN-UNet model, training the model using the training dataset to get segmentation masks that will be used as 

input to our classifiers. 

9) Evaluating, testing and comparing cGAN-UNet segmentation model to other baseline models. 

10) Using trained model to generate segmentation masks on Dataset-2 and converting them to binary masks 

11) Training the CNN / PatchCNN/ CapsNet model using generated binary masks 

13) Evaluating, testing and comparing the performance of all classifiers.  

 

Figure 3. Steps of the algorithm 
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4.1 Preprocessing 

 

Before the first stage, several preprocessing steps are 

applied to the input images. First, 2D slices are extracted from 

the provided CT scans. Then, images are converted to gray-

scaled and normalized. Generally, medical image analysis is 

challenging due to inherent characteristics of medical images 

like low contrast, noise, signal dropouts and complex 

anatomical structures [57]. In order to solve this problem, 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

is applied to the CT scans. It enhances small details, textures 

and the local contrast of the images [58]. CLAHE is a variant 

of adaptive histogram equalization where the contrast 

amplification is limited to reduce noise amplification. This is 

done by clipping the value of a histogram at each pixel value 

and then redistributing it equally among all histogram bins 

[59]. 

Most of the images in the dataset contained a lot of black 

space and sections below the lungs which could lead to 

wastage of computing resources. The proposed solution to this 

problem was extracting the ROI by drawing contours over the 

image and then cropping out the rectangle with the largest 

closed boundary. The resulting ROI encompasses both lungs 

in the image. Furthermore, the ROI images are resized to 256 

x 256 pixels and then normalized to pixel values between [0,1] 

using min-max scaling. To avoid overfitting and increase the 

number of training images data augmentation strategies like 

rotation, shearing, zooming and horizontal flipping were 

applied to the training data. The corresponding segmentation 

masks were also cropped, resized, normalized and augmented. 

Figure 4 shows the outputs of the preprocessing stage. 

 

4.2 Segmentation step 

 

Image segmentation is an image processing problem that 

aims to grouping the pixels according to the similarities or 

dissimilarities (differences). Segmentation makes the image 

more meaningful and provides faster further stages [60]. 

Conditional Generative Adversarial Networks (cGAN) was 

used to segment COVID-19 lesions from CT images in this 

study. The generative network learns to recognize our ROI and 

creates a binary mask that outlines its boundaries. The 

discriminator on the other hand, learns to differentiate between 

the real segmented masks and the synthetic ones. 

In this section, the overall architecture of the GAN, cGAN, 

the generator, discriminator and how they work are presented. 

The proposed architecture was inspired by the Pix-2-Pix GAN 

[61] which is used for image to image translation. 

 

   
(a) Original (source) image (b) CLAHE applied (c) ROI extracted 

   

   
(d) Gray-scaled (e) Normalized (f) Rotation 

   

   

(h) Shearing (i) Zooming (g) Horizontal Flipping 

 

Figure 4. Steps in the order of pre-processing 

5



4.2.1 Generative Adversarial Network (GAN) and Conditional 

GAN (cGAN) 

A GAN is composed of a generator and a discriminator that 

are trained to be competitive with each other. Vanilla GAN 

that is basic type of the GAN can be seen in Figure 5. The 

generator, G; is trained to produce realistic fake data G(z) from 

the distribution of the real data (x) and the random noise vector 

z, in order to fool or confuse the discriminator. The goal of the 

discriminator, D, on the other hand, is to distinguish between 

the real data and the fake data produced by the generator. The 

generator is updated only through gradients back-propagated 

from the discriminator. By iteratively updating both the 

generator and discriminator, equilibrium is reached where the 

discriminator is no longer able to tell the difference between 

the real and fake data produced by the generator. In 

Mathematical terms, D and G play a two-player minimax 

game with objective function given by Eq. (1) [62, 63]. 

 

 
 

Figure 5. Vanilla GAN [64] 

 

In Eq. (1), L is the objective function, G is generator, D is 

discriminator, E is the expected value, x is the input image, 

Pdata(x) is the distribution from which training examples are 

drawn and z is random noise. The discriminator D is trained to 

maximize the probability of correct label assignment to fake 

and real data while the generator G is trained to fool the 

discriminator by minimizing log(1-D(G(z))) (that is the log of 

1 minus the discriminator output of the generated/fake data). 

Hence, the gradients that are back propagated through the 

discriminator are used to update the generator. Much stronger 

gradients can be obtained in earlier iterations, if the generator 

is optimized to maximize log(D(G(z))) instead of minimizing 

log(1-D(G(z))) [65]. This is an indirect way of optimizing and 

the advantage with this method is that it ensures that the 

generator doesn’t memorize the images. Even though having 

many advantages, GANs are known that training is 

challenging because they are generally unstable and 

sometimes fail to converge [66]. In addition, GANs depict a 

phenomenon called model collapse where the generator 

generates a limited diversity of samples, or even the same 

sample, regardless of the input. There are numerous variations 

of GANs that have been tried to overcome that limitations that 

vanilla GANs, and cGAN is one of these variations.  

One limitation of GAN is that it has no control on the actual 

image generation. The cGAN proposed by Mirza and Osidero 

tries to overcome this problem by incorporating additional 

information like class labels in the image generation process 

[67]. In the cGAN the generator has 2 inputs; a random noise 

z and some prior information c. Then the prior information c 

is fed into the discriminator together with the corresponding 

real or fake data. The authors depicted that this change in 

architectural structure, cGAN not only increased the 

generation of detailed features, but also enhances stability 

during training. Because of this, cGAN is used in this study. 

Eq. (2) shows the objective function of the cGAN framework. 

Also, the difference in the architecture between GAN and 

cGAN is given in Figure 6. 

 

𝐿𝐺𝐴𝑁(𝐺, 𝐷) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 (𝐷(𝑥))]

+  𝔼 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[1

− 𝑙𝑜𝑔 (𝐷(𝐺(𝑧)))] 

(1) 

 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 (𝐷(𝑥|𝑐))]

+  𝔼 𝑥~𝑝𝑧(𝑧)
[1 − 𝑙𝑜𝑔 (𝐷(𝐺(𝑧|𝑐)))] 

(2) 

 

 
 

Figure 6. Difference of the architecture between GAN and 

cGAN [68] 

 

4.2.2 Generator architecture 

The generator of cGAN used in this study is a modified U-

Net architecture hence the name (cGAN-UNet). U-Net which 

was introduced in [24] is an architecture that is popularly used 

in biomedical image segmentation. It is a “U” shaped 

architecture that is made up of 3 main sections as the encoder, 

the bottleneck and the decoder sections. The encoding section 

in the generator of the cGAN-UNet architecture follows 

typical convolutional neural network architecture and is made 

up of many encoder blocks. Each encoder block passes an 

input image through one convolutional layer, followed by 

batch normalization and a leaky rectified linear unit (slope 0.2). 

Unlike the original U-Net, all max pooling layers are removed. 

After each block, the number of kernels is doubled so that the 

architecture can learn complex structures effectively.  

The bottleneck section connects the contraction and 

expansion layer. It is made up of one 4x4 convolutional layer 

with a 2x2 stride, followed by a ReLU activation layer. This is 

often referred to as skip connections. Just like the contraction 

section, the expansion section is made up of several blocks. In 

each decoder block the input image is passed through one 

deconvolutional layer, followed by batch normalization, a 

dropout layer, a concatenate layer and finally an activation 

layer. Unlike the encoder blocks, here, the number of feature 

maps is reduced by half in order to maintain symmetry. In the 

concatenate layer, the input to the corresponding contraction 

layer is appended. This makes sure that the features that were 

learnt during contraction are used to reconstruct the new image.  

It should be noted that the number of encoder blocks is the 

same as the number of decoder blocks. The result from the 

expansion block is then passed through another 

deconvolutional layer where the number of feature maps is 

equal to the desired number of segments or classes. All 

convolutional and deconvolutional layers are defined with a 

4x4 kernel and a stride of 2x2 which down sample and up 

sample the feature maps respectively. This architecture is 

displayed in Figure 7. 
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Figure 7. Generator architecture in the study 

Figure 8. Size of feature vectors in input / output layers of the generator model 

Figure 9. Discriminator architecture in the study 

Figure 10. Size of feature vectors in input / output layers of the discriminator model 
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To improve the performance of cGAN-UNet, several 

strategies from [66-69] were applied in this study. These 

strategies were included as batch normalization, using 

leakyReLU, random Gaussian weight initialization with a 

standard deviation of 0.002 in both the discriminator and 

generator. In addition, L2 regularization was added to all 

layers of the discriminator. Furthermore, label smoothing was 

applied on all class labels. In label smoothing, rather than use 

hard labels like 1 and 0 to represent real and fake labels, soft 

labels were used by generating random values between 0.9 and 

1.0 to represent real images and values between 0 and 0.1 to 

represent fake images. After implementing these changes, 

there was a noticeable change in how fast the model converged. 

Sizes of the all feature vectors both input and output layers of 

the generator is given in Figure 8. 

 

4.2.3 Discriminator architecture 

The discriminator determines if a given binary mask is real 

or fake. The discriminator used in this study is called a “patch 

discriminator” [61]. The patch discriminator divides the input 

image into a set of patches and maps each patch to a single 

scalar output. Unlike a normal image discriminator which 

performs prediction on an entire image, a patch discriminator 

makes a prediction for each patch and the final prediction is 

the average of all patch predictions. In addition, the patch 

discriminator requires fewer parameters, it works well with 

very large and blurry images and the computational time is 

lower. In the study, the patch discriminator uses a patch size 

of 70x70 pixels. The authors of [61] showed that a 70x70 patch 

size is a good choice as it can accommodate global features. 

The implemented model takes in 2 input images that are 

concatenated together. To prevent overfitting, Gaussian noise 

(standard deviation of 0.2) is added to this concatenated input 

before passing into the first hidden layer. The model consists 

of 3 hidden layers, each followed by batch normalization and 

leaky ReLU. Each convolutional layer has 4x4 filters and a 

stride of 2. In addition, the discriminator is regularized by 

constraining the norms of its gradients using L2 regularization. 

Therefore, an L2 regularizer is added to all convolutional 

layers. The discriminator architecture is given in Figure 9. 

Sizes of the all feature vectors both input and output layers of 

the discriminator is given in Figure 10. 

The discriminator is optimized using a combination of the 

weighted binary cross entropy (bce) loss (Eq. (3)) and the dice 

loss (Eq. (4)). The discriminator loss is calculated using (Eq. 

(5)) and this loss back propagated through the generator. The 

cross-entropy loss is the most widely used loss for CNN 

classification [70]. 

The generator is updated using the discriminator loss and 

the L1 loss (Eq. (6)) with a weighting of 1 to 100 in favor of 

the L1 loss as recommended by the authors of [61]. The final 

objective function for the generator (with λ=100) is shown in 

Eq. (7). 

 

𝐿𝐵𝐶𝐸 =  −
1

𝑁
∑ 𝑦𝑖 . log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖). log (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (3) 

 

𝐿𝐷𝐼𝐶𝐸 = 1 −  
2 𝑥 (𝑦 ∩ 𝑝(𝑦))

𝑦 + 𝑝(𝑦)
 (4) 

 
𝐿𝐷𝐼𝑆 =  𝐿𝐵𝐶𝐸 +   𝐿𝐷𝐼𝐶𝐸 (5) 

 
𝐿𝐿1(𝐺) =  𝔼𝑥,𝑦,𝑧 ||𝑦 − 𝐺(𝑥, 𝑧)|| (6) 

 

𝐿𝐺𝐸𝑁 =  𝑎𝑟𝑔
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥
𝐷

 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺) (7) 

 

where, y is the ground truth, p(y) is the predicted mask for all 

values of N that is the number of images in the dataset and LDIS 

is the discriminator loss, λ is the constant used to increase the 

weight of L1 loss, LL1 is the L1 loss, LGEN is the generator loss 

and L𝐶𝐺𝐴𝑁 is the adversarial loss as shown in Eq. (2). 

The generator and discriminator are optimized 

simultaneously where the generator learns to create a 

reasonable binary mask and the discriminator learns how to 

differentiate between synthetic and real segmentation.  

Besides introducing the weighted bce dice loss, Gaussian noise 

and L2 regularization, different learning rates and loss 

functions were used. Adam is found to be the best optimizer 

with a learning rate of 0.0001 and momentum of β1 of 0.5 and 

β2 of 0.999. However, the model was trained for 130800 

epochs to achieve best results.  

It should be noted that after generating the segmentation 

masks, a simple thresholding was performed to generate 

binary masks.  54.4 was selected as the best threshold value at 

which the 92.23 F1-score value was obtained as shown in 

Figure 11. 

 

 
 

Figure 11. Threshold to F1-score graph 

 

Training parameters of the cGAN-UNet used in the study 

also given in Table 2. 

 

4.3 Classification step 

 

After generating segmentation maps, they are used as input 

to a several classifiers to predict whether the masks have 

COVID-19 or not. Before feeding the synthetic masks into the 

classifiers, simple preprocessing and data augmentation 

methods like rotation, shearing, zooming and Gaussian 

blurring was applied as shown in Figure 12. Three different 

classification methods are implemented and their performance 

compared with experimental results. The architectures of these 

methods are presented the following section. 

 

Table 2. Training parameters for cGAN-UNet 
 

Number of epochs 130800 

Optimizer Adam 

Learning rate 0.0001 

Momentum of β1 and β2  0.5 and 0.999 

Loss function 
Binary cross entropy loss, 

dice loss and L1 Loss 
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4.3.1 Convolutional Neural Network (CNN) 

CNN’s are popularly used for image classification as they 

accumulate sets of features (such as edges, corners, shapes etc) 

at each layer. As shown in Figure 13, the CNN architecture is 

made up of 5 convolutional layers and 3 dense layers. While 

each convolutional layer is followed by batch normalization 

and a max pooling layer, the dense layers are followed by 

dropout layers. The ReLU activation function is applied on all 

layers except the final layer that uses sigmoid as an activation 

function. The convolutional layers use 3x3 kernels and have a 

stride of 1. The network is trained for 150 epochs. Batch 

normalization and dropout layers are added to avoid 

overfitting. The feature vectors of the CNN are given in Figure 

14 and training parameters in Table 3. 

 

Table 3. Training parameters for CNN and PatchCNN 

 
Number of epochs 50 

Optimizer Adam 

Learning rate 0.0005 

Momentum of β1 and β2 0.5 and 0.999 

Loss function Binary cross entropy loss 

    
(a) Synthetic Mask (b) Gray-scaled (c) Normalized (d) Gaussian blurring 

    

    
(e) Rotation (g) Shearing  (h) Zooming (f) Flipping 

 

Figure 12. Preprocessing of synthetic mask 

 

 
 

Figure 13. Convolutional neural networks 

 

 
 

Figure 14. Size of feature vectors in input / output layers of the CNN and PatchCNN model 
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4.3.2 Patch Convolutional Neural Networks (PatchCNN) 

The PatchCNN architecture is very similar to the CNN 

architecture. However, unlike like CNN where the entire 

image is sent into the network, several patches are extracted 

from an image then each patch is sent into the network. In the 

proposed method, the class label for each patch is predicted by 

the model, then a majority voting scheme is applied.  

The class that receives the most votes is the final class of 

the image. Several patch sizes were tried on the synthetic 

images generated from the cGAN-UNet model whose size is 

256 x 256 pixels. The patches are created by dividing the 

synthetic image into smaller images of a specific patch size. 

As can be seen in Figure 15, the patch sizes we experimented 

with are 16 x 16, 32 x 32, 64 x 64 and 128 x 128 pixels. 

As shown in Table 4, the bigger the patch size, the better the 

model performance. This indicates that smaller patch sizes do 

not carry sufficient diagnostic information while larger patch 

sizes carry sufficient discriminating features. According to the 

patch size success, all PatchCNN models were trained with a 

patch size of 128. Hence, model input was 128 x 128 pixels.  

The training parameters for this model are the same as the 

CNN as shown in Table 3 while the feature vectors can be seen 

in Figure 15. Figure 16 shows the model architecture and a 

synthetic image after it has been split into different patch sizes. 

Table 4. Comparative analysis of different patch sizes on 

cGAN-UNet Synthetic Masks 

 
Patch Size (pixels) Accuracy 

16 x 16 50.59% 

32 x 32 68.41% 

64 x 64 89.93% 

128 x 128 92.56% 

 

4.3.3 Capsule Neural Network (CapsNet) 

CNNs have several pooling layers which tend to lose 

information such as the objects precise position and pose. 

CapsNet was introduced by Sabour [71] in 2017 to overcome 

these drawbacks in CNNs using the idea of inverse graphics. 

Unlike CNNs, CapsNet preserves detailed information about 

an object’s position and pose throughout the network. A 

capsule network is made up of capsules; a capsule is a group 

of neurons that learn to detect an object or parts of an object in 

an image. Its output is a vector whose length represents the 

presence of an object in an image and whose orientation could 

represent the position, rotation, size or scale of the object in 

the image. This is unlike CNNs that ignore the spatial 

relationships between features.  

 

   

(a) Synthetic Mask (Preprocessed) (b) 16 x 16 pixels patch size (c) 32 x 32 pixels patch size 

   

  

 

(d) 64 x 64 pixels patch size (e) 128 x 128 pixels patch size  

 

Figure 15. Input preprocessed image and the different patches extracted from it 

 

 
Figure 16. PatchCNN Architecture with a 128 x 128 pixel Patch size 
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The CapsNet architecture is made up of an encoder and a 

decoder. The encoder contains 3 layers which include 

Convolutional Layer, Primary Capsule Layer and ClassCaps 

Layer. The Convolutional Layer has 256 kernels with size 

9x9x1 and stride of 1, followed by the ReLU activation 

function. In this layer, the image pixel intensities are converted 

to local feature detectors. The output of this layer is then fed 

to the Primary Capsule Layer which is also a convolutional 

layer that contains 32 primary capsules with each capsule 

having a dimension of 6x6. The lowest level entities in the 

image are captured in this layer. The output of this layer is then 

sent to the ClassCaps layer through a dynamic routing 

algorithm.  Dynamic routing algorithm computes a coupling 

coefficient to quantify the connection between the Primary 

Capsule and the ClassCaps layers while facilitating the routing 

of capsules to the appropriate next layers. The CapsNet  model 

learns through the coefficient value as it is updated during the 

training process and only 3 routing iterations are  used to 

optimize the loss faster and avoid overfitting. The ClassCaps 

layer has 2 class capsules, one for each class. An 8x16 weight 

matrix is applied to each input vector here that maps the input 

space to the 16 dimensional capsule output space.   

The purpose of the decoder network in the CapsNet is to 

reconstruct the vectors from the ClassCaps layer 

representation. It does this by minimizing the Euclidean 

distance between the input image and decoder’s output. The 

decoder is made up 3 fully-connected layers; the first layer has 

a total of 512 neurons, the second layer 1024 neurons and the 

third contains 784 neurons. The CapsNet parameters are 

optimized using a margin loss for each output class. In addition 

to the margin loss, an l2 reconstruction loss (mean squared 

error) is used as a regularization method to boost each capsule 

to encode parameters of the input image. The CapsNet 

architecture can be seen in Figure 17. A summary of CapsNet 

architecture and the parameters, used in this study are shown 

in Figure 18 and Table 5, respectively. 

 

Table 5. Training Parameters for CapsNet 

 
Number of epochs 100 

Optimizer Adam 

Learning rate 0.001 

Momentum of β1 and β2 0.9 and 0.999 

Loss function Margin + L2 Loss 

 

 
 

Figure 17. CapsNet Architecture [69] 

 

 
 

Figure 18. Size of feature vectors in input / output layers of the CapsNet model 

 

 

5. EXPERIMENTAL RESULTS 

 

In this study, all experiments were conducted on an Intel® 

Core ™ i7-4720HQ CPU @ 2.60GHz × 8 processor, NVIDIA 

GeForce GTX 960M / PCIe / SSE2 graphics card, supporting 

NVIDIA GPU Computing Toolkit 10.1 GPU. The application 

was implemented on Ubuntu 18.0.4 platform and Google 

Colab was the chosen integrated development environment 

(IDE) as it provides a free GPU and a jupyter notebook 

environment with a Tesla T4 GPU, a RAM of approximately 

12.6 GB and disk space of 33 GB. Python is the programming 

language used because it is cross-platform, vastly used, has an 

active community of developers and provides easy to use built-

in libraries [72]. In addition, the open source machine learning 

libraries Keras 2.3.1 and Tensorflow 2.0 are implemented in 

Python.  Keras 2.3.1 provides the possibility of easy model 

building with APIs like Keras with eager execution which 

makes debugging easy. Tensorflow 2.0 provides robust 

machine learning production and finally a powerful 

experimentation environment for research [73]. In this section, 

developing platforms, developing context and results for each 

experiment are presented. 

In this study, two separate experiments were conducted to 

evaluate segmentation and classification models as given in 

Figure 2. Firstly, UNet, UNet ++, SegNet, PspNet, that are 4 

deep learning models used in the literature were used both 

separately and as hybrids with GAN and to segment the CT 

images in the Dataset-1. At this stage, the accuracy of the 

system has been demonstrated by analyzing the segmentation 

results using the binary masks in the Dataset-1. In the study, 

the experiments were carried out by dividing the data in the 

dataset-1 into 80% training and 20% testing. The data on 
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training and test numbers are given in Table 6. Also, for 

comparison, results were obtained by applying 5-fold cross 

validation on the data (Table 7). 

 

Table 6. Numbers of training and testing images for the 

segmentation of the Dataset-1 

 
 COVID-19 Healthy Total 

Training (80%) 1292 398 1690 

Testing (20%) 323 99 422 

Dataset-1(Total) 1615 497 2112 

 

The segmentation models were evaluated quantitatively and 

qualitatively. Dice similarity score (Dice), Intersection Over 

Union (IoU), precision and recall, and F1-score were used for 

segmentation success. 

The Dice and IoU metrics are well-known and accepted as 

evaluation methods for medical image segmentation [74]. 

Higher scores for both metrics depict better segmentation 

performance. The Dice similarity coefficient, like F1-score is 

an overlap measure that is used for pairwise comparison of the 

target mask and segmentation masks and is defined as in Eq.8. 

The IoU score is a popular metric for measuring the percentage 

of overlap between the ground truth mask and the predicted 

mask. It is also called the Jaccard index and works by 

measuring the number of similar pixels between the target and 

predicted masks divided by the total number of pixels present 

in both masks as defined in Eq. (9). 

 

𝐷𝑖𝑐𝑒 =
2 ∗  (𝐴 ∩ 𝐵)

𝐴 + 𝐵
 (8) 

 

𝐼𝑜𝑈 =  
𝐴 ∩ 𝐵

|𝐴| ∪ |𝐵|
∗ 100 (9) 

 

In Eqns. (8) and (9), where A and B denote ground truth and 

segmentation masks, respectively. 

The precision and recall metrics reflect the similarities of 

the generated masks and the target.  Their measures are based 

on the number of misclassified and correctly classified pixels 

and can be expressed in terms of True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

While TP defines the outcome where the model correctly 

predicts the positive class as positive while FP defines the 

correctly predicts the negative class as negative. On the other 

hand, FN and TN define the false outcomes for the classes. 

To get the value of precision (Eq. (10)) the total number of 

correctly classified positive examples (TP) is divided by the 

total number of elements labelled as belonging to the positive 

class (TP+FP). High Precision indicates an example labeled as 

positive is indeed positive. However, under-segmentation 

errors are not reflected in the precision. The recall (Eq. (11)), 

also known as the sensitivity, can be defined as the ratio of the 

total number of correctly classified positive examples (TP) to 

the total number of elements that actually belong to the 

positive class (TP+FN). On the other hand, specificity (Eq. 

(12)) is as the ratio of the total number of correctly classified 

negative examples (TN) to the total number of elements that 

actually belong to the negative class (TN+FP). Even though 

recall does not account for over-segmentation errors in image 

segmentation [73], a high recall shows that there is a low 

number of false negatives which is desired in cases like 

COVID-19 because the disease is highly contagious and 

spreads easily. The F1-score is the harmonic mean of precision 

and recall and becomes high only when both precision and 

recall are high (Eq. (13)). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
 𝑇𝑁

 𝑇𝑁 +  𝐹𝑃
 (12) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

Most of the current COVID-19 CT segmentation methods 

proposed in literature were trained on different datasets, which 

are mostly private datasets. They were trained in different 

settings and were evaluated using different metrics [75]. This 

makes performance comparison across proposed methods 

challenging. However, for quantitative analysis our results are 

compared for both segmentation and classification with other 

methods in literature. Comparisons between proposed model 

(cGAN-UNet) both with and without cross validation and 

baseline segmentation models (UNet, UNet ++, SegNet, 

PspNet) for the segmentation success on the Dataset-1 is given 

in Table 7. The combination of cGAN with the other baseline 

models; as cGAN-UNet++, cGAN-SegNet and cGAN-PspNet 

used in the study, did not learn during the training process and 

produced completely black images. Therefore, the results of 

these hybrid methods are not given in Table 7 and they were 

not used in the next classification step. 

According to the results the proposed method outperforms 

the others in all metrics. Our model is almost 6% above the 

second best model U-Net which is closely followed by 

UNet++ and then SegNet. The model with the worst 

performance metric is the PspNet with only a 51.20% dice 

score and 37.66% IOU score. The use of a cGAN model with 

UNet therefore provides a higher accuracy to detect infection 

regions compared to using other baseline methods alone. 

Figure 19 shows the discriminator and generator loss of the 

proposed method during training. 

 

Table 7. Comparisons of the segmentation results on the Dataset-1 (%) 

 
Model Dice IOU Precision Recall F1-Score 

UNet [24] 86.90 77.74 86.64 86.65 86.29 

UNet++ [25] 85.12 75.20 84.11 86.39 84.50 

SegNet [76] 77.37 65.08 82.43 74.87 77.37 

PspNet [77] 51.20 37.66 61.55 53.96 51.37 

cGAN-UNet (proposed method without 5-fold cross validation) 92.31 86.41 92.2 92.70 92.31 

cGAN-UNet (proposed method with 5-fold cross validation) 92.21 86.20 92.4 92.03 92.21 
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The high metric scores obtained from the experiment show 

that adding adversarial training to existing models like U-Net 

improves the accuracy of segmentation. Results of the 

segmented binary masks generated by each model are given in 

Figure 20. The cGAN-UNet model clearly outputs results that 

are closest to the ground truth unlike other models whose 

results differ from the ground truth significantly. 

In the classification stage (given in Figure 2), classification 

was performed on Dataset-2 which contains CT scans of 

healthy and COVID-19 patients. It is important to note that 

Dataset-2 does not have the ground truth binary masks for 

image segmentation. Therefore, the obtained binary masks 

getting from segmentation stage were used for classification 

on the Dataset-2 using 3 different deep learning classifiers 

named CNN, PatchCNN and CapsNet explained in the 

previous section. Like in segmentation, the dataset is divided 

as 80% for training and 20% testing as shown in Table 8. Also, 

like in segmentation, results were obtained by applying 5-fold 

cross validation on the data (Table 9). 

 

Table 8. Numbers of training and testing images for the 

classification of the Dataset-2 

 
 COVID-19 Healthy Total 

Training (80%) 1001 983 1984 

Testing (20%) 251 246 497 

Dataset-2 (Total) 1252 1229 2481 

 

To evaluate the performance of classification models; 

accuracy was used to also test the success of the systems; in 

addition to precision, recall, specificity, and F1-score, as in 

segmentation. Also, the ROC curve was used for the 

classification success. 

 

  

(a) Discriminator Loss (b) Generator Loss 

 

Figure 19. Loss of cGAN-UNet against number of epochs 

 

 
 

Figure 20. Results of the segmented binary masks generated by each model 
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The results for the classification using CNN, PatchCNN and 

CapsNet are shown in Table 9. Comparisons both with and 

without cross validation for the classification are also given. 

The binary masks for each segmentation model shown in 

Table 7 were generated and gave to all classifiers. Additionally, 

the original CT images were also fed into each classifier to 

compare with the others. 

In Table 9, the cGAN-UNet segmentation achieved the best 

results with the CNN classifier achieving the best results with 

an accuracy and F1-score of 99.2%. The PspNet segmentation 

model produced the worst results with all classifiers. The 

confusion matrices for the 3 best models for each classifier are 

shown in Figure 21(a), Figure 21(b) and Figure 21(c), 

respectively. Figure 22 shows the receiver operator 

characteristic (ROC) curve of all classification models. The 

results showed that segmenting lesions from CT scans could 

distinguish between patients with COVID-19 and healthy.   

The results show that binary mask generated from our 

cGAN-UNet segmentation model produce the best 

performance regardless of the classifier that is used. Table 4 

shows that the performance of the PatchCNN model improved 

as the patch size increased. This demonstrates that unlike large 

patches, sufficient diagnostic information is not carried in 

smaller patch sizes. However, although the results of the 

PatchCNN classifier were not bad, the CNN classifier 

performed much better.   

The results obtained from PatchCNN with cGAN-UNet and 

UNet++ are very close, approximately 92% accuracy. The 

results from the CapsNet classifier indicate that the model is 

not well suited for training on binary masks as the results are 

significantly lower than the other classifiers. With CapsNet, 

the Original CT model achieved the best accuracy of 78.29%, 

followed by UNet++ with an accuracy of 75.77% and then by 

cGAN-UNet with an accuracy of 73.84%. Furthermore, Table 

9 shows the difference between training the classifiers on the 

original CT scans and on binary masks. We see that applying 

the classifiers on binary mask generated from cGAN-UNet, 

UNet and UNet++ outperform the models trained on the 

original CT. On the other hand, results obtained from SegNet 

and PspNet binary mask, are consistently lower than the 

original CT images.  

 

 
 

 

(a) CNN (with cGAN-UNet) (b) PatchCNN 

(with cGAN-UNet) 

(c) CapsNet (with cGAN-UNet) 

 

Figure 21. Confusion matrix of classifiers with cGAN-UNet segmentation 

 

Table 9. Comparison of different classifiers on original images and binary masks generated from different segmentation models 

 
Classifier Method Accuracy Precision Recall Specificity F1-Score 

CNN 

Original CT 90.34 96.34 84.06 96.7 89.79 

UNet 92.76 98.20 87.25 98.37 92.40 

UNet++ 97.38 100 94.82 100 97.34 

SegNet 71.43 85.16 52.59 90.65 65.02 

PspNet 50.90 88.88 0.03 99.59 0.06 

cGAN-UNet (without 5- fold cross) 99.20 98.43 100 98.37 99.20 

cGAN-UNet (with 5- fold cross) 98.95 98.99 98.56 98.95 98.76 

PatchCNN 

Original CT 79.88 72.12 96.75 63.55 82.64 

UNet 90.54 100 80.89 100 89.44 

UNet++ 92.26 92.53 92.23 92.40 92.46 

SegNet 58.35 54.52 95.52 21.91 69.42 

PspNet 50.50 26.0 51.02 50.1 34.01 

cGAN-UNet (without 5- fold cross) 92.55 92.80 92.43 92.68 92.61 

cGAN-UNet (with 5- fold cross) 90.95 91.2 90.84 91.06 91.02 

CapsNet 

Original CT 78.29 76.87 79.54 77.09 78.18 

UNet 64.79 73.75 47.01 82.93 57.42 

UNet++ 75.77 77.77 70.87 80.49 74.17 

SegNet 61.77 82.79 30.68 93.50 44.76 

PspNet 50.50 50.50 1.0 0.0 67.11 

cGAN-UNet (without 5- fold cross) 73.84 77.62 67.73 80.08 72.34 

cGAN-UNet (with 5- fold cross) 69.11 75.33 57.62 78.89 62.60 
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Figure 22. ROC Curve of all models 

 

Finally, we compared our models with the state of the art 

methods for COVID-19 segmentation and classification. The 

existing results for segmentation vary from a dice score of 

68.2% in [33] to 91.6% in [30] for CT images according to 

the number (#) of images as shown in Table 10. Table 11, on 

the other hand shows the state of the art classification models 

whose results vary from an accuracy of 66.67% in [38] to an 

accuracy of 98.7% in [54]. This shows that both our 

segmentation and classification models outperformed state of 

the art methods. 

 

Table 10. A quantitative comparisons between proposed 

model and state of the art for the segmentation tasks 

 
Method & Study # of images Dice score 

Inf-Net [33] 100 68.2% 

RC-CoSinGAN [36] 100 71.3 ± 19% 

Semi-Inf-Net [33] 100 73.9% 

JCS [35] (without image properties) 3855 77.5% 

JCS [35] (with image properties) 3855 78.3% 

Encoder-Decoder [53] 100 88.0% 

VB-Net [30] 300 91.6 ± 10% 

cGAN-Unet (proposed) 2112 92.31% 

 

These results therefore suggest that applying the right 

segmentation model on CT images can significantly improve 

the model’s performance. In addition, it is understood that 

adding adversarial training to existing models like UNet 

improves the accuracy of segmentation. 

 

 

6. CONCLUSION 

 

With the emergence of COVID-19 at the end of 2019, the 

world faced a massive health crisis. In this study, different 

hybrid deep learning methods for the segmentation and 

classification of COVID-19 were proposed [78]. First of all, 

a conditional GAN (cGAN) was used to create binary masks 

that could assist radiologists in diagnosing, monitoring 

disease progression, reduction in examination time, and 

improvement in accuracy. After that, to further ease the 

diagnosis process, several classification models were used as 

Convolutional Neural Network (CNN), a PatchCNN and a 

Capsule Neural Network (CapsNet) for COVID-19 detection. 

These classifiers take in the generated binary mask as input 

and predict the presence or absence of COVID-19.  

Our proposed methods show very promising results as they 

outperform baseline and state of the art models. The proposed 

segmentation method achieved a dice score of 92.31% and an 

IOU score of 86.41%. For the classification results, the best 

model attained accuracy and an F1-score of 99.20% on an 

independent dataset that has no ground truth binary masks. 

Therefore, the proposed method has the potential to aid front 

line health care providers and can be deployed in areas with 

limited access to health care facilities.  

Even though proposed segmentation model achieved a 

better performance than all other baseline models, the amount 

of time it took to train the model was long (about 72hrs). 

However, inference time for all models is approximately the 

same, approximately 2 seconds for one image. With higher 

computing power proposed method may produce faster 

results. 

To prevent overfitting, several measures were used like 

batch normalization, dropout, stratified cross validation. In 

the future, a larger dataset can be acquired from hospitals to 

further validate results. Hence, the model’s extent to which 

the model generalizes in different locations can be evaluated. 

Additionally, a CapsNet model with many more layers may 

produce better results that the one used in the study.  

Furthermore, applying better post-processing methods that 

can remove noisy small patches from generated masks may 

improve our results. Finally, the basic unit of the all models 

used in this study is the neural network which is a black-box 

model and its explainability is still a work in progress. Hence, 

if the model structures can be explained more clearly, 

different studies can be done in the future. 
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Table 11. A quantitative comparisons between our model and state of the art for the classification tasks 

 

Study Method Modality Number (#) of cases 
# of 

images 
Accuracy Precision Recall Specificity 

F1-

score 

[38] Alexnet X-ray 

60 COVID-19, 70 Normal, 

70Pneumonia_bac, 70 

Pneumonia viral 

270 66.67 -- 66.67 -- -- 

[38] Resnet18 X-ray 

60 COVID-19, 70 Normal, 

70 Pneumoni_bac, 70 

Pneumonia viral 

270 69.47 -- 66.67 -- - 

[38] Googlenet X-ray 

60 COVID-19, 70 Normal, 

70 Pneumoni_bac, 70 

Pneumonia viral 

270 80.56 -- 80.56 -- -- 

[42] CNN+SVM X-ray 
127 COVID-19, 127 Pneumonia, 

127 Healthy 
381 95.33 -- 95.33 -- 95.34 

[40] CNN CT 
349 COVID-19, 483 non-

COVID-19 
812 89 -- - -- 90 

[43] DeepPneumonia CT 
88 COVID-19, 101 Pneumonia, 

86 Healthy 
275 86 79 96 -- 87 

[44] DarkCovidNet X-ray 
125 COVID-19, 500 Normal, 

500 Pneumonia 
1125 87.02 89.96 85.35 92.18 87.37 

[44] DarkCovidNet X-ray 125 COVID-19, 500 Normal 625 98.08 98.03 95.13 95.3 96.51 

[39] VGG-19 X-ray 
224 COVID-19, 700 Pneumonia, 

504 Healthy 
1428 96.78 -- 98.66 96.46 -- 

[8] Covid-Net X-ray 
53 COVID-19, 8066 Healthy, 

5526 non-COVID-19 
13975 92.4 -- -- -- -- 

[48] Covid-MobileXpert X-ray 
179 COVID-19, 37 Healthy, 179 

Pneumonia 
395 88.9 -- -- -- -- 

[41] Covidx-net X-ray 25 COVID-19, 25 Normal 50 90 91.5 90 - 91 

[32] UNet + 3D DNN CT 
313 COVID-19, 229 non-

COVID-19 
542 90.8 -- 90.7 91.11 -- 

[53] Encoder-Decoder CT 

449 COVID-19, 98 Lung, 

425 Normal, 2738 non-COVID-

19 

3710 94.67 -- 96 92 -- 

[26] UNet++ + CNN CT 
20886 COVID-19, 14469 

NonCovid19 
35355 92.59 -- 100 81.82 -- 

[37] UNet + DeCoVNet CT 
70 COVID-19, 1008 Pneumonia, 

1431 non-COVID-19 
2509 90.8 -- 96.0 70.7 -- 

[47] ResNet20 X-ray 

68 COVID-19, 

2786Pneumonia_b, 

1583 Normal, 1504 

Pneumonia_v 

5941 92.8 -- -- -- -- 

[45] Inception CT 325 COVID-19, 740 Pneumonia 1065 79.3 -- 83 67.0  

[46] ResNet50 X-ray 50 COVID-19, 50 Normal 100 96.1 76.5 91.8 96.6 83.5 

[51] 
ResNet + 

Location Attention 
CT 

219 COVID-19, 175 Healthy, 

224 Viral Pneumonia 
618 86.7 86.9 86.7 -- 86.7 

[52] CovNet CT 

468 COVID-19, 1551 

Pneumonia, 

1173 non-Pneumonia 

3192 95 -- 87 92 -- 

[35] JCS CT 
64711 COVID-19, 68041 non-

COVID-19 
132752  -- 94.5 93.5 -- 

[54] CNN CT 275 COVID-19, 275 Normal 550 98.7 -- 100 98.3 -- 

[49] 
Transferred 

DenseNet2021 
CT 

1252 COVID-19, 1229 non-

COVID-19 
2481 98.18 97.76 98.20 98.17 97.98 

[50] 
CycleGAN + 

Inception 
X-ray 

4044 COVID-19, 5500 non-

COVID-19 
9544 94.2 -- -- -- -- 

Proposed cGAN-UNet + CNN CT 
1252 COVID-19, 1229 non-

COVID-19 
2481 99.20 98.43 100 98.37 99.20 
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NOMENCLATURE 
 

G Generator in GAN 

G(z) Fake data for GAN 

x Real data 

z Noise data for GAN 

D Discriminator in GAN 

L Objective function of GAN 

E Expected value of GAN 

Pdata (x) Distribution of training examples 

L2 Regularization 

p(y) Predicted mask of CNN 
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LDIS Discriminator loss 

LGEN Generator loss 
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