
Hypotheses Generation and Verification Based Framework for Crowd Anomaly Detection in 

Single-Scene Surveillance Videos 

Muhammad Shehzad Hanif1,2* , Muhammad Bilal1,2 , Abdullah Saeed Balamash1,2 , Ubaid M. Al-Saggaf1,2

1 Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia 
2 Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia 

Corresponding Author Email: mshanif@kau.edu.sa

https://doi.org/10.18280/ts.400110 ABSTRACT 

Received: 8 July 2022 

Accepted: 5 February 2023 

A two-stage framework for crowd anomaly detection in single-scene or scene-dependent 

surveillance videos is proposed in this article. The first stage generates several hypotheses 

corresponding to potential anomalous regions in a video frame and the second stage verifies 

them to reduce false alarms and identifies crowd anomalies. In the hypotheses generation 

stage, spatial and temporal derivatives are computed for each video frame and a saliency 

detector employing Hypercomplex Fourier Transform (HFT) is used to generate a saliency 

map. A threshold is applied to the saliency map to generate potential anomalous regions in 

the form of connected components. For each connected component, a set of 4 statistical 

features are computed and fed to the second stage which employs a Gaussian Mixture Model 

(GMM) as a verification method to yield the final crowd anomalies in the frame. The 

effectiveness of the proposed framework has been shown through results obtained on the 

UCSD anomaly detection benchmark dataset which contains two subsets namely Ped1 and 

Ped2 with a total of 48 test videos (9210 frames). Both frame-level and pixel-level anomaly 

detection results are provided using the widely recognized evaluation criterion in the domain 

and compared with the state-of-the-art methods. The experimental results show that the 

proposed framework obtains comparable results against the state-of-the-art methods.  
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1. INTRODUCTION

Automatic crowd analysis is an open research problem and 

has extensive applications in the fields of crowd safety and 

surveillance, crowd management, event detection, anomaly 

detection and design of smart environments for public 

gatherings, etc. [1, 2]. However, the task is challenging due to 

the inherent complexity as crowd dynamics are not 

deterministic and cannot be predicted in advance. Researchers 

working in the domain of computer vision and pattern 

recognition are interested in the development and deployment 

of robust and sophisticated algorithms and techniques to 

perform visual crowd analysis where video streams are the 

only available inputs.  

Crowd anomaly detection is one of such tasks where the 

objective is to detect appearances and/or motion patterns 

deviating from the prevalent appearances and/or motion 

patterns in crowd videos. However, crowd anomaly detection 

is not trivial as types of anomalies are not known in advance 

and their occurrences are rare. Moreover, they may occur at 

any instant with no fixed duration in a video. Therefore, it is 

desired to detect anomalies both spatially and temporally in 

videos. Figure 1 shows three examples from the UCSD 

anomaly detection benchmark dataset used in this work where 

“cyclist”, “skater” and “vehicle” are anomalous 

regions/objects in the scenes as they appear on the pedestrian 

pathway. To handle all sorts and categories of anomalies, a 

typical setting is to train a model on a set of non-anomalous or 

normal video frames (train set) and then the learned model is 

applied to the anomalous frames (test set). It is also interesting 

to note that in many earlier works [3-13], crowd anomaly 

detection is either considered as scene-dependent (train and 

test sets contain the same scene) or scene-independent (train 

and test set contain different scenes) task. It has been argued 

by Ramachandra et al. [3] that the crowd anomaly detection is 

indeed a scene-dependent task as it is the only realistic 

scenario in surveillance videos for real-world applications. 

Thus, in this work, a crowd anomaly detection task has been 

considered in scene-dependent (also known as single-scene) 

surveillance videos. The proposed framework has two stages 

where the first stage is composed of a saliency detector 

responsible for generating a saliency map indicating potential 

anomalous regions in a video frame. The second stage 

subsequently validates these anomalous regions. The proposed 

saliency detector is influenced by the works of Li et al. [14] 

and Guo and Zhang [15] on computational of visual saliency 

in the frequency domain. Specifically, spatial and temporal 

gradients are extracted from a video frame and Hypercomplex 

Fourier Transform (HFT) based saliency detection method of 

[14, 15] is applied. It is important to note that the authors in 

[14] applies the HFT based saliency detector to static color

images while the work [15] is related to image and video

compression. Therefore, the saliency detector for generating

potential anomalous regions has not been proposed earlier in

the literature. It is pertinent to mention to the reader that a

closely related work using frequency domain-based saliency

detector for crowd anomaly detection [16] is based on spectral

residual approach of Hou and Zhang [17] which is in theory

different than the proposed technique and has been proven to

be inferior to the HFT based saliency detector by Li et al. [14].
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In the next step, the saliency map is subject to a threshold to 

generate a binary map and connected components are 

determined. In the verification stage, four statistical features 

are computed from connected components containing 

significant motion and the corresponding regions in the 

saliency map, and a generative model in the form of a Gaussian 

Mixture Model (GMM) is learned. Normal (non-anomalous) 

frames of the train dataset are used to train the GMM. When 

applied to the test dataset, the GMM based generative model 

outputs low likelihood scores for anomalous regions. The 

verification stage, in the proposed work, is a supervised 

learning approach contrary to the hypotheses generation stage 

and helps in reducing the false alarms in the saliency map. The 

proposed framework is verified for functionality on the public 

domain UCSD anomaly detection benchmark dataset. 

Anomaly detection results on frame-level and pixel-level are 

provided in this work and are quite promising. The proposed 

framework achieves comparable performance when compared 

to existing methods using the widely recognized evaluation 

criterion in the domain. The main contributions of this work 

can be summarized as follows: 

• An efficient unsupervised technique to generate

potential anomalous regions in a video frame has been

proposed by computing visual saliency in the

spatiotemporal gradients with the help of frequency

domain analysis achieved by the HFT.

• Contrary to earlier works where the saliency map is

directly used to detect the anomalous regions by

thresholding, a verification stage using statistical

features and GMM based model to reduce the false

alarms has been employed.

• The proposed hypotheses generation and verification

framework is a combination of unsupervised and

supervised learning approaches and achieves promising

performance on the benchmark dataset.

(a) cyclist

(b) skater

(c) vehicle

Figure 1. (a)-(c) Examples of crowd anomaly in the UCSD 

dataset 

The rest of the article is structured as follows: a review of 

relevant techniques and methods for crowd anomaly detection 

is presented in section 2. The proposed framework is detailed 

in section 3 where both hypotheses generation and validation 

stages are discussed. The experimental results along with 

dataset description and implementation details are presented 

in section 4. Finally, conclusions and future directions are 

described in section 5. 

2. RELATED WORKS

Crowd anomaly detection in surveillance videos has been 

an active area of research for more than a decade. In general, 

methods in the literature in this field have focused on these 

three axes: efficient representation of motion patterns, 

anomaly modeling and classification techniques. A concise 

review of the related and recent works in the field of crowd 

anomaly detection is presented next. 

In a seminal work [8], Mahadevan et al. propose to encode 

appearance and dynamics of motion patterns in a joint manner 

with the help of dynamic textures. Abnormality detection is 

accomplished at both spatial (pixel) and temporal (frame) 

levels. For temporal detection of anomalies, dynamic textures 

are modeled using Gaussian mixture models (GMMs) on 

spatiotemporal slices around a frame and a saliency map is 

generated. Spatiotemporal slices are generated by dividing the 

image in non-overlapping blocks of pixels and extending them 

in the time axis. The spatial detection is based on computation 

of center-surround saliency with the help of GMMs at a certain 

block in a frame and its spatial neighbors. In a follow-up work 

by the same team of researchers [18], the dynamic textures 

based approach is further refined by fusion of temporal and 

spatial saliency maps at multiple spatial scales. Lu et al. [19] 

propose to divide the frame into non-overlapping blocks of 

pixels at multiple scales and compute spatial and temporal 

derivatives. A sparse combination learning scheme is 

proposed to model reconstruction of blocks with the help of a 

dictionary which is trained on the normal frames of train set. 

During the test, reconstruction scores are employed to 

categorize blocks. Wang and Xu [4] employ the wavelet 

transform to spatiotemporal slices around a frame to encode 

the texture information present in the scene. These features are 

extracted at different locations of the frame in the sliding 

window fashion and assumed to follow a Gaussian distribution. 

A generative model is learnt from normal video frames in the 

train set to describe normality. During the test, the 

dissimilarity between the texture features on a test frame and 

the model is used as a measure to detect anomaly. Colque et 

al. [20] present a descriptor called HOFME using the 

histogram of optical flow orientation and magnitude and 

entropy computed on the spatiotemporal slices at fixed 

locations in a frame. The HOFME descriptors are computed 

on normal frames of the train dataset. To detect anomaly in a 

test video, the HOFME descriptors are computed and a nearest 

neighbor classifier is employed. Sun et al. [9] propose a visual 

saliency detector using a dissimilarity measure between a 

spatiotemporal block at a position in a frame and its 

neighboring spatiotemporal blocks. The L1 distance metric is 

employed to compute the dissimilarity in this work. In addition 

to the saliency map, the authors propose to compute a motion 

disorder map using block-based difference of motion vectors 

between frames. A linear combination of these two maps 

results in a map where the higher values represent anomalous 

regions in the frame.  
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Adam et al. [12] propose fixed-position monitoring for 

detection of anomaly in video frames. Optical flows at fixed 

positions (or regions) in the frames are modeled by a 

probabilistic model. Image regions with low likelihood scores 

in test frames are considered anomalous. A social force model 

based on optical flow fields is proposed in the study of Mehran 

et al. [11]. Optical flow of a certain region in a frame is 

compared with the average optical flow of its neighbors and 

this interaction is modeled with the help of bag-of-words. Test 

regions with low likelihood are considered anomalous ones. 

Ryan et. al. [10] present a texture encoding scheme using co-

occurrence matrices computed on the optical flow fields. A 

measure known as uniformity is computed using the 

spatiotemporal slices extracted at all locations of a video frame 

to encode the appearance and motion patterns. A Gaussian 

mixture model (GMM) is then trained using the uniformity 

features on the normal video frames of the train set. Likelihood 

between the uniformity features extracted on the 

spatiotemporal slices of the test frames and the GMM model 

is used to determine anomalous frames. Wang et al. [16] 

employ an unsupervised learning approach based on a visual 

saliency model for crowd anomaly detection. The visual 

saliency model is based on the spectral residual approach 

proposed in the study of Hou and Zhang [17]. A single 

saliency score per frame is computed by simple accumulation 

of all scores in a saliency map across rows and columns. 

Finally, frames having saliency scores higher than a threshold 

are categorized as anomalous frames. It is important to note 

that only frame-level anomaly detection results are reported in 

the research works by Ryan et al. [10] and Wang et al. [16], 

and performances of the proposed approaches for spatial 

localization of anomalies have not been presented. 

Antić and Ommer [21] propose to extract foreground 

information with the help of a background subtraction-based 

method. Spatial and temporal derivatives are computed to 

encode appearance and motion patterns of foreground objects. 

Support vector machine (SVM) based classification method is 

used to detect anomalies at both frame and pixel levels. 

Similarly, to the above-mentioned work, Bansod and 

Nandedkar [7] present a three-stage approach to detect 

anomalies in single-scene videos. They use background 

subtraction as a first stage to extract all moving objects in a 

frame followed by blob detection and feature extraction. In the 

feature extraction stage, seventeen features based on optical 

flow magnitude and blobs attributes are computed. K-means 

clustering algorithm is then used to generate clusters to 

represent non-anomalous characteristics of moving objects in 

the train set. During the test, the blob features from test frame 

are compared with the centers of the clusters using 𝐿1 distance

metric. The dissimilar blobs are denoted as anomalous regions 

in the frame.  

In most recent works, deep convolutional neural networks 

(CNNs) have been employed to detect anomalies in crowd 

surveillance images owing to their superior performance in 

other computer vision tasks like object detection, image 

segmentation, image recognition, object tracking, etc. [22]. 

Ionescu et al. [23] employ pre-trained VGG- model [24] to 

encode appearance using conv5 layer of the network. 

Moreover, spatiotemporal derivates are used to encode motion 

patterns. K-means clustering and one-class SVM based model 

is trained on normal frames of train set to represent normal 

behavior. A simple threshold on SVM output yields frame-

level anomaly detection. CNN based autoencoders are widely 

employed in anomaly detection. Tran and Hogg [5] employ a 

winner-takes-all convolutional autoencoder for scene 

reconstruction. Further, one-class SVM is trained on motion 

features of autoencoder to model normal motion behavior 

from normal frames of the train set. On test frames, the output 

of one-class SVM is considered as the abnormality score. Xu 

et al. [6] propose variational autoencoder for appearance and 

motion encoding. A GMM based model trained on the latent 

feature space of proposed autoencoder is then used to detect 

anomalies at both pixel and frame levels. In a closely related 

work [25], two variational autoencoders are proposed to 

encode appearance and motion patterns. Then, a GMM based 

model is trained on the combined feature space, is used to 

detect anomalous frame and spatial localization of anomalous 

regions in the frame.  

It is evident from the above literature review that the 

appearance and motion patterns are generally encoded with the 

help of spatiotemporal slices and optical flow. But both 

representations are indeed noisy and unstable over the length 

of a video [26]. It is also apparent that visual saliency-based 

methods are commonly employed for anomaly detection in 

videos. However, a few works like [16] have employed 

frequency domain-based methods for visual saliency 

computation for anomaly detection in crowd surveillance 

videos. Therefore, in this work, the focus is on frequency 

domain based visual saliency computation to complement the 

existing methods. Additionally, a verification scheme to 

validate the potential anomalous regions in the saliency map is 

proposed contrary to many works where a simple threshold on 

the saliency map is applied to yield anomalous objects.  

3. PROPOSED FRAMEWORK

In this section, the details of the proposed two-stage 

framework for crowd anomaly detection consisting of 

hypotheses generation stage and verification stage are 

presented. In summary, the hypotheses generation stage is a 

saliency detector employing Hypercomplex Fourier 

Transform (HFT) and combines spatiotemporal derivatives. 

The verification stage is a Gaussian Mixture Model (GMM) 

employed to validate the potential anomalous regions in the 

saliency map. All blocks of the proposed framework have been 

depicted in Figure 2. 

Figure 2. The block diagram of the proposed framework 

3.1 Hypercomplex Fourier transform 

In image processing, the traditional Fourier transform takes 

real valued pixel intensities as input. For multichannel images 

such color images, the Fourier transform is usually applied to 

each channel individually and does not combine multichannel 

information. Ell and Sangwine [27] proposed a variant of 

Fourier transform called Hypercomplex Fourier Transform 

(HFT) by representing the color image in the quaternion form. 

Following their seminal work, subsequent works have 

employed HFT for various applications including visual 

saliency computation [14, 28] and image and video 

compression [15]. 
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In general, a hypercomplex image using quaternion 

representation is written as: 

𝑓(𝑥, 𝑦) =  𝑞1 + 𝑞2𝑖 + 𝑞3𝑗 + 𝑞4𝑘, (1) 

where, q1, q2, q3 and q4 are real numbers and i, j, k satisfy 

i2=j2=k2=ijk=-1.  

Now, the discrete HFT pair for a hypercomplex image of 

size M×N can be written as: 

ℱ(𝑢, 𝑣) =
1

√𝑀𝑁
∑ ∑ 𝑒−𝜌2𝜋(

𝑥𝑢

𝑁
+

𝑦𝑣

𝑀
)
𝑓(𝑥, 𝑦)𝑀−1

𝑦=0
𝑁−1
𝑥=0  (2) 

𝑓(𝑥, 𝑦) =
1

√𝑀𝑁
∑ ∑ 𝑒𝜌2𝜋(

𝑥𝑢

𝑁
+

𝑦𝑣

𝑀
)
ℱ(𝑢, 𝑣)𝑀−1

𝑣=0
𝑁−1
𝑢=0  (3) 

where, ρ is a unit pure quaternion and ρ2=-1. 

It is important to note that HFT is a generalization of 

traditional Fourier transform built on the generalization of 

Euler’s formula: eμθ=cos(θ)+μsin(θ). In general, the input to 

the HFT can be considered as a multi-channel or vector-valued 

signal and the HFT makes use of correlations between the 

channels to express the relationship between them in the 

frequency domain. The ability to express mutual information 

between channels makes it extremely useful in computer 

vision applications where it is customary to compute multiple 

features from the input image. In this work, the HFT has been 

applied to extract salient information in spatial and temporal 

derivatives of images as discussed in the next section. 

Moreover, like traditional Fourier transform, the HFT has 

similar properties like linearity, scaling, time reversal, 

modulation, convolution, etc., and are expressed with 

transform pairs but applied to multi-channel or vector-valued 

signals. The focus of this work is on the application of the HFT 

for saliency detection. For complete derivation and properties 

of HFT, more information may be found in Ref. [29].  

3.2 Saliency detector 

In crowd anomaly detection, the objective is to identify 

irregular appearance and motion patterns which are not 

dominant in a video frame. In other words, the objective is to 

detect salient regions in the video frame caused by the 

appearance and motion of anomalous objects. The proposed 

saliency detector is influenced by the work on visual saliency 

computation in natural images by Li et al. [14]. For a multi-

channel or multi-feature image, the input to HFT is defined as 

follows: 

𝑓(𝑥, 𝑦) =  𝛼1𝑓1 + 𝛼2𝑓2𝑖 + 𝛼3𝑓3𝑗 + 𝛼4𝑓4𝑘, (4) 

where, α1 to α4 are weights and f1 to f4 are different channels 

or features of input image.  

Let I(x, y, t) denote a video frame at time instant t, spatial 

derivates Ix and Iy and temporal derivative It are computed 

numerically using finite difference approximation. The 

spatiotemporal derivates [𝐼𝑥 ≜
𝜕𝐼

𝜕𝑥
, 𝐼𝑦 ≜

𝜕𝐼

𝜕𝑦
, 𝐼𝑡 ≜

𝜕𝐼

𝜕𝑡
]  serve as 

the multi-feature input to HFT with f2=Ix, f3=Iy, and f4= It in the 

form of a pure quaternion with 𝑓1 = 0. The selected values of

α1=0, α2=0.25, α3=0.25 and α4=0.5 in this work for all 

experiments give equal weights to spatial and temporal 

derivatives. For saliency computation, the HFT of the 

quaternion f(x, y) using Eq. (2) is computed which is also a 

quaternion and corresponds to the frequency domain 

representation of f(x, y). Let A(u, v), ϕ(u, v) and β(u, v) denote 

amplitude spectrum, phase spectrum and eigenaxis spectrum 

respectively, the HFT can be written as a quaternion and 

corresponding polar forms as: 

ℱ(𝑢, 𝑣) = 𝐹1 + 𝐹2𝑖 + 𝐹3𝑗 + 𝐹3𝑘 

 = 𝐴(𝑢, 𝑣)𝑒𝛽(𝑢,𝑣)𝜙(𝑢,𝑣) (5) 

The amplitude A(u, v), phase ϕ(u, v) and eigenaxis β(u, v) 

spectrums are computed using the quaternion algebra in the 

following way: 

𝐴(𝑢, 𝑣) = |ℱ(𝑢, 𝑣)| = √𝐹1
2 + 𝐹2

2 + 𝐹3
2 + 𝐹4

2

𝛽(𝑢, 𝑣) = (𝐹2𝑖 + 𝐹3𝑗 + 𝐹4𝑘) √𝐹2
2 + 𝐹3

2 + 𝐹4
2⁄

𝜙(𝑢, 𝑣) = 𝑡𝑎𝑛−1 (√𝐹2
2 + 𝐹3

2 + 𝐹4
2 𝐹1⁄ )

(6) 

where, |. | denote the modulus of quaternion. 

The amplitude spectrum A(u, v) contains critical 

information about the scene. It is noteworthy that it contains 

information regarding both salient and non-salient regions due 

to the global nature of the transform and is therefore filtered 

using a lowpass filter with suitable scale to compute saliency 

while phase and eigenaxis spectrums are not modified. For this 

purpose, a set of Gaussian lowpass filters of the following type 

is proposed by Li et al. [14].  

𝑔(𝑢, 𝑣, 𝑙) =  𝐺𝑒−(𝑢2+𝑣2) (0.25∗22𝑙−1)⁄ , 𝑙 = 1, … , 𝐿 (7) 

where, l is the scale parameter; L is the number of scales and 

is equal to ⌈log2 min(M,N)⌉+1 for a frame size of M×N; G is 

the normalization factor such that the sum of filter kernel is 1. 

The filtered amplitude spectrum denoted as 𝐴̃(𝑢, 𝑣, 𝑙)  is 

computed using the convolution of amplitude spectrum with 

the set of Gaussian filters g. Mathematically, 

𝐴̃(𝑢, 𝑣, 𝑙) = 𝐴(𝑢, 𝑣) ∗  𝑔(𝑢, 𝑣, 𝑙), 𝑙 = 1, … , 𝐿 (8) 

The above equation generates multiple amplitude spectrums 

corresponding to different scales. The objective of filtering is 

to suppress the non-salient regions while the scale-based 

filtering preserves the salient regions. Following [14], a set of 

saliency maps using filtered amplitude spectrums, unchanged 

phase and eigenaxis spectrums and inverse HFT (Eq. (3)) is 

computed as follows: 

𝑆̃(𝑥, 𝑦, 𝑙) = |ℱ−1[𝐴̃(𝑢, 𝑣, 𝑙)𝑒𝛽(𝑢,𝑣)𝜙(𝑢,𝑣)] |
2

,

 𝑙 = 1, … , 𝐿 
(9) 

In the next step, the best scale (l*) for the saliency from the 

L possible scales, is selected using the entropy-based criterion 

of Li et al. [14]. According to this criterion, saliency map 

having the lowest entropy is the best where entropy is 

computed using the histogram of saliency map. The final 

saliency map S(x, y) is computed by applying a Gaussian filter 

h of fixed scale to the selected saliency map. Mathematically, 

the operation can be written as:  

𝑆(𝑥, 𝑦) = ℎ ∗ 𝑆̃(𝑥, 𝑦, 𝑙∗) (10) 

The objective of applying the Gaussian filter h is to combine 

under-segmented regions in the saliency map for the 
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hypotheses generation which are further validated in the 

verification stage. The default scale of the filter is set to 

0.05×N following the work of Li et al. [14] in the experiments. 

Though the proposed saliency detector follows the method of 

Li et al., it has been employed for anomaly detection using 

spatiotemporal derivates owing to the nature of the task at 

hand contrary to intensity and color-based features employed 

by them for visual saliency computation in natural scene 

images.  

3.3 Verification method 

The saliency detector described in the previous section 

yields a single saliency value for each pixel in a frame i.e., S(x, 

y) in an unsupervised manner. The higher values in the

saliency map are the potential anomalous pixels belonging to

an object. Therefore, to capture the characteristics of an

anomalous object in a frame, a threshold (γ) must be applied

to obtain a segmented saliency map (using the generated

binary map). However, the selection of this threshold is

dependent on the scene content and range of saliency values

are not known in advance. Moreover, a local estimate is

required to respect the real-time constraint in surveillance

video streams. A local heuristic based on maximum of the

saliency values in a map is proposed in this work. Specifically,

γ= 0.5×max(S(x,y)) has been set in all the experiments. The

generated hypotheses in the form of segmented saliency map

may contain false alarms and therefore, a verification method

is required to validate them.

Recall that the threshold (γ) produces a binary image from 

the saliency map. Connected components in the binary image 

using 8-connectivity are determined for further analysis. 

Connected components with an area less than 15 pixels and 

more than 1/4th of the frame size, are filtered as connected 

components of this size do not represent anomalous regions. 

Moreover, connected components with significant motion 

obtained using temporal derivative It are considered. Next, for 

each connected components defined by its bounding box and 

by using the corresponding saliency values, four statistical 

features namely mean, variance, maximum and entropy of 

saliency values are computed to generate a 4-dimensional 

feature vector z. 

The train set is composed of normal frames. The four 

statistical features are extracted from the complete train set and 

are modeled by a GMM (Eq. (11)) by assuming that the 

features follow 4-dimensional multi-modal Gaussian 

distribution 𝒩(𝝁𝑐, 𝚺𝑐) with mean vector μc, and covariance

matrix Σc. In the proposed implementation, full-covariance 

matrix is used. The task of learning is to compute the mixture 

coefficients πc, mean vectors μc and covariance matrices Σc 

using the given feature set {𝒛𝑛}
𝑛=1

𝑁𝑓
 where Nf is total number of

examples. The features are standardized to have zero mean and 

unit variance before the training. The GMM is initialized with 

K-Means++ algorithm and trained using the Expectation-

Maximization algorithm [30].

𝑝(𝒛𝑛) = ∑ 𝜋𝑐
𝐶
𝑐=1 𝒩(𝒛𝑛|𝝁𝑐 , 𝚺𝑐)  (11) 

One of the important considerations during the training of 

GMM is the number of Gaussian components (C) in the 

mixture. In general, it is not trivial to know the number of 

Gaussian components (C) in the mixture for a given task. 

Moreover, many components in the mixture lead to overfitting. 

To find the optimal value of C, the Bayesian Information 

Criterion (BIC) for model selection [30] is employed. In 

general, a lower BIC value corresponds to best fitted model.  

In the test phase, the trained GMM model is applied to 

features extracted from the connected components from 

saliency map of a test frame and probability density function 

(pdf) p(zn) using Eq. (11) is computed. Connected components 

with small pdf values correspond to the anomalous regions as 

the GMM model is trained to learn normal appearance and 

motion behaviors. The output of this stage is an anomaly score 

map. 

4. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed 

framework for hypotheses generation and verification 

framework have been given. Additionally, the description of 

the benchmark dataset, evaluation criteria and implementation 

details are also presented.  

4.1 UCSD anomaly dataset 

In this work, the most commonly used single-scene video 

dataset for crowd anomaly detection known as UCSD anomaly 

dataset has been considered. It is available online at 

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html and 

was introduced by Mahadevan et al. [8]. The dataset is 

composed of two subsets: Ped1 and Ped2. Each subset records 

a pedestrian walkway scenario with a single stationary camera 

in gray scale and the crowd density is not fixed. Pedestrians 

are moving towards or away from the camera in Ped1 while 

they are moving parallel to the camera plane in Ped2. Common 

occurring anomalous events are categorized as “bikers”, “cart”, 

“wheelchair”, “skaters”, “walk across” and “others”. All 

anomalies occur naturally and are not staged. There are a total 

of 6800 frames in 34 train videos and 7200 frames in 36 test 

videos in Ped1. In other words, each video in subset is 

composed of 200 frames. Moreover, the frame size is 158 x 

238 pixels. The subset Ped2 contains a total of 2550 frames in 

16 train videos and 2010 frames in 12 test videos. The number 

of frames varies from 120 to 180 in videos of the subset and 

the frame size is 240 x 360 pixels. Both frame-level (indices 

of anomalous frames) and pixel level (binary maps) ground 

truths are provided in the dataset. In its initial version of the 

dataset, pixel-level ground truth for Ped1 was available only 

for 10 test videos. Later, Antić and Ommer [21] completed the 

pixel-level ground truth. In this work, results using the 

complete pixel-level ground truth are reported. 

4.2 Evaluation criteria 

There are two widely used criteria for performance 

evaluation of an anomaly detector: 1) frame-level criterion; 2) 

pixel-level criterion. In both criteria, at a given threshold for 

the output of detector (anomaly score map) true positive rate 

(TPR) and false positive rate (FPR) are computed using Eq. 

(12). The threshold is varied to generate Receiver Operating 

Characteristic (ROC) curve using TPR and FPR. To 

summarize the ROC curve, two metrics namely Area Under 

the Curve (AUC) and Equal Error Rate (EER) are computed.  

TPR =
number of true positives frames

total number of positive frames

FPR =
number of false positives frames

total number of negative frames

(12) 
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In frame-level criterion, a frame is considered as anomalous 

if a single pixel in the score map is marked as anomalous. 

Using this principle, true positives and false positives are 

counted with the help of ground truth and TPR and FPR are 

computed. In other words, the frame-level criterion deals with 

the temporal detection of anomalous events and does not take 

into consideration the spatial localization of anomalous objects 

in a frame.  

Pixel-level criterion compliments the frame-level criterion 

and measures the accuracy of detector by considering the 

spatial localization of anomalous objects in a frame. To qualify 

as a true positive, a frame must be anomalous according to the 

ground truth and have at least 40% pixels marked as 

anomalous in the score map compared against the pixel-level 

ground truth. A frame is considered as a false positive if a 

frame is normal according to the ground truth and has a single 

pixel marked as anomalous in the score map. After counting 

the true and false positives, TPR, FPR, AUC and EER are 

computed.  

4.3 Detection results 

As mentioned earlier, the saliency detector in the proposed 

framework indicates potential anomalous regions in its output 

map. To validate the potential regions, connected components 

and statistical features from the output map are computed as 

explained in section 3.3. Next, a GMM is trained using the 

normal frames in the train set. For Ped1 and Ped2 set, a total 

of 6078 and 1062 connected components are extracted. To 

obtain optimal number of components (C) in the mixture, 

GMM models are trained by varying the number of 

components from 2 to 20 and model selection using BIC 

criterion is performed. The maximum number of iterations for 

training the GMM is set to 1000 in the experiments. The final 

GMM models are composed of 6 components each for Ped1 

and Ped2 subsets. 

The quantitative results in terms of ROC curves of the 

proposed framework are shown in Figures 3 and 4. To 

summarize the ROC curves, the AUC and EER metrics are 

used for frame-level and pixel-level criteria. The frame-level 

AUC for Ped1 and Ped2 are 67.7% and 84.1% respectively 

while the corresponding EER scores are 37.6% and 22.7%. 

The pixel-level AUC for Ped1 and Ped2 are 49.3% and 74.6% 

respectively with 53.7% and 35% as EER scores.  

Figure 3. Frame-level ROC curves on UCSD dataset 

Figure 4. Pixel-level ROC curves UCSD dataset 

Quantitative results with five existing methods are reported 

in Tables 1 and 2. All methods listed for the comparison 

employ statistical models like ours to have a fair comparison. 

Considering the frame-level criterion (see Table 1), the 

proposed framework achieved competitive AUC and EER 

compared to Fixed-Location Monitors [12] and Social Force 

[11] on Ped1 subset. But the performance is superior to these

methods on Ped2 subset by more than 20%. Moreover, the

results of the proposed framework is comparable to Mixture of

Dynamic Textures (MDT) [18] and Foreground Occupancy

and Optical Flow (FOOF) [13] on Ped2 subset. The proposed

framework lags behind Histogram of Magnitude and

Momentum (HoMM) [7] by 14.6% on Ped1 and 10% on Ped2

in terms of AUC. Considering the pixel-level criterion (see

Table 2), the performance of the proposed framework is better

than Fixed-Location Monitors, Social Force and MDT on both

Ped1 and Ped2 subsets while competitive results are obtained

compared to FOOF on Ped2 subset. The HoMM achieves the

best results in terms of AUC and EER on both subsets.

Compared to the proposed framework, the HoMM exceeds by

22.2% on Ped1 subset and 9.3% on Ped2 subset in terms of

AUC.

Qualitative results on Ped1 and Ped2 subsets are also 

provided in Figure 5. Each row in the figure shows the 

detection of anomalies (biker, cart, skater) in different frames 

of the subsets. It can be observed that the proposed framework 

is able to detect different anomalies in both Ped1 and Ped2 

subsets. Additionally, multiple anomalies are detected as seen 

in row # 3 (frames 4 and 5) and row # 4 (frames 3 and 4). It 

can also be observed that some false alarms (row # 1 (frame 

1), row # 2 (frame 2) and row # 4 (frame 4)) in addition to 

correct detections. 

Table 1. Frame-level evaluation on UCSD dataset 

Method 

Subset 

Ped1 Ped2 

AUC(%) EER(%) AUC(%) EER(%) 

Fixed-Location 

Monitors [12] 
65.0 38.0 63.0 42.0 

Social Force [11] 67.5 31.0 63.0 42.0 

MDT [18] 81.8 25.0 85.0 25.0 

FOOF [13] - 21.2 - 19.2

HoMM [7] 82.3 21.4 94.1 13.2

Ours 67.7 37.6 84.1 22.6
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Table 2. Pixel-level evaluation on UCSD dataset 

Method 

Subset 

Ped1 Ped2 

AUC(%) EER(%) AUC(%) EER(%) 

Fixed-Location 

Monitors [12] 
46.1 - 18.0 - 

Social Force [11] 19.7 - 21.0 - 

MDT [18] 44.1 - 44.0 - 

FOOF [13] - 39.7 - 36.6

HoMM [7] 71.5 34.0 83.8 20.0

Ours 49.3 53.7 74.5 35.0

Figure 5. Qualitative results on Ped1 (row #1 and #2) and 

Ped2 (row #3 and #4) subsets 

4.4 Implementation details 

The proposed framework is implemented using MATLAB® 

running on a laptop equipped with Intel-i7 CPU at 2.6 GHz 

and 16 GB memory. The Quaternion toolbox for MATLAB 

(available at https://qtfm.sourceforge.io/) is used for the HFT 

computation which is based on Fast Fourier Transform (FFT). 

The proposed implementation has been inspired by ref. [14] 

and resizes images to 128 x 128 pixels before feeding them as 

input to the HFT for computational efficiency. Special 

optimizations such as C/C++ Mex function, etc., are not 

considered in the proposed implementation but the current 

implementation is able to process 20 frames per second. The 

training and evaluation code are available on 

https://github.com/mshehzadhanif/crowd_anomaly_detection. 

5. CONCLUSIONS AND FUTURE DIRECTIONS

A two-stage framework is proposed for crowd anomaly 

detection in single-scene surveillance videos in this article. 

The first stage is a saliency detector which yields candidate 

anomalous regions. The proposed saliency detector employs 

spatiotemporal derivatives and Hypercomplex Fourier 

Transform to generate a saliency map. The second stage is a 

verification method employed to validate the anomalous 

regions in the saliency map. Connected components are 

extracted from the saliency map using a threshold and four 

statistical features for each connected component are 

computed. A Gaussian Mixture Model is trained on normal 

frames of train set to learn the normal behavior and is 

employed on test frames to detect anomalies. The results on 

UCSD benchmark dataset for anomaly detection show the 

effectiveness of the proposed method.  

The current work considers scene-dependent (single-scene) 

surveillance videos for anomaly detection. It is planned to 

extend the proposed framework to scene-independent anomaly 

detection for future work. 
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NOMENCLATURE 

f(x, y) hypercomplex image 

F(u, v) HFT of hypercomplex image f(x, y) 

q1 , …,q4

F1, … , F4

quaternion components  

I(x, y, t) image at time instant t 
Ix, Iy, It Spatiotemporal derivatives 

f1, … , f4 feature maps 

A(u, v) 

Ã(u, v, l) 

amplitude spectrum 

g(u, v, l) Gaussian filter at scale l 
S(x, y) 

S̃(x, y, l) 

saliency map 

h Gaussian filter (fixed scale) 

{zn}n=1
Nf feature set with Nf examples

πc component proportion in GMM 

p(zn) probability density function 

Greek symbols 

ρ, μ unit pure quaternion 

α1, … , α4 weights of feature map 

β(u, v) eigenaxis spectrum 

ϕ(u, v) phase spectrum 

γ threshold of saliency map 

μc mean vector of component in GMM 

Σc covariance matrix of component in GMM 
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