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Most of the existing k-medoid algorithms select the initial medoid randomly or use a 

specific formula based on the proximity matrix. This study proposes a block-based k-

medoids partitioning method for clustering objects. To get the initial medoids, we 

search for an object representative from the block of the standard deviation and the sum 

of the variable values. We optimized the initial groups to update medoids, so this step 

can reduce the number of iterations to obtain partitioned data. The block-based k-

medoids partitioning method applies to all types of data. To improve clustering 

accuracy, we operate pre-processing through data standardization. We conducted a 

series of experiments on eight real data sets and three artificial data to evaluate the 

proposed method's performance in terms of clustering accuracy. The experiment results 

show that the Block-based K-Medoids partitioning is more efficient in reducing the 

number of iterations. The clustering accuracy of the Block-KM for eight real datasets 

is also comparable to other methods. The data standardization is effective to increase 

clustering accuracy, especially for block k-medoids, k-means, simple and fast k-

medoids, and the Ward method.  
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1. INTRODUCTION

There are two great statistics and computer science lessons: 

classification or supervised learning and clustering or 

unsupervised learning [1]. The emphasis of classification is on 

deriving a rule to assign new objects into a class [1-3]. 

Meanwhile, the principle of clustering is done based on 

similarities or distances (dissimilarities) [1, 2]. The inputs 

required in clustering are a measure of similarity or data that 

can be calculated for proximity. The k-medoids algorithm is 

one of the most well-known clustering methods. This method 

is more robust to noises or outliers than the k-means clustering 

[4]. One critical problem in the k-medoids algorithm is 

determining the initial medoids [5-7]. Simple and fast k-

medoids (SFKM) and simple k-medoid (SKM) as medoid-

based algorithms have been proposed [5, 7]. Both algorithms 

use a distance matrix to select the initial medoids with a 

specific formula. When medoids are non-unique objects, the 

SFKM algorithm suffers from possible empty clusters, and in 

the SKM algorithm, similar things may be in different groups. 

The first phase of the flexible k-medoids (FKM) ensures that 

no initial groups are empty and the medoids of identical 

objects are in the same groups [8]. Another issue in k-medoids 

clustering is the unpredictable number of iterations. The 

complexity of k-medoids clustering or Partitioning Around 

Medoid (PAM) is quadratic time, namely, 𝑂(𝑘(𝑛 − 𝑘)2) [4,

5]. For this reason, some investigations have been conducted 

to reduce running time in k-medoids clustering [5, 9-11]. 

Reference [9] modifies the PAM algorithm that achieves an 

O(k)-fold speedup in the second phase of the algorithm by 

eagerly performing additional swaps in each iteration. The 

SFKM algorithm uses one initialization, namely objects in the 

initial group to update the medoid [5]. In contrast, the SKM 

method suggests twenty times initialization [7]. Like the SKM, 

the FKM algorithm randomly implements five to fifteen times 

to update the medoid based on the initial group members [8]. 

The purity algorithm uses the Davies-Bouldin Index to analyze 

groups to reduce the number of iterations in k-medoids [10], 

making this method suitable for numerical data. Hybridization 

of k-medoids with the crow search algorithm's characteristics 

(KMCSA) has been developed to eliminate the computational 

burden of the k-medoids algorithm. The KMCSA algorithm is 

claimed to be able to improve the balance between the 

exploration and exploitation processes of the k-medoids 

algorithm [11]. On the other hand, several real datasets in 

cluster analysis have mixed variables between categorical and 

numerical data. To overcome these data, one of which can 

standardize to adjust the size of variables (magnitude) and 

relative weight [12]. 

The proximity (similarities or distances) between objects is 

calculated based on the data type. There are four data types in 

cluster analysis: nominal, ordinal, interval and ratio scale [4]. 

The basic rules in the measurement theory are the data results 

of the measurement on the stronger scale can be transformed 

into numbers on the weaker scale. The transformation from a 

lower to a larger scale is not permitted [4]. A general guideline 

in statistics is that the function for measuring lower data can 

be used for data on a larger scale. In some multivariate 

statistical methods, including cluster analysis, it is often useful 

when the measurement scales of all variables are either the 

same or at least similar. The allowed transformations on 

numerical data are linear transformations with a 
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standardization formula as follows [12], 

 

𝑧𝑖𝑗 = 𝑏𝑥𝑖𝑗 + 𝑎 (𝑏 > 0) (1) 

 

where, 𝑥𝑖𝑗(𝑧𝑖𝑗) denotes the value (standardized value) of the 

𝑗-th variable for 𝑖-th object. The value that is often used is 𝑏 =
1

𝜎
 and 𝑎 = −

𝜇

𝜎
, so that Eq. (1) can be rewritten as follows: 

 

𝑍𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇

𝜎
 (2) 

 

The transformation for the ratio scale also uses the value of 

𝑏 =
1

𝑥0𝑗
 and a=0, where 𝑥0𝑗  denotes normalizing value, 

depending on cases that are met, for example, range, the 

maximum value of a variable, standard deviation, or mean. 

Meanwhile, the rank-based transformation is used for ordinal 

data [13].  

In this research, we propose new method to reduce the 

number of iterations in the k-medoids algorithm. We use 

artificial data and eight real datasets from the University of 

California, Irvine (UCI) repository to evaluate the proposed 

method. This study also aims to examine the effectiveness of 

data standardization in increasing clustering accuracy. At the 

same time, we apply five of eight real datasets to compare the 

clustering accuracy between non-standardized data and 

several standardization methods. We implemented the 

partitioning methods (including the proposed method) and 

hierarchical clustering to achieve the second goal.  
 

 

2. TRANSFORMATION METHOD AND PROXIMITY 

MEASURE 
 

Pre-processing is one of the important stages in data 

analysis which often improves the quality of the results of a 

method [12-16]. In cluster analysis, pre-processing can be 

done with transformations to standardize data [12, 13, 16]. 

This paper uses Eq. (2) to standardize numerical data. We also 

use the transformation method to convert several numerical or 

ordinal data concerning the value of around the variable range.  

The transformation for the non-missing ordinal, interval, 

and ratio scale, is in two steps below [8]:  

(i) Rank 𝑛 objects for variable l-th (two equal values receive 

the same rank), namely, 𝑥1𝑙 ≤ 𝑥2𝑙 ≤ ⋯ ≤ 𝑥𝑛𝑙 to 𝑟1𝑙 ≤
𝑟2𝑙 ≤ ⋯ ≤ 𝑟𝑛𝑙. 

(ii) Transform to the interval [0, f] in the following way,  
 

𝑧𝑙𝑖 = 𝑓. (
𝑟𝑙𝑖 − 𝑟𝑙1

𝑟𝑙𝑚 − 𝑟𝑙1

) ;  𝑖 = 1, 2, . . . , 𝑛 (3) 

 

where, 𝑟𝑙𝑖  is data rank for object i-th variable l-th, 𝑟𝑙1  is the 

smallest rank for variable l-th, 𝑟𝑙𝑚  is the highest rating for 

variable l-th, and the value of f is the transformation multiplier 

as a weight for standardization.  
 

The rationale of Eq. (3) is as follows: 

(a) The deductor of the numerator and the denominator use 

the smallest ranking value of the l-th variable. The 

reason is to ensure that the lowest transformation result 

is zero and the highest is f.  

(b) The value of f is determined flexibly around the range, 

or maximum data of other controlled variables, or a 

pre-determined value for a certain reason. The rationale 

of this value is to adjust the size (magnitude) and 

relative weighting of the input variables. Determining 

factors f, flexibly allows the researcher to select one 

variable as standard so that the early information can 

retain as much as possible.  

 
For numerical data, we also add the multiplier of f as follows,  

 

𝑧𝑙𝑖 = 𝑓. (
𝑋𝑙𝑖 − 𝑚𝑖𝑛(𝑥𝑙)

𝑚𝑎𝑥(𝑥𝑙) − 𝑚𝑖𝑛(𝑥𝑙)
) , 𝑖 = 1, 2, . . . , 𝑛 (4) 

 
where, 𝑚𝑖𝑛(𝑥𝑙) is the smallest value of variable l-th, 𝑚𝑎𝑥(𝑥𝑙) 

is a largest value of variable l-th, and the value f is the 

multiplier transformation such as Eq. (3) [17]. In this paper, 

we apply f=5 for the numerical data set and f=1 for mixed 

variables with binary domination either for Eq. (3) or Eq. (4). 

The proximity measure for binary or multinominal data is a 

simple matching coefficient [18]. Suppose two objects i and j 

are observed on p discrete random variables of binary or 

multinominal type, respectively, denoted by 0 (zero) and 1 

(one). Suppose the value of 𝑎 and the value of 𝑑 indicate the 

same frequency of data (matches), i.e. both objects 𝑖  and 

object j, have category 0 (zero) as much as a, and category 1 

(one) as much as d. On the other hand, the value of 𝑏 and the 

value of c show the frequency of data that is not the same 

(mismatches). In simple terms, if the frequency a and 

frequency d are added together, the result is close to the 

number of variables, then object i and object j are more similar. 

If a+d=p, then the objects i and j are said to be identical. Then, 

in this paper, we use Euclidean distance for numerical data, 

including for transformation data from Eq. (3) or Eq. (4), as 

follows [4],  

 

𝑑𝑖𝑗 = [∑(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2

𝑝

𝑙=1

]

1
2

, 𝑖 = 𝑗 = 1,2, . . . , 𝑛 (5) 

 

where, 𝑑𝑖𝑗  is distance object i and object j. 

We also apply the Manhattan distance for numerical data, as 

follows [4]:  

 

𝑑𝑖𝑗 = ∑|𝑥𝑖𝑙 − 𝑥𝑗𝑙|,

𝑝

𝑙=1

𝑖 = 𝑗 = 1,2, . . . , 𝑛 (6) 

 
In addition, we implement the Canberra distance for 

numerical data, too, as follows [14]: 

 

𝑑𝑖𝑗 = ∑
|𝑥𝑖𝑙 − 𝑥𝑗𝑙|

|𝑥𝑖𝑙| + |𝑥𝑗𝑙|
, 𝑖 = 𝑗 = 1,2, . . . , 𝑛

𝑝

𝑙=1

 (7) 

 

Furthermore, we apply the Esimma Generalized Distance 

Function (Esimma GDF) between object i and j for non-

missing mixed data as follows [4, 19]: 

 

𝑑𝑖𝑗 = ∑ 𝛿𝑏(𝑥𝑖𝑠 , 𝑥𝑗𝑠)

𝑝𝑏

𝑠=1

+ ∑ 𝛿𝑐(𝑥𝑖𝑡 , 𝑥𝑗𝑡)

𝑝𝑐

𝑡=1

+ ∑ 𝛿𝑛(𝑥𝑖𝑞 , 𝑥𝑗𝑞)

𝑝𝑛

𝑞=1

 

(8) 
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3. CLUSTERING METHOD AND ITS EVALUATION  

 

3.1 Hierarchical method 

 

There are two general clustering methods: the hierarchical 

(agglomerative) method and the partition method. The steps in 

the agglomerative clustering for n objects are as follows [2], 

(i) Start with n clusters, each containing a single entity and 

an n x n symmetric matrix of distances.  

(ii) Search the distance matrix for the nearest pair of clusters. 

Let the distance between "most similar" clusters U and 

V be 𝑑𝑈𝑉. 

(iii) Merge clusters U and V. Label the newly formed group 

(UV) and update the distance matrix. 

(iv) Repeat steps (ii) and (iii) a total of (n-1) times. 

In this paper, for step (iii), the distances between (UV) and 

other clusters W used average linkage, centroid linkage, 

complete linkage, weighted average linkage (McQuitty), and 

Ward's method [2].  

 

3.2 Partitioning method (proposed)  

 

For the partitioning method, we use k-means [20], simple 

and fast k-medoids [5], and modification of flexible k-medoids 

(proposed method). Reference [8] shows that a representative 

object of the block of the combined standard deviation and the 

sum of variable values as the initial medoids guarantees no 

empty initial groups.  

In this paper, we modify the second stage of the flexible k-

medoids. We adopted ideas from the second and third phases 

of SFKM to develop it. As the flexible k-medoids, the newly 

proposed method uses an object representative of the block of 

the standard deviation and the sum of variable values as initial 

medoids. We call the new way a block based k-medoids 

(Block-KM). To construct the Block-KM method, we define 

some parameters.  

Suppose we have n objects with p-variables of numerical or 

categorical or mixed, then the standard deviation for an object 

𝑖 with 𝑝-variables is as follows [8]: 

 

𝑢𝑖 = √
∑ (𝑥𝑖𝑙 − 𝑥̅𝑖)

2𝑝
𝑙=1

𝑝 − 1
 (9) 

 

where, 𝑥̅𝑖 = 𝑤𝑖/𝑝 ; with 𝑤𝑖  is sum up of p-variables values as 

follows, 

 

𝑤𝑖 = ∑ 𝑥𝑖𝑙

𝑝

𝑙=1

 (10) 

 

where, i=1, 2, ⋯, n; l=1, 2, ⋯, p. These parameters are used as 

a guide for selecting the initial medoids.  

The average distance within cluster g-th, which has 𝑛𝑔 

members for an object i-th, 𝐷̅𝑖, defined as follows: 

 

𝐷̅𝑖 =
1

𝑛𝑔

 ∑ 𝑑𝑖𝑗

𝑛𝑔

𝑗=1

 (11) 

 

The total distance from all objects to their medoids, TD(k), 

is defined as follows, 

𝑇𝐷(𝑘) = ∑  ∑ ∑ |𝑥𝑔𝑖𝑙 − 𝑚𝑔𝑙|
𝑝
𝑙=1

𝑛𝑔

𝑖=1
𝑘
𝑔=1    (12) 

 

where, 𝑥𝑔𝑖𝑙  is object i-th for variable l-th in the cluster g-th; 

and 𝑚𝑔𝑙 is medoid cluster g-th for variable l-th.   

 

 
 

Figure 1. Flowchart of block k-medoids 

 

Based on Eq. (9) to Eq. (12), then the flowchart of the 

Block-KM algorithm such in Figure 1. The detail of the 

algorithm is as follows,  

Stage 1: Selection of the initial medoid 

1-1 For each object, 𝑖,  (i=1, 2, ⋯ ,n) calculated two 

parameters, Eq. (9) and Eq. (10). 

1-2 Arrange all objects, first based on Eq. (9), 𝑢𝑖 ,  in 

ascending order, then each block of the same standard 

deviation (if any), objects are sorted based on Eq. (10), 

𝑤𝑖 , also in ascending order.  

1-3 For the first 𝑘 blocks of the combination of 𝑢𝑖 and 𝑤𝑖  

(or may only block of 𝑢𝑖); select the first object from 

each block as the initial medoid.  

1-4 Determine the members of k initial groups based on the 

distance of an object to the nearest medoid. 

Stage 2: Finding the partitioned dataset 

2-1 Update the current medoid in each cluster based on the 
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object that minimizes the average distance to other 

things in its group.   

2-2 Obtain the cluster by assigning each object to the 

nearest medoid and calculate TD(k).  

2-3 Repeat steps 2-1 and 2-2 until the TD(k) is equal to the 

previous one or a pre-determined number of iterations 

is attained, or the set of medoids does not change.  

The novelty of Block-KM is the step for finding the 

partitioned dataset in the second stage. This process is easy 

because it uses one combination of initial medoids from the 

first stage (one initialization). The first phase of Block-KM is 

similar to the FKM (an illustrative example of the first stage 

[8]). The first phase of the Block-KM method indirectly 

grouped the data, especially when the data set consists of many 

identical objects or blocks of the same variance with the 

different sum of the values of the p-variables. In addition, in 

Block-KM, we always use the first object from the first 𝑘 

block of a combination of deviation and sum on p-variables.  

In comparison, the FKM or SKM algorithms randomly 

select the representative object as medoids. The Block-KM 

reduce the number of initialization from five (or more) to one 

time to obtain initial medoids. This step can reduce the number 

of iterations to achieve stability of total deviation. 

 

3.3 Evaluation Indexes 

 

We use clustering accuracy and adjusted Rand index to 

determine whether the two cluster results are similar. The 

clustering accuracy is defined as follows [21]: 

 

𝐴𝑐𝑐 =
1

𝑛
∑ 𝑎𝑔

𝑘

𝑔=1

 (13) 

 

where, n is the number of objects; k is the number of clusters; 

and 𝑎𝑔 is the number of objects in considered groups correctly 

assigned to the actual clusters. The range value of clustering 

accuracy is 0 (zero) to 1 (one). The larger this value, the better 

the accuracy. 

Suppose that C is a clustering result under consideration and 

P is the true partition [22], then formulated the Adjusted Rand 

Index (ARI) as follows: 

 

𝐴𝑅𝐼 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑏)(𝑏 + 𝑑) + (𝑎 + 𝑐)(𝑐 + 𝑑)
 (14) 

 

where, a is the number of pairs of the objects placed in the 

same cluster in P and in the same group in C; b is the number 

of pairs in the same class in P but not in the same cluster in C, 

𝑐 is the number of pairs in the same group in C but not in the 

same cluster in P, and d is the number of pairs in different 

groups in C and different classes in P. As with the clustering 

accuracy, the larger the ARI, the better the clustering results. 

We also apply the Purity and F-measure to evaluate the quality 

of the proposed method, especially for real datasets [23]. Both 

parameters have the same range and meaning with accuracy.  

 

 

4. ARTIFICIAL AND REAL DATA SET  
 

To evaluate the performance of a proposed method, we use 

eight real data sets from the UCI repository: the iris, wine, 

breast cancer, vote, soybean, heart disease (HD) case 2, credit 

approval, and zoo data set [24]. Then, we implemented five of 

eight real data sets to check the impact of data standardization 

on clustering accuracy.   

The iris dataset consists of 150 instances with four 

numerical variables and three clusters. Four features show the 

length and the width of the sepals and petals of iris flowers. 

The wine dataset resulted from a chemical analysis of wines 

grown from three different cultivars in the same region in Italy. 

The breast cancer data consists of five classes with 351 

instances and 30 numerical features. The vote data amount to 

232 house of representatives members of congress grouped 

into two clusters based on the 16 key votes binary attributes. 

The soybean small data consist of 47 items assigned to four 

clusters. This data has 35 variables; three have an ordinal type 

tendency: precip, temperature, and germination. Heart disease 

case 2 data contributed by University Hospital, Zurich, 

Switzerland. These data contain 76 attributes, but only 13 were 

used and assigned in two classes. The credit approval dataset 

comprises 653 non-missing credit card applications for two 

groups. These data involve 15 mixed variables, namely nine 

categorical and six numerical data. The zoo data set consists 

of 101 animals assigned to seven class types of animal, namely 

mammal, bird, reptile, fish, amphibian, bug and invertebrate. 

Fifteen of sixteen variables are boolean, and one numerical 

data (the number of animal legs). The profile of the real data 

set is listed in Table 1 [24].  

 

Table 1. Profile of the real datasets 

 
Data Set n 𝒑𝒏 𝒑𝒄 k Type 

1. Iris 

2. Wine 

3. Breast cancer 

4. Vote 

5. Soybean small 

6. HD case 2 

7. Credit approval 

8. Zoo 

150 

178 

569 

232 

47 

303 

653 

101 

4 

13 

30 

- 

- 

5 

6 

1 

- 

- 

- 

16 

35 

8 

9 

15 

3 

3 

2 

2 

4 

2 

2 

7 

Numerical 

Numerical 

Numerical 

Categorical 

Categorical 

Mixed 

Mixed 

Mixed 
n: number of objects; 𝑝𝑛 : number of numerical variables; 𝑝𝑐 : number of 

categorical variables; k: number of actual clusters 

 

We also construct the artificial data to evaluate the proposed 

method with categorical, numerical and mixed data 

characteristics. The first dataset consists of 200 objects 

assigned in two clusters with ten binary data. We took this data 

randomly from imitation of vote data using the first ten 

variables. At the same time, the second experiment has 400 

things with mixed types, i.e. one binary data, three ordinal data 

and one numerical data. We classified the second experiment 

into five classes. For the last trial, we arrange seven clusters 

with two numerical data and seven groups.  

 

 

5. RESULT AND DISCUSSION  

 

5.1 Experiment results of real data set  

 

In this subsection, we discuss the algorithm precision of 

block k-medoids (proposed method) in terms of clustering 

accuracy. We also analyze the efficiency of Block-KM based 

on the required number of iterations to obtain the stability of 

total deviation. We have tried several transform methods and 

distance measures. However, we only describe the way that 

produces maximum clustering accuracy.  
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We applied the Manhattan, Euclidean and Canberra for iris 

and wine datasets. The maximum clustering accuracy of iris 

data was 95.3% for Canberra. This accuracy obtained via 

transformation by Eq. (1) with the value of 𝑏 =
1

𝑠𝑗
 (where 𝑠𝑗 is 

standard deviation) and a=0 for iris data. Meanwhile, the 

maximum clustering accuracy for wine and breast cancer 

datasets was 95.5% and 93.5% for Euclidean distance. We 

transform via Eq. (3) for wine data and Eq. (4) for breast 

cancer data before calculating the Euclidean distance.  

We implement simple matching for all binary variables of 

vote data. The clustering accuracy of vote data is 86.6%. Then, 

we operate simple matching for 32 features of soybean small 

data. While; three of the 35 variables have an ordinal type 

tendency, so we transform by Eq. (3) before operating Eq. (6) 

and Eq. (8). With these terms, the clustering accuracy achieves 

a hundred per cent for soybean small data.  

For mixed datasets, we always use simple matching for 

categorical data. At the same time, we apply Manhattan or 

Euclidean distance for numerical data. Then, we use it to 

construct Eq. (8). The maximum accuracy of HD case 2 data 

was 82.8% via Manhattan distance for numerical data. We 

calculate the Euclidean distance for five numerical variables 

to get maximum accuracy of 82.8% in credit approval data. 

The maximum accuracy was 91.1% for zoo data. We 

transform one numerical variable in zoo data by Eq. (4) before 

executing Manhattan distance. We also implement the flexible 

k-medoids for eight real data sets with the same terms.  

The comparison of precision algorithms based on the 

clustering accuracy for eight real datasets; is shown in Table 2. 

This comparison may be unfair because the method and 

distance used may differ. However, for the same purposes, 

namely, to get a good clustering, we tried to validate our 

proposed method based on the level of accuracy. The accuracy 

values for seven datasets by block k-medoids are generally 

comparable with other methods.  
 

Table 2. The clustering accuracy of eight real datasets 
 

Data Set Block-KM Other methods 

1. Iris 

2. Wine 

3. Breast cancer 

4. Vote 

5. Soybean small 

6. HD case 2 

7. Credit approval 

8. Zoo 

95.3 

95.5 

93.5 

86.6 

100.0 

82.8 

82.8 

91.1 

92.0(a), 95.3(b), 97.3(c), 82.1(d) 

92.7(b), 95.5(c) 

93.5(c) 

87.8(b), 93.1(c) 

100(b,c,e), 98.9(d), 95.8(f) 

84.2(c), 81.2(d), 81.0(g), 

82.7(b), 82.8(c), 79.6(d), 81.2(g) 

82.2(b), 96.0(c), 88.8(d), 89.9(g) 
(a) Ref. [5], (b) Ref. [7], (c) Ref. [8], (d) Ref. [25], (e) Ref. [26], (f) Ref. 
[27], (g) Ref. [28] 

 

Table 3. The adjusted Rand index, Purity, and F-measure for 

real datasets 
 

Data Set ARI Purity F-measure 

1. Iris 

2. Wine 

3. Breast cancer 

4. Vote 

5. Soybean small 

6. HD case 2 

7. Credit approval 

8. Zoo 

0.868 

0.863 

0.760 

0.535 

1.000 

0.429 

0.431 

0.922 

0.953 

0.955 

0.972 

0.866 

1.000 

0.828 

0.828 

0.921 

0.953 

0.955 

0.972 

0.866 

1.000 

0.828 

0.828 

0.639 

 

To balance the evaluation of our proposed method, we 

calculate the adjusted Rand index, Purity and F-measure for 

eight real datasets. According to Table 3, the block k-medoids 

method produces high a Purity value for all real data sets. Then 

F-measure for iris, wine, breast cancer and soybean data is also 

high. Meanwhile, the F-measure value is less reliable for vote 

data with binary type and three real data sets with mixed-types, 

i.e., heart disease case 2, credit approval and zoo data. 

Furthermore, the adjusted Rand index is also high except for 

HD case 2 data, and credit approval data are not satisfied. Both 

datasets have mixed types with high variation.  

In addition, we implement the number of ten iterations for 

steps 2-3 in the second phase. Figure 2 shows the plot between 

the number of iterations and the total deviation within a group, 

TD(k), divided by TD(k) of the first iteration (based on initial 

groups). According to Figure 2, the total distance of vote, heart 

disease case 2, and credit approval data achieve stability on the 

second iteration. These datasets required two iterations to 

obtain the total deviation within the group, not changes. The 

total distance does not change on wine and zoo data on the 

second and next iterations. Breast cancer data needed four 

iterations to get the stability of the total distance. Meanwhile, 

the total distance of the iris and soybean small data in the 

fourth iteration was equal to the fifth and subsequent iterations.  

 

 
 

Figure 2. The plot of the total deviation weighted for each 

iteration of eight real datasets 

 

The maximum number of iterations is five times for eight 

real datasets. Thus, a block k-medoids partitioning method is 

shorter than the original flexible k-medoids and simple k-

medoids. The flexible k-medoids and simple k-medoids 

needed more than five times for initialization. Suppose the 

quality of the initial medoids of both algorithms is good. In 

that case, the number of iterations for each initialization may 

be similar to Block-KM, i.e., one to five iterations to obtain 

the stability of total deviation.  

 

5.2 Experiment results of artificial data set  

 

This subsection demonstrates the average adjusted Rand 

index and the number of iterations for artificial data. Although 

the number of iterations has no direct effect on clustering 

accuracy, it will impact on the steps required to obtain the final 

group. We constructed three various artificial data sets and 

executed hundred times. At the same time, we use the 

Euclidean method for numerical data and simple matching for 

categorical artificial data. We apply ten iterations for steps 2-

3 in the second phase of Block-KM. Figure 3 shows an 

example of artificial data set for seven groups with two 

numerical data.  

According to Table 4, the average adjusted Rand index for 

the three experiments was relatively high, with a standard 

deviation of less than 0.1.  
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Based on one initialization of the first phase of the proposed 

method, the iteration profile is required to obtain the stability 

of the total deviation in the group, as shown in Figures 4 to 6. 

According to Figure 4, the majority iteration required for the 

stability of the total deviation is three iterations. Then, the 

highest iteration frequency for the five groups was five 

iterations, such as in Figure 5. Meanwhile, Figure 6 shows the 

range of iteration is four to ten, with a majority between six 

and seven iterations for seven groups. Although all three 

experiments show the number of iterations below ten, we do 

not claim that a new method always requires less than ten 

iterations. The quality of initial medoids and variation of the 

data set may cause the high required iteration number. 

 
 

Figure 3. An example of artificial data set for seven groups 

 

Table 4. Profile of an average of the adjusted Rand index 

 
Type n k 𝒑𝒃 𝒑𝒐 𝒑𝒏 Mean of ARI The standard deviation of ARI 

Categorical 200 2 10 - - 0.85 0.068 

Mixed 400 5 1 3 1 0.71 0.019 

Numerical 700 7 - - 2 0.77 0.095 

 

The iteration needed to get the final group from the 

proposed method is only done based on the initialization 

results in stage one. In contrast, flexible k-medoids and simple 

k-medoids require more than five initialization processes. For 

each initialization result, a number of iterations will be 

performed to get the final group. This means that if it is 

initialized 𝑠 times, and each takes 𝐵 iterations to get the final 

medoid, then the method takes (s.B) times to process. In 

comparison, the proposed method requires only 𝐵 times.  

 

 
 

Figure 4. Profile of the iteration number for two groups of 

artificial data 

 

 
 

Figure 5. Profile of the iteration number for five groups of 

artificial data 

 
 

Figure 6. Profile of the iteration number for seven groups of 

artificial data 

 

In addition, the block k-medoids also generate the same 

final group members. Whereas the flexible k-medoids and the 

simple k-medoids, as random-based methods, can produce 

different final group members. The last group of both methods 

rely on random outcomes. Therefore, we conclude that the 

block k-medoids method is more straightforward than flexible 

k-medoids or simple k-medoids. In addition, the ARI from the 

proposed method is also relatively high.  

 

5.3 The comparison of clustering accuracy  

 

This section describes the effectiveness of some ways to 

standardize data to increase the grouping accuracy. Then, the 

transformation method uses Eq. (2), Eq. (3), and Eq. (4) for 

ordinal and numerical data. We use five datasets: wine, breast 

cancer, HD case 2, credit approval and zoo data. For all 

datasets, we apply Euclidean distance for numerical data and 

simple matching for categorical data.  

The wine and breast cancer data used hierarchical clustering 

with the linkage of average, centroid, complete, McQuitty, and 

Ward. In addition, we also apply the non-hierarchical method 

of k-means, simple and fast k-medoids, and block k-medoids. 

Grouping of soybean small, HD case 2, credit approval and 

zoo data used the same transformation technique and 

clustering method (except k-means). The k-means clustering 

was not applied because it was unsuitable for mixed data. 
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Wine data has a high variation; five of the thirteen variables 

contain outliers. For this data, we apply Eq. (3) and Eq. (4) by 

taking a value of f=5 with notation R5 (Rank use f=5) and 

MM5 (Min-Max use f=5). Figure 7 shows clustering accuracy 

for wine data on several transformations. 

 

 
 

Figure 7. The plot of clustering accuracy for wine data 

 

 
 

Figure 8. The plot of clustering accuracy for breast cancer 

data 

 

Applying the hierarchical method with average and centroid 

linkage yields high accuracy for non-standardized data. All 

transformation methods improve clustering accuracy, 

especially with McQuitty, Ward, k-means, SFKM and Block-

KM. Standardization based on Eq. (2) has not increased the 

accuracy with complete linkage.  

As for the wine data, the thirty breast cancer variables have 

a high variation between zero and 4254. Applying k-means, 

SFKM, Block-KM, and Ward method on standardized breast 

cancer data effectively improve the accuracy. For this data, the 

transformation using Eq. (3) with a value of f=5 increases the 

accuracy for all hierarchical methods except the McQuitty 

method, as shown in Figure 8.  

Three of eight HD case 2 variables are binary type, while 

five features have more than two categories. The five 

numerical variables of the HD case 2 data have a high variation. 

Implementing the hierarchical method with average and 

complete linkage, Ward, and Block-KM on standardized HD 

case 2 data effectively improves accuracy, as shown in Figure 

9. The SFKM method is unsuitable for transformation using 

Eq. (3) because the two smallest objects are identical, so cause 

the number of groups formed is only one. In other words, the 

SFKM produces an empty group. The Block-KM can handle 

well for this case, as in Figure 9.  

 

 
 

Figure 9. The plot of clustering accuracy for HD data 

 

 

Figure 10. The plot of clustering accuracy for credit data 

 

The credit approval data is exciting because it has mixed 

variables with binary, multinomial and continuous types. The 

hierarchical method with the linkage of average, centroid and 

McQuitty yielded the same accuracy for standardized and non-

standardized data. Standardization in two new ways for six 

numerical data significantly improves clustering accuracy, 

especially with complete linkage, Block-KM and SFKM, as 

shown in Figure 10.  

 

 
 

Figure 11. The plot of clustering accuracy for zoo data 
 

As mentioned in sub-section 3.2, the flexible k-medoids and 

Block-KM are designed to solve the empty groups in the 

SFKM method. In the data zoo, there are several identical 

object blocks, which causes the SFKM method to not group 

the data into seven classes, either on the data without or with 

three transformations. Except for Ward's method, all 
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transformation methods effectively increase clustering 

accuracy, as shown in Figure 11. We apply Eq. (3) and Eq. (4) 

to one numerical variable by taking the transformation 

multiplier of one because the other fifteen variables are binary.  

According to Figure 7 to Figure 11, it can be seen that the 

standardized data can increase the accuracy of several 

clustering methods. This method is mainly for cluster analysis 

which is based on the partitioning method namely the k-means 

algorithm, the simple and fast k-medoids algorithm, and the 

newly proposed method. Hierarchical clustering using Ward's 

method improves accuracy, especially for wine, breast cancer, 

and HD case 2 data. For mixed data, i.e., zoo, HD case 2 and 

credit approval data, applying a hierarchical procedure with 

average linkage, centroid linkage, complete linkage and the 

McQuitty method also improves accuracy. Therefore, data 

standardization is an option for the five data sets in the 

hierarchical approach.    

 

5.4 The comparison of the average clustering accuracy on 

several methods and datasets 
 

This subsection analyses the average clustering accuracy for 

all methods on each data set. We also discuss each technique's 

average clustering accuracy of all data sets. 
 

 
 

Figure 12. Average the clustering accuracy of five data sets 

 

 
 

Figure 13. Average the accuracy of six data sets with several 

clustering methods and transformation 

 

Figure 12 shows the average clustering accuracy of five data 

sets based on several clustering methods for standardized and 

non-standardized. According to Figure 12, the clustering 

accuracy can increase by implementing of three ways 

transformations.  

Pre-processing with transformation can increase accuracy 

by an average of 10.78%. The highest average increase in 

accuracy occurred in HD Case 2 data, which reached 18.96%. 

The lowest average increase in accuracy occurs in breast 

cancer data, which is 5.45%. In the five datasets, the 

transformation method based on the ranking of the data in Eq. 

(3) is slightly higher than Eq. (4). Both transformation 

methods are higher than Eq. (2).  

Figure 13 shows average clustering accuracy for several 

clustering methods with three standardization using different 

datasets. Although it is less relevant to calculate the average 

accuracy of other datasets, Figure 13 shows that standardized 

data can improve the clustering accuracy. The Ward, Block-

KM, and SFKM have similarities in determining the group's 

centre, namely considering the combination of objects that 

produce the smallest total deviation in the group. Meanwhile, 

the hierarchical method with average, centroid, complete and 

McQuitty linkage works based on the proximity matrix and 

does not consider the total deviation in the group.  

Ward's method produces the highest average accuracy 

compared to other hierarchical methods. At the same time, the 

SFKM method cannot apply to zoo data or HD case 2 data 

which are transformed based on ranking. Thus, the Block-KM 

is the most suitable partitioning method for the five data sets. 

The proposed new method applies to all data types. The 

average clustering accuracy for data without or with 

standardization is higher than other methods relatively. In 

general, according to Figure 8 to Figure 14, we conclude that 

pre-processing via transformation can increase clustering 

accuracy.  

 

 

6. CONCLUSIONS 

 

An important aspect of this paper focuses on simplifying the 

partitioning of data sets through using the initial group results 

in the first stage of the block k-medoids algorithm. The Block-

KM only take one initialization. According to the number of 

iterations required to obtain stability of the total deviation 

within a group on the eight real datasets, we concluded that the 

proposed method is more efficient than flexible k-medoids and 

simple k-medoids. For eight real datasets, i.e. iris, wine, breast 

cancer, vote, soybean small, heart disease case 2, credit 

approval and zoo data, the block k-medoids needed less than 

six iterations from one initialization. Our proposed method's 

clustering accuracy for all datasets is comparable with other 

methods. In addition, based on the five real datasets, we 

concluded that the data standardization could increase the 

clustering accuracy, especially with the k-means, simple and 

fast k-medoids, block k-medoids and the Ward method. The 

Block-KM partitioning method (proposed) and Ward's 

hierarchical method produce higher clustering accuracy than 

other methods and are relevant to all data types. The block-

based k-medoids partitioning method contributes to the cluster 

analysis and provides another view of choosing the initial 

medoids and transformation method. However, data 

standardization is merely an option that may or may not be 

helpful for a dataset.  
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