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Conducting extensive, time-consuming analysis campaigns is a typical technique to 

better understand and manage surface water quality. These usually generate a 

substantial amount of data that is challenging to comprehend. Principal component 

analysis may be advantageous for such a project (PCA). From the perspective of such 

an application, eight physico-chemical parameters are important: Sodium (Na+), 

Bicarbonate (HCO3
-), Magnesium (Mg2+), Total Alkalinity (as CaCO3), Chlorides (Cl-), 

Potassium (K+), Calcium (Ca2+), Sulfates (SO4
2-), coming from the analysis of 100 

water samples collected between February 2014 and December 2015 on 25 stations 

distributed on Inaouen catchment areas, were analyzed. The principal component 

analysis applied to the data showed that the variables could be grouped into two 

principal components. The interpretation of the results using these tools allowed us to 

understand that the parameters responsible for water quality are related to component 

Dim1 (HCO3
-, CaCO3, K+, Cl-, Na+ and SO4

2-) and component Dim2 to the processes 

associated to (Ca2+ and Mg2+) for the physicochemical parameters, the Dim1 factorial 

design accounts for 67.80% of the variance; it is expressed towards its positive pole by 

HCO3
-, CaCO3, K+, Cl-, Na+ and SO4

2-, which present good correlations between them. 

However, the Dim2 factorial plane represents only 17.60%, defined by the Ca2+ and 

Mg2+ ions towards its positive pole. The Dim1XDim2 plane's typological structure 

reveals the individualization of three different groupings based on their hydrochemical 

quality. A feasible reduction in the number of dimensions without a major loss of 

information was discovered by the PCA. This tool is a good choice from the standpoint 

of developing management tools. 
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1. INTRODUCTION

In Morocco, the situation of the rivers is becoming 

increasingly worrying because of the essential quantities of 

untreated; polluting discharges poured into these aquatic 

ecosystems [1]. To study this situation closely, we chose the 

Inaouen catchment area, which is experiencing growing 

demography and continuous development of the industrial 

sector along its banks. This work represents the first study 

carried out on this hydrosystem. It aims to evaluate the impact 

of discharges on the quality of water resources through a 

physicochemical characterization [2]. To highlight the global 

quality of water and its Spatio-temporal evolution in the 

studied watercourses [3], we considered it interesting to make 

a synthesis of these results by the statistical method (principal 

component analysis PCA) [4]. 

We attempted to demonstrate that the principal component 

analysis (PCA) method could be a tool allowing us to specify 

with objectivity the state and quality of these waters. The 

study's objectives are to: evaluate the physicochemical quality 

of surface waters; and monitor the spatial evolution of the 

studied variables based on seasonal analytical monitoring of 

25 stations distributed along the Inaouen watershed and its 

main tributaries [5-8]. In this study, we thus endeavored to 

show, on this medium, that the typology of the stations was 

related, on the one hand, to the physical or chemical 

characteristics of the surrounding environments and, on the 

other hand, to the degradation of the quality of the surface 

waters of the Inaouen catchment area, under the effect of the 

anthropic activity [3, 9]. 

Using PCA for data interpretation in this context seems like 

an intriguing solution to better understand water quality and 

the biological health of the ecosystems studied [10-13]. This 

method also has the benefit of identifying and connecting the 

many causes (sources) to the consequences on the seen aquatic 

systems [5-8]. Consequently, it is a better tool for managing 

water resources, enabling quick fixes for contamination issues 

[14]. 

It is in this context that the present study is conducted. It is 

based on using multivariate statistical analysis techniques, 

namely Principal Component Analysis (PCA), to understand 

the processes that govern surface water in the region. 

2. MATERIALS AND METHODS

2.1 Environment and study site 

The study is only conducted in the Oued Inaouen watershed, 
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which has a total measured area of 3,396 km2 and is located 

upstream of the Idriss I dam (Figure 1) [15]. The Sebou basin 

upstream of the Idriss I dam makes up 8.3% of the total area. 

Its boundaries are the Upper Sebou in the south, the Upper 

Ouergha in the north, and the Middle Mouloya watershed in 

the east. On the right bank of this basin, it primarily drains the 

marly formations of the Pre-Rifain relief. On the left bank, it 

primarily drains the carbonate formations of the Middle Atlas 

Causse. The Oued Inaouen receives the Oued Flows of Amlil, 

Larbaa, and Lahdar on its right bank. These tributaries gather 

the runoff from the pre-rific hills. On its left bank, the Oued 

Inaouen receives tributaries from the Middle Atlas limestones 

Matmata, Zerg, Bouzemlane, and Bouhlou, which are often 

karstic in this area and are partly fed by the Tazekka central 

massif. Fifty-two wastewater discharges from the city of Taza 

are spread. There could be up to 5,000,000 m3 of wastewater 

released into waterways each year. Given the population 

growth in the city of Taza, this flow is increasing year over 

year [3]. 

Figure 1. Geographical location of the study area 

2.2 Samples 

The sampling campaigns were carried out mainly on fixed 

dates throughout the study period from February 2014 to 

December 2015. The frequency of measurement is seasonal 

(spring, summer, autumn and winter) to obtain a reasonably 

representative picture of water quality and its seasonal, annual 

and multi-year evolution [16]. 

Our database contains 100 surface water samples 

(observations) collected in the province of Taza; water 

samples were collected, transported, and stored according to 

the National Drinking Water Office's (ONEP) policy and 

procedures [17]. A portion of the analysis was done there. 

Another portion was done at the Regional University Centre 

of Interface (CURI) attached to the Sidi Mohamed Ben 

Abdellah University (USMBA) of Fez at the time of sampling 

to avoid the change and temperature, conductivity, pH using a 

multi-parameter analyzer Type CONSORT - Model C535, and 

dissolved oxygen by the titration method of Winkler. The 

methods used at CURI Laboratory: volumetry for bicarbonates, 

chlorides, calcium and magnesium; molecular absorption 

spectrophotometry for sulfates, nitrates, nitrites, ammonium 

ions and orthophosphates; and flame spectrophotometry for 

sodium and potassium. The four heavy metals are analyzed by 

atomic absorption spectrum (AAS).  

2.3 Physicochemical variables studied 

The variables retained for this statistical study are the eight 

major ions: Sodium (Na+), Bicarbonate (HCO3
-), Magnesium 

(Mg2+), Chlorides (Cl-), Potassium (K+), Calcium (Ca2+), 

Sulfates (SO4
2-) and Total Alkalinity (as CaCO3). The means 

and standard deviations of these studied parameters are 

reported in the Table 1. 

Table 1. The statistical summary of data 

Parameter Number of data Mean Median Minimum Maximum Variance Standard deviation 

HCO3
- 100 80,63 57,95 3,66 634,40 7788,82 88,25 

CaCO3 100 66,09 47,50 3,00 520,00 5233,01 72,34 

Mg2+ 100 3,17 2,05 0,20 25,00 14,48 3,81 

Na+ 100 24,51 5,40 1,00 540,00 4197,42 64,79 

K+ 100 1,72 0,97 0,10 13,00 4,43 2,10 

Cl- 100 25,84 2,45 0,40 550,00 5676,23 75,34 

Ca2+ 100 17,79 15,00 1,00 110,00 316,65 17,79 

SO4
2- 100 7,83 5,00 0,28 150,00 244,37 15,63 

2.4 Data standardization 

Variables in the principal component analysis are frequently 

normalized [18, 19]. This is especially advised when the 

variables are measured in various units (such as kilograms, 

kilometres, centimetres, etc.); otherwise, the PCA result will 

be significantly impacted. 

Making the variables similar is the goal. The variables are 

often normalized to have a mean of zero, a standard deviation 

of one, and a standard deviation of one [20, 21]. 

Technically speaking, the method entails converting the 

data by subtracting a reference value (the variable's mean) 

from each value and dividing the result by the standard 

deviation. The data left over after this transformation is 

referred to as centred-reduced data. Normalized PCA is the 

name of the PCA used to analyze these modified data [22]. 

Before PCA and clustering studies, data normalization was 

widely utilized in gene expression data analysis. 

The information can be altered as follows after normalizing 

the variables [23]: 
𝑥𝑖−mean(𝑥)

𝑠𝑑(𝑥)
.

Where mean(x) is the average of the values of x, and sd(x) 

is the standard deviation. 

2.5 Statistical processing of data 

As a multidimensional descriptive statistical technique, 

Principal Component Analysis (PCA) enables the analysis and 

presentation of a data set containing individuals characterized 

by quantitative variables [24, 25]. A statistical approach that 

allows the investigation of multivariate data is this one (data 

with several variables). It is possible to think of each variable 

as a different dimension [26]. It could be very challenging to 

show your dataset in a multidimensional hyperspace if it has 

more than three variables. The crucial data in a multivariate 

data table are extracted and visualized using principal 

component analysis [27]. This data is combined via PCA into 
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a small number of new variables called principal components. 

The original variables are linearly combined to create these 

new variables [28]. There are fewer or the same number of 

principal components as there were original variables. The 

total variance or inertia of a data set is the information it holds 

[29]. The goal of PCA is to find the principal axes or principal 

components [30], otherwise known as the directions along 

which the data vary most. In other words, PCA preserves as 

much information as possible while condensing the 

dimensions of multivariate data to two or three principal 

components that can be graphically represented [31]. Giving a 

graphical representation of the data and the relationships 

between the variables is challenging when there are many 

observed variables [32]. 

The most important parameters that describe the quality of 

surface waters and illustrate their variability can be found 

using this method, which has been widely used to interpret 

hydrochemical data of hydro systems. Principal component 

analysis was the foundation for the statistical analysis. 

R software (version 3.6.3) was used to generate the 

intermediate correlation matrix and project the variables into 

the space of the Dim1 and Dim2 axes. 

2.6 PCA procedure 

PCA replaces a family of variables with new variables 

called principal components (PC) [33-35]. The latter is of 

maximum variance and uncorrelated two by two. They are 

linear combinations of the original variables. Let us consider a 

set of data collected during a normal operation of the system 

under study. A matrix can represent these data [36]. 

𝐗 = [𝐱(1),⋯ , 𝐱(𝑁)]𝑇 ∈ ℝ𝑁×𝑚 (1) 

where, 𝑁 is the number of observations and 𝑚 is the number 

of measured variables. Each row of the data matrix 𝐗 

represents an observation in the form of a vector of 

measurements collected at a time k generally centred [37]. 

𝐱(𝑘) = [𝑥1(𝑘),⋯ , 𝑥𝑚(𝑘)]
𝑇 ∈ ℝ𝑚 (2) 

where, 𝑥𝑗(𝑘) with j={1, ⋯, m} represents the measurement of

the variable j at time k. By definition, the covariance matrix is 

given in the research [37]: 

Σ = 𝔼{𝐱𝐱𝑇} =
1

𝑁
𝐗𝑇𝐗 ∈ ℝ𝑚×𝑚 (3) 

According to the principle of PCA, it is assumed that a 

vector of components �̂� ∈ ℝℓ  is associated with each

observation vector whose representation it optimizes in the 

sense of minimizing the estimation error of x or the 

maximization of the variance of �̂�. At each time k, the vectors 

�̂� and x are linked by a linear transformation of type �̂�(𝑘) =

�̂�𝑇𝐱(𝑘)  such that the transformation matrix �̂� ∈ ℝ𝑚×ℓ

verifies the orthogonality condition �̂�𝑇�̂� = 𝐈ℓ ∈ ℝℓ×ℓ.

The columns of the matrix �̂�  are the vectors of an 

orthonormal basis of a subspace ℝℓ of reduced representation

of the original data. The linear transformation results in the 

projection of the original data expressed in the space of 

dimension 𝑚 to an orthogonal subspace of dimension ℓ. The 

components 𝑡𝑗(𝑘)  with 𝑗 = {1,⋯ , ℓ}  of the vector �̂�(𝑘)  are

the projections of the elements of the data vector x(k) in the 

subspace ℝℓ.

The representation optimization based on the projection 

matrix �̂�  is obtained by minimizing the squared estimation 

error o x f. Let us note by �̂� the optimal representation matrix, 

which can be given in study [37]: 

�̂� = argmin
�̀�
 {𝐽𝑒(�̀�)} (4) 

where, 𝐽𝑒  is the criterion for the estimation error by PCA,

which should be minimized [38]. Under the Orthogonality 

constraint of the projection matrix �̂� We can write [39]: 

𝐽𝑒(�̂�) = 𝔼{∥ 𝐱 − �̂� ∥2} = 𝔼 {∥∥𝐱 − �̂��̂�𝑇𝐱∥∥
2
}

= 𝔼{(𝐱 − �̂��̂�)𝑇(𝐱 − �̂��̂�)} = 𝔼{𝐱𝑇𝐱 − �̂�𝑇 �̂�}

= 𝔼{tr(𝐱𝐱𝑇) − �̂�𝑇 �̂�} = tr{Σ} − 𝔼{�̂�𝑇 �̂�}

= tr{Σ} − 𝐽𝑣(�̂�)

(5) 

where, tr{.} denotes the trace of a square matrix. Since the 

term tr{Σ}  is a constant, minimizing the criterion 𝐽𝑒  is the

same as maximizing the 𝐽𝑣 Given by [39]:

𝐽𝑣(�̂�) = 𝔼{�̂�𝑇 �̂�} = 𝔼{∑

ℓ

𝑗=1

𝑡𝑗
2} = ∑

ℓ

𝑗=1

𝔼{𝑡𝑗
2}

= ∑  

ℓ

𝑗=1

Var{𝑡𝑗}

(6) 

From the previous equation, maximizing the 𝐽𝑣 equivalent

to maximizing the variance of the 𝑡𝑗. Thus, the optimization

problem is reformulated as follows [37]: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
�̂�

 {𝐽𝑒(�̂�)} = 𝑎𝑟𝑔𝑚𝑎𝑥
�̂�

 {𝐽𝑣(�̂�)} (7) 

To determine the column vectors of the matrix �̂�, we note 

by 𝑡 ∈ ℝ the projection of the data vector 𝐱 along a direction 

represented by a unit vector 𝑝 ∈ ℝ𝑚. The scalar product 𝑡 =
𝐱𝑇𝑝 = 𝑝𝑇𝐱, 𝐱 obtains the component t under the constraint ∥
𝑝 ∥2= 𝑝𝑇𝑝 = 1. In particular, it represents a new variable with

a mean and a variance that depend on the statistical properties 

of 𝐱 as follows [39-41]: 

𝔼{𝑡} = 𝔼{𝑝𝑇𝐱} = 𝑝𝑇𝔼{𝐱} = 0 (8) 

Var{𝑡} = 𝔼{(𝑡 − 𝔼{𝑡})2} = 𝔼{𝑡2}

= 𝔼{(𝑝𝑇𝐱)(𝐱𝑇𝑝)} = 𝑝𝑇𝔼{𝐱𝐱𝑇}𝑝

= 𝑝𝑇Σ𝑝

(9) 

The maximization of the projection variance, under the 

condition of a unit norm of the vector p, represents an equality-

constrained optimization problem that the Lagrange function 

can formalize [40-43]: 

ℒ(𝑝, 𝜆) = 𝐽𝑣(𝑝) − 𝜆(𝑝𝑇𝑝 − 1)
= 𝑝𝑇Σ𝑝 − 𝜆(𝑝𝑇𝑝 − 1)

(10) 

where, 𝜆 ∈ ℝ is the Lagrange multiplier. Taking into account 

the symmetry of the matrix Σ , the vector p maximizes the 
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optimization criterion 𝐽𝑣 is a solution of the following system

of equations [37]: 

{
∂ℒ(𝑝, 𝜆)/ ∂𝑝 = Σ𝑝 − 𝜆𝑝 = 0

∂ℒ(𝑝, 𝜆)/ ∂𝜆 = 𝑝𝑇𝑝 − 1 = 0
(11) 

Consequently, the solution of this system of equations is 

identified as a problem of estimating normalized eigenvalues 

and eigenvectors of the matrix Σ. Such a system of equations 

admits real solutions of the variables λ obtained by solving the 

following characteristic equation [41]: 

Det{Σ − 𝜆𝐈𝑚} = 0 (12) 

where, Det {.} is the determinant of a square matrix. 𝐈𝑚 is the

identity matrix of order 𝑚 . The solutions of the previous 

equation represent the eigenvalues of Σ. To each eigenvalue, λ 

is associated with an eigenvector p verifying (Σ − 𝜆𝐈𝑚)𝑝 = 0.

This allows us to have 𝑚 eigenvectors 𝐩𝑖  associated with

the 𝑚  eigenvalues 𝜆𝑖  of the matrix Σ, thus verifying the

relation Σ𝐩𝑖 = 𝜆𝑖𝐩𝑖 with 𝑖 = {1,⋯ ,𝑚}. In matrix form, such

a relationship leads to writing the following [37, 44, 45]: 

Σ𝐏 = 𝐏𝐁 (13) 

𝐏 = [𝐩1, ⋯ , 𝐩𝑚] ∈ ℝ𝑚×𝑚  represents the data projection

matrix. It is orthonormal since its columns correspond to the 

eigenvectors of Σ: 

𝐏𝑇𝐏 = 𝐏𝐏𝑇 = 𝐈𝑚 ∈ ℝ𝑚×𝑚 (14) 

𝐁 = diag{𝜆1, ⋯ , 𝜆𝑚} ∈ ℝ𝑚×𝑚  represents the diagonal

matrix consisting of the diagonal elements of the eigenvalues 

of Σ. 

From Eqns. (13) and (14), we can deduce that 𝐏𝑇Σ𝐏 = 𝐁.

This allows us to conclude that the first direction, having a 

maximum projection variance of x, is carried by the 

eigenvector 𝐩1 associated with the largest eigenvalue 𝜆1. The

latter represents the variance of such a direction. The second 

factorial axis also renders the maximum variance while 

orthogonal to the first. Its variance 𝜆2 is less important than

that corresponding to the first direction. Therefore, the 

diagonal elements of 𝐁are arranged in descending order [46-

49]: 𝜆1 ≥ ⋯ ≥ 𝜆𝑚.

Considering the matrix 𝐏 , the data vector x(k) can be 

transformed without any loss of information into a vector of 

principal components (PC) [36, 37, 39]: 

(15) 𝐭(𝑘) = [𝑡1(𝑘), ⋯ , 𝑡𝑚(𝑘)]𝑇 = 𝐏𝑇𝐱(𝑘) ∈ ℝ𝑚 

where, the CP 𝑡𝑗 with j={1,⋯,m} is defined by:

𝑡𝑗(𝑘) = 𝐩𝑗
𝑇𝐱(𝑘) = 𝐱𝑇(𝑘)𝐩𝑗 (16) 

These are statistically uncorrelated [37, 39]: 

𝔼{𝑡𝑖𝑡𝑗} = 𝔼{𝐩𝑖
𝑇𝐱𝐱𝑇𝐩𝑗} = 𝐩𝑖

𝑇Σ𝐩𝑗 = 0𝑖 ≠ 𝑗 (17) 

The notation in matrix form allows us to define the matrix 

of CP as follows [40, 41]: 

𝐓 = [𝐭(1),⋯ , 𝐭(𝑁)]𝑇 = 𝐗𝐏 ∈ ℝ𝑁×𝑚 (18) 

The determination of the data vector x(k) à from the 

associated vector of CP t(k) is given by: 

𝐱(𝑘) = Pt(𝑘) = ∑  

𝑚

𝑗=1

𝐩𝑗𝑡𝑗(𝑘) (19) 

The data reduction is performed through the ℓ first CP with 

the largest variances. As a result, the ℓ first eigenvectors form 

the reduced vector subspace for the initial data. The estimation 

of �̂�(𝑘) of the data vector x(k) in this reduced subspace (often 

called representation or principal subspace and denoted �̂�) is 

given by references [40, 42, 43, 50]: 

�̂�(𝑘) = �̂��̂�(𝑘) = �̂��̂�𝑇𝐱(𝑘) = �̂�𝐱(𝑘) (20) 

where, the optimal representation matrix expressed in Eq. (7) 

is defined as follows: 

�̂� = [𝐩1, ⋯ , 𝐩ℓ] ∈ ℝ𝑚×ℓ (21) 

�̂�(𝑘) = �̂�𝑇𝐱(𝑘) ∈ ℝℓ represents the vector of the ℓ first CP.

The matrix �̂� ∈ ℝ𝑚×𝑚 thus characterizes the PCA model.

However, dimension reduction usually results in a loss of 

information that is recovered in a residual vector �̃�(𝑘). The 

latter is expressed in a residual subspace �̃� consisting of the 

remainder of the CPs associated with the (𝑚 − ℓ)  last 

eigenvectors [37, 39, 41]: 

�̃�(𝑘) = �̃��̃�(𝑘) = �̃��̃�𝑇𝐱(𝑘) = �̃�𝐱(𝑘) (22) 

with 

�̃� = [𝐩ℓ+1, ⋯ , 𝐩𝑚] ∈ ℝ𝑚×(𝑚−ℓ) (23) 

and 

�̃� = �̃��̃�𝑇 = 𝐈𝑚 − �̂� (24) 

The matrix �̃� ∈ ℝ𝑚×𝑚  Describes the residual model. We

can see here that PCA is a modelling approach that allows us 

to obtain a PCA model of a studied system. 

The interpretation of the principle of PCA modelling 

represents a partitioning of the space ℝ𝑚 of measurements x(k)

into the main subspace �̂� and a residual subspace �̃�. Therefore, 

the vector of measures x(k) is decomposed as follows: 

𝐱(𝑘) = �̂�(𝑘) + �̃�(𝑘) (25) 

In particular, a geometric property of orthogonality between 

the estimated and the residual vector is always verified since 

[39, 41, 42]: 

�̃��̂� = �̂��̃� = 𝟎𝑚 ∈ ℝ𝑚×𝑚 (26) 

This implies that the principal subspace and the residual 

subspace are orthogonal for all values of ℓ, thus [37, 40, 43], 

�̃�𝑇(𝑘)�̂�(𝑘) = 0 (27) 

3. RESULTS AND DISCUSSION

3.1 Statistical analysis of results 

3.1.1 Correlations between variables 

A data matrix with eight variables and 100 samples was 

used to analyze the physicochemical data (8 variables and 100 

individuals). The data was processed using the R program.  
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The strength of the relationships between the parameters 

analyzed can be determined by examining the bivariate linear 

correlations between them. Table 2 contains the correlation 

matrix for the eight parameters measured throughout our 

investigation. Because the sampling stations were pooled to 

construct this matrix, care must be taken when interpreting the 

correlation coefficients. Indeed, both spatial and temporal 

changes impact them at once. Interesting correlations are 

found in this table's significant Pearson correlation 

coefficients, which are highlighted in bold. This expresses the 

notion of a linear link between two variables that contradicts 

their independence. It is a common tool to describe simple 

relationships without worrying about cause and effect. 

Consequently, there is a significant positive association 

between HCO3 and the following variables: CaCO3 (0.97), Na 

(0.80), K (0.72) and SO4 (0,75). Strong and positive 

correlations are observed between CaCO3 and the minerals Na, 

SO4 and K (R between 0.73 and 0.80) are seen between CaCO3 

and the minerals Na, SO4 and K, as well as with Mg and Cl. 

It's also noteworthy to note how Mg and Na frequently 

correlate with the variables K, Cl, Ca, and SO4. 

3.1.2 PCA results 

We carried out the statistical tests that permit PCA because 

its usage must always be justified. A score of 2748.85 for the 

Chi-square was obtained using Bartlett's sphericity test (with 

a degree of freedom of 378 and a significance level of p (p

0.0005), proving that the variables are substantially correlated 

to permit a reduction in the dimension. In a subsequent phase, 

we assessed the sampling's suitability concerning the viability 

of PCA using the Kaiser-Meyer-Olkin approach (KMO index). 

This acceptable adequacy is confirmed by the value obtained 

(0.816), which tends toward 1. The variance accumulation test, 

also known as the Scree test, in a PCA determines the number 

of components to be extracted. Component extraction should 

halt when the slope of the eigenvalue graph changes. The 

extracted dimensions' interpretability must be considered 

while deciding how many components to extract. The 

eigenvalue graph produced during this study is shown in 

Figure 2. 

Figure 2. Graphical representation of calculated variance 

percentages 

Table 2. The correlation matrix of the eight measured parameters 

HCO3 CaCO3 Mg Na K Cl Ca SO4 

HCO3 1,00 

CaCO3 0,97 1,00 

Mg 0,59 0,59 1,00 

Na 0,80 0,80 0,38 1,00 

K 0,72 0,77 0,56 0,82 1,00 

Cl 0,61 0,65 0,54 0,91 0,75 1,00 

Ca 0,48 0,41 0,74 0,10 0,22 0,28 1,00 

SO4 0,75 0,73 0,33 0,85 0,64 0,76 0,14 1,00 

Table 3. Eigenvalues and percentages expressed by the principal axes 

Dimensions (factor) Eigenvalue Variance percent Cumulative eigenvalue Cumulative variance percent 

1 5.422 67.8 5.422 67.80 

2 1.410 17.6 6.832 85.40 

3 0.510 6.4 7.342 91.80 

4 0.371 4.6 7.713 96.40 

5 0.172 2.2 7.885 98.60 

6 0.112 1.4 7.997 100 

7 0.003 00 8.00 100 

3.1.3 Analysis in the space of the variables of the factorial 

plane Dim1xDim2 

After PCA, the number of principal axes to keep can be 

calculated using eigenvalues according to the Kaiser criterion 

which states that when normalizing the data, a principal 

component (PC) with an eigenvalue greater than one is said to 

reflect more variation than a single original variable. This 

serves as a typical cut-off point for keeping PCs. Keep in mind 

that this only works if the data is standardized  

Sadly, there isn't a widely used objective approach for 

determining how many principal axes are enough. It will rely 

on the specific data set and application domain. In real-world 

situations, it is common to focus on the first few principal axes 

while looking for noteworthy data patterns. Our analysis's first 

two principal components account for 85.40% of the variation. 

This % is suitable. 

Examining the eigenvalue plot provides another way to 

count the principal components (called the scree plot). Beyond 

which the remaining eigenvalues are all very modest and 

similar in size, the number of axes is determined. 

Analyzing the numerical outcomes of this PCA reveals that 

the Dim1 axis accounts for more than half (i.e., 67.8%) of the 

total variance of the data, according to the eigenvalues (Figure 

2 and Table 3). 17.6% of the overall variation in the data is 
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explained by the Dim2 axis. As a result, the Dim1XDim2 

factorial design extracts 85.40% of the variability from the 

data table. As a result, just these first two axes will be used to 

analyze the PCA findings. 

The initial variables are more or less associated with them 

and are combined linearly to get the principal components. 

The starting variables are projected to account for the most 

information in the reduced dimension space defined by these 

components. The correlation coefficient values between the 

variables and the two components are displayed in Table 4. 

The correlations that best describe each component and are, 

therefore, the most significant are shown in bold. 

Table 4. Correlation coefficients between the variables and 

the first two components 

Dim1 Dim2 

HCO3 0.924 0.056 

CaCO3  0.932 0.051 

Mg  0.682 0.618 

Na  0.905 -0.385

K  0.868 -0.136

Cl  0.863 -0.179

Ca 0.456 0.837 

SO4 0.831 -0.345

Table 5. Contributions of variables (%) 

Dim1 Dim2 

HCO3 16.026 0.227 

CaCO3  16.019 0.216 

Mg  8.582 27.155 

Na  15.132 10.548 

K  13.897 1.317 

Cl  13.739 2.297 

Ca 3.846 49.765 

SO4 12.750 8.460 

Figure 3. Graphical representation of the contributions of 

variables to the first five principal axes 

Contributions of variables to the principal axes 

We will pay close attention to variables that strongly 

influence the factorial axis in either a positive or negative way, 

making it easier to comprehend the reason for the variability 

the axes explain (Table 5). 

A bar plot of the variables contributing most to the principal 

components Dim1 and Dim2 (Figures 3 and 4): 

(a) For Dim1

(b) For Dim2

Figure 4. Graphical representation to highlight the most 

contributing variables for the first two principal axes 

The red dotted line represents the expected average 

contribution in the graph above. The expected value would be 

1/length(variables), which would equal 1/8, or 12.5% if the 

contribution of the variables were uniform. A variable that 

contributes more than this threshold to a specific component 

may be regarded as relevant for the component. 

The variables HCO3, CaCO3, Na, K, Cl, and SO4 then 

contribute to the principal component Dim1, which means that 

they strongly attract the Dim1 axis in that direction and help 

to build that axis. 

Additionally, the factors Mg and Ca help to form the 

principal component Dim2. They are therefore in charge of its 

creation and definition. 

Figure 5. Graph of the contributions of the variables on the 

factorial plane Dim1xDim2 
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The correlation graph (Figure 5) highlights the most 

significant (or contributing) variables: 

Quality of representation of the variables: 

The quality of representation of the variables on the PCA 

map is called cos² (cosine squared). 

Table 6. Value of the square cosines 

Dim1 Dim2 

HCO3 0.868 0.003 

CaCO3 0.862 0.003 

Mg 0.465 0.382 

Na 0.820 0.148 

K 0.753 0.018 

Cl 0.744 0.032 

Ca 0.208 0.701 

SO4 0.691 0.119 

The high cos² of the variables HCO3, CaCO3, Na, K, Cl 

and SO4 and of the variables Mg and Ca indicate a good 

representation of the variables on the main axis Dim1 and the 

main axis Dim2 (Figure 6 and Table 6), respectively. In this 

case, they are positioned near the circumference of the 

correlation circle. They are more important to interpret these 

two principal components. 

Figure 6. Graphical representation to highlight the variables 

with a good representation on the first five principal axes 

The correlation graph (Figure 7) can be used to emphasize 

the most significant (or contributing) variables: 

Figure 7. Plot of cos² values of variables on the factorial 

plane Dim1 and Dim2 

The correlation circle (Figure 8): 

The quality of the variables' representation is measured by 

the distance between the variables and the origin. The 

variables HCO3, CaCO3, Na, Mg, Ca and SO4 are far from the 

origin, so they are well represented by the PCA. The 

correlation circle shows that the eight variables considered in 

the PCA contribute to the definition of the Dim1 x Dim2 

factorial design. 

The Dim1 component accounting for 67.8% of the 

variances is essentially made up of the mineral variables 

positively structuring the Dim1 component: HCO3, CaCO3, 

Na, K, Cl and SO4 (which contribute with 87.53% to the 

formation of the Dim1 component), translating the alkalinity 

of the water and generally describing the mineralization of the 

water. The Dim1 component can be linked here to the notion 

of the trophic potential of waters. 

The Dim2 component (17.60% of the variance) is 

constituted in its positive part by the variables Mg and Ca, 

which contribute with 76.92% to the formation of the 

component Dim2; these two variables structure the Dim2 

component positively and generally describe the hardness of 

the water, whereas the Dim2 component is characterized by 

waters coming from the alteration of the mother rock. 

Figure 8. Correlation plot of variables on the Dim1 and 

Dim2 factorial plane 

3.1.4 Projection of individuals in the Dim1XDim2 factorial 

plane 

The sampling stations in the reconstructed planes of the 

Dim1 and Dim2 components are shown in Figure 9. The 

sample stations are divided into three major groupings, as may 

be seen from this illustration. Group G III, which includes 

stations 39, 49, and 64 in the positive half of component 1, and 

group G II, which includes a number of stations (23, 35, 42, 

45, 65....). Most of the stations in group G I are found in 

component Dim2's negative portion. 

Based on the factorial map Dim1 x Dim2 (Figure 9 and 

Figure 10), the PCA results show that the different stations are 

positioned (on Dim1) according to the mineralization and 

alkalinity of their waters. Thus, the least mineralized study 

stations are located on the negative side of the Dim2 

component (G I). also, the stations with a medium or low 

hardness are located in the negative part of the Dim2 

component (G I) and the positive part of the Dim2 component 

(G II). 

Group G III is characterized by high Mg and Ca contents 
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(because the springs are on the same side of the variable). This 

reflects the hardness of these sources. While the group G II is 

medium rich in HCO3, CaCO3, Na, K, Cl and SO4 illustrate 

important mineralization. Let us finally point out that all the 

stations of the G I group positioned on the negative side of the 

Dim2 component are less mineralized than those of G II and 

G III (because their sources are on the opposite side of the 

variables), see Biplot (Figure 10). 

Figure 9. Representation of the sampling stations on the 

Dim1XDim2 factorial plane 

Figure 10. Biplot of sampling stations and variables on the 

Dim 1XDim2 factorial plane 

4. CONCLUSION

The principal component analysis carried out on a data 

matrix comprising 8 physicochemical variables allowed us to 

identify two main axes which summarize the main information 

of this matrix: The Dim1 axis, which can be assimilated to an 

axis translating a gradient of mineralization and alkalinity and 

the Dim2 axis which would translate the degree of hardness. 

Similarly, the stations are well typed and therefore well-

structured by their physicochemical data. 

At the end of this PCA analysis, we can say that the stations 

are well typed and thus well-structured by their 

physicochemical data: A two-dimensional space was 

sufficient to summarize most of the information concerning 

the variability present in the initial 8-dimensional space. 

Through this analysis, we have highlighted major trends in 

the data, such as groupings of individuals or oppositions 

between individuals or between variables (reflecting that the 

variables are inversely correlated). The graphical 

representations provided by PCA are simple and informative. 

The PCA can be the first analysis for the hydrochemical study 

whose results will be enriched by another factorial analysis or 

an automatic data classification. 

REFERENCES 

[1] Bahhou, J., Mhamdi, M.A. (1999). Diet changes in the

biochemical composition of the phytoplankton in the

Idriss first reservoir (Fes, Morocco). Journal de Chimie

Physique et de Physico-Chimie Biologique, 96: 339-351.

https:/doi.org/10.1051/jcp:1999141

[2] Xu, S.G., Cui, Y.X., Yang, C.X., Wei, S.J., Dong, W.P.,

Huang, L.H. (2021). The fuzzy comprehensive

evaluation (FCE) and the principal component analysis

(PCA) model simulation and its applications in water

quality assessment of Nansi Lake Basin, China.

Environmental Engineering Research, 26(2): 200022.

https://doi.org/10.4491/eer.2020.022

[3] Rezouki, S., Allali, A., Najat, T., Eloutassi, N., Fadli, M.

(2021). Spatio-temporal evolution of the physico-

chemical parameters of the Inaouen wadi and its

tributaries. Moroccan Journal of Chemistry, 9(3): 576-

587. https:/doi.org/10.48317/IMIST.PRSM/morjchem-

v9i3.23521

[4] Mutlu, E., Arslan, N., Tokatli, C. (2021). water quality

assessment of yassialan dam lake (karadeniz region,

turkey) by using principal component analysis and water

quality index. Acta Scientiarum Polonorum-Formatio

Circumiectus, 20: 55-65.

https://doi.org/10.15576/ASP.FC/2021.20.2.55

[5] Zavareh, M., Maggioni, V., Sokolov, V. (2021).

Investigating water quality data using principal

component analysis and granger causality. Water, 13(3):

343. https://doi.org/10.3390/w13030343

[6] Zeng, W.B., Wan, X.M., Wang, L.Q., Lei, M., Chen,

T.B., Gu, G.Q. (2022). Apportionment and location of

heavy metal(loid)s pollution sources for soil and dust

using the combination of principal component analysis,

Geodetector, and multiple linear regression of distance.

Journal of Hazardous Materials, 438: 129468.

https:/doi.org/10.1016/j.jhazmat.2022.129468

[7] Fatima, S.U., Khan, M.A., Siddiqui, F., Mahmood, N.,

Salman, N., Alamgir, A. (2022). Geospatial assessment

of water quality using principal components analysis

(PCA) and water quality index (WQI) in Basho Valley,

Gilgit Baltistan (Northern Areas of Pakistan).

Environmental Monitoring and Assessment, 194: 151.

https:/doi.org/10.1007/s10661-022-09845-5

[8] Chauhan, N., Paliwal, R., Kumar, V., Kumar, S., Kumar,

R. (2022). Watershed prioritization in Lower Shivaliks

Region of India using integrated principal component

and hierarchical cluster analysis techniques: A case of

upper Ghaggar Watershed. Journal of the Indian Society

of Remote Sensing, 50: 1051-70.

https://doi.org/10.1007/s12524-022-01519-6

[9] AlaouiMhamdi, M., Aleya, L., Bahhou, J. (1996).

Nitrogen compounds and phosphate of the Driss I

reservoir (Morocco): Input, output and sedimentation.

Hydrobiologia, 335: 75-82.

https://doi.org/10.1007/BF00013685

[10] Arora, S., Keshari, A.K. (2021). Pattern recognition of

1676



water quality variance in Yamuna River (India) using 

hierarchical agglomerative cluster and principal 

component analyses. Environmental Monitoring and 

Assessment, 193: 494. https://doi.org/10.1007/s10661-

021-09318-1

[11] Gong, M.Y., Miller, C., Scott, M., O’Donnell, R., Simis,

S., Groom, S. (2021). State space functional principal

component analysis to identify spatiotemporal patterns in

remote sensing lake water quality. Stochastic

Environmental Research and Risk Assessment, 35: 2521-

36. https://doi.org/10.1007/s00477-021-02017-w

[12] Ramirez-Figueroa, J.A., Martin-Barreiro, C., Nieto-

Librero, A.B., Leiva, V., Galindo-Villardon, M.P. (2021).

A new principal component analysis by particle swarm

optimization with an environmental application for data

science. Stochastic Environmental Research and Risk

Assessment, 35: 1969-84.

https://doi.org/10.1007/s00477-020-01961-3

[13] Chao, L., Cao, Y., Chen, S., Wang, Y., Li, Y.F. (2021).

evaluation of surface water quality in panjin of liao river

basin by principal component analysis. Fresenius

Environmental Bulletin, 30: 8284-8291

[14] Ferde, M., Costa, V.C., Mantovaneli, R., Wyatt, N.L.P.,

Rocha, P.D., Brandao, G.P. (2021). Chemical

characterization of the soils from black pepper (Piper

nigrum L.) cultivation using principal component

analysis (PCA) and Kohonen self-organizing map

(KSOM). Journal of Soils and Sediments, 21: 3098-3106.

https:/doi.org/10.1007/s11368-021-02966-3

[15] El Chaal, R., Aboutafail, M.O. (2022). Statistical

modelling by topological maps of Kohonen for

classification of the physicochemical quality of surface

waters of the inaouen watershed under matlab. Journal of

the Nigerian Society of Physical Sciences, 4: 223-30.

https://doi.org/10.46481/jnsps.2022.608

[16] El Chaal, R., Aboutafail, M.O. (2022). A comparative

study of back-propagation algorithms: Levenberg-

marquart and bfgs for the formation of multilayer neural

networks for estimation of fluoride. Communications in

Mathematical Biology and Neuroscience, 2022: 7355.

https://doi.org/10.28919/cmbn/7355

[17] El Chaal, R., Aboutafail, M.O. (2021). Development of

stochastic mathematical models for the prediction of

heavy metal content in surface waters using artificial

neural network and multiple linear regression., editors.

E3S Web of Conferences, 314: 02001.

https://doi.org/10.1051/e3sconf/202131402001

[18] Elemile, O.O., Ibitogbe, E.M., Folorunso, O.P., Ejiboye,

P.O., Adewumi, J.R. (2021). Principal component

analysis of groundwater sources pollution in Omu-Aran

Community. Nigeria. Environmental Earth Sciences, 80:

690. https://doi.org/10.1007/s12665-021-09975-y

[19] Tasan, M., Demir, Y., Tasan, S. (2022). Groundwater

quality assessment using principal component analysis

and hierarchical cluster analysis in Alacam. Turkey.

Water Supply, 22: 3431-47.

https://doi.org/10.2166/ws.2021.390

[20] Dugger, Z., Halverson, G., McCrory, B., Claudio, D.

(2022). Principal component analysis in MCDM: An

exercise in pilot selection. Expert Systems with

Applications, 188: 115984.

https:/doi.org/10.1016/j.eswa.2021.115984

[21] Andries, E., Nikzad-Langerodi, R. (2022). Dual-

constrained and primal-constrained principal component

analysis. Journal of Chemometrics, 36(5): e3404. 

https://doi.org/10.1002/cem.3403 

[22] Song, J.; Kim, K. (2022). Sparse multivariate functional

principal component analysis. STAT, 11(1): e435.

https://doi.org/10.1002/sta4.435

[23] Kamani, M.M., Haddadpour, F., Forsati, R., Mahdavi, M.

(2022). Efficient fair principal component analysis.

Machine Learning, 111: 3671-3702.

https://doi.org/10.1007/s10994-021-06100-9

[24] Zhang, J., Siegle, G.J., Sun, T., D’andrea, W., Krafty,

R.T. (2021). Interpretable principal component analysis

for multilevel multivariate functional data. Biostatistics,

kxab018. https://doi.org/10.1093/biostatistics/kxab018

[25] Li, A., Fu, J.Q., Shen, H.M., Sun, S.Z. (2021). A Cluster-

Principal-Component-Analysis-Based Indoor

Positioning Algorithm. IEEE Internet of Things Journal,

8: 187-96. https://doi.org/10.1109/JIOT.2020.3001383

[26] Gewers, F.L., Ferreira, G.R., De Arruda, H.F., Silva,

F.N., Comin, C.H., Amancio, D.R.. (2021). Principal

component analysis: A natural approach to data

exploration. ACM Computing Surveys, 54(4): 1-34.

https://doi.org/10.1145/3447755

[27] Yamashita, N. (2022). Principal component analysis

constrained by layered simple structures. Advances in

Data Analysis and Classification.

https://doi.org/10.1007/s11634-022-00503-9

[28] Wang, H., Dai, Y.Y., Fu, L.C., Liu, F., Hu, J.L., Dong,

X.Z. (2021). Power swing detecting method using

principal components analysis. Energy Reports, 7: 1009-

1014. https://doi.org/10.1016/j.egyr.2021.09.172

[29] Sarita, K., Devarapalli, R., Kumar, S., Malik, H.,

Marquez, F.P.G., Rai, P. (2022). Principal component

analysis technique for early fault detection. Journal of

Intelligent & Fuzzy Systems, 42: 861-72.

https://doi.org/10.3233/JIFS-189755

[30] Demir, Y., Keskin, S., Cavusoglu, S. (2021).

Introduction and applicability of nonlinear principal

components analysis. Ksu tarim ve doga dergisi-ksu

Journal of Agriculture and Nature, van yuzuncu yil, 24:

442-50.

https://doi.org/10.18016/ksutarimdoga.vi.770817

[31] Denimal, J.J., Camiz, S. (2022). Complex principal

component analysis: Theory and geometrical aspects.

Journal of Classification, 39: 376-408.

https://doi.org/10.1007/s00357-022-09412-0

[32] Barth, J., Katumullage, D., Yang, C.Y., Cao, J. (2021).

Classification of Wines Using Principal Component

Analysis. Journal of Wine Economics, 16: 56-67.

https://doi.org/10.1017/jwe.2020.35

[33] Frost, H.R. (2022). Eigenvectors from Eigenvalues

sparse principal component analysis. Journal of

Computational and Graphical Statistics, 31: 486-501.

https://doi.org/10.1080/10618600.2021.1987254

[34] Charpentier, A., Mussard, S., Ouraga, T. (2021).

Principal component analysis: A generalized Gini

approach. European Journal of Operational Research,

Uqam, 294: 236-49.

https://doi.org/10.1016/j.ejor.2021.02.010

[35] Tang, T.M., Allen, G.I. (2021). Integrated principal

components analysis. Journal of Machine Learning

Research, 22: 1-71

[36] Abdi, H., Williams, L.J. (2010). Principal component

analysis. Wiley Interdisciplinary Reviews-

Computational Statistics, 2: 433-59.

1677



https://doi.org/10.1002/wics.101 

[37] Wold, S., Esbensen, K., Geladi, P. (1987). Principal

component analysis. Chemometrics and Intelligent

Laboratory Systems, 2: 37-52.

https://doi.org/10.1016/0169-7439(87)80084-9

[38] Mnassri, B. (2012). Analyse de données multivariées et

surveillance des processus industriels par analyse en

composantes principales. Aix-Marseille.

[39] Bro, R., Smilde, A.K. (2014). Principal component

analysis. Analytical Methods, 6: 2812-2831.

https://doi.org/10.1039/c3ay41907j

[40] Vidal, R., Ma, Y., Sastry, S. (2005). Generalized

Principal Component Analysis (GPCA). IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 27: 1945-59.

https://doi.org/10.1109/TPAMI.2005.244

[41] Tipping, M.E., Bishop, C.M. (1999). Probabilistic

principal component analysis. Journal of the Royal

Statistical Society Series B-Statistical Methodology, 61:

611-22. https://doi.org/10.1111/1467-9868.00196

[42] Hess, A.S., Hess, J.R. (2018). Principal component

analysis. Transfusion, 58: 1580-1582.

https://doi.org/10.1111/trf.14639

[43] Ringner, M. (2008). What is principal component

analysis? Nature Biotechnology, 26: 303-304.

https://doi.org/10.1038/nbt0308-303

[44] Aflalo, Y., Kimmel, R. (2017). Regularized Principal

Component Analysis. Chinese Annals of Mathematics

Series B, 38: 1-12. https://doi.org/10.1007/s11401-016-

1061-6 

[45] Sando, K., Hino, H. (2020). Modal principal component

analysis. Neural Computation, 32: 1901-1935.

https://doi.org/10.1162/neco_a_01308

[46] Boudou, A., Viguier-Pla, S. (2022). Principal

components analysis and cyclostationarity. Journal of

Multivariate Analysis, 189.

https://doi.org/10.1016/j.jmva.2021.104875

[47] Siirtola, H., Saily, T., Nevalainen, T. (2017). Interactive

Principal Component Analysis. 2017 21ST Int. Conf. Inf.

Vis. Univ Tampere, COMMS, TAUCHI Res Ctr,

Tampere, Finland, pp. 416-421.

https://doi.org/10.1109/iV.2017.39

[48] Pimentel-Alarcon, D.L., Biswas, A., Solis-Lemus, C.R.

(2017). Adversarial principal component analysis. In

2017 IEEE International Symposium on Information

Theory (ISIT), Aachen, Germany, pp. 2363-2367.

https://doi.org/10.1109/isit.2017.8006952

[49] Benkaddour, M.K., Bounoua, A. (2017). Feature

extraction and classification using deep convolutional

neural networks. PCA and SVC for face recognition,

Traitement du Signal, 34(1-2): 77-91.

https://doi.org/10.3166/TS.34.77-91

[50] Bendali, W., Saber, I., Bourachdi, B., Amri, O.,

Boussetta, M., Mourad, Y. (2022). Multi time horizon

ahead solar irradiation prediction using GRU, PCA, and

GRID SEARCH based on multivariate datasets. Journal

Européen des Systèmes Automatisés, 5(1): 11-23.

https://doi.org/10.18280/jesa.550102

1678

https://doi.org/10.1109/isit.2017.8006952
https://doi.org/10.3166/TS.34.77-91
https://doi.org/10.18280/jesa.550102



