
Applicability of Multivariate Linear Regression in Building Energy Demand Estimation 

Tamas Storcz1*, István Kistelegdi2, Kristóf Ronald Horváth3, Zsolt Ercsey1 

1 Department of Systems and Software Technologies, Faculty of Engineering and Information Technology, University of Pécs, 

Pécs 7624, Hungary 
2 Energy Design Research Group, János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary 
3 Marcel Breuer Doctoral School, Faculty of Engineering and Information Technology, University of Pécs, Pécs 7624, Hungary 

Corresponding Author Email: storcz.tamas@mik.pte.hu

https://doi.org/10.18280/mmep.090602 ABSTRACT 

Received: 7 September 2022 

Accepted: 22 October 2022 

The vision of the research project is to find an energy optimal building configuration, 

suitable for specified requirements and restrictions. The first step on this way is to create 

a measure to compare building configurations, faster than explicit energetic simulations. 

The current study examines the applicability of multivariate linear regression to support 

the solution of building optimization problems. During the study, multivariate linear 

regression models were created to estimate the expected annual heating energy demand 

of building configurations and examined their accuracy Between examinations, the 

models were modified so that the complexity was increased only to such an extent that 

the approximation was still sufficiently accurate. The result was a multivariate linear 

model that estimated the expected output for unknown descriptive variables with a 0% 

relative error and a 1.6% standard deviation. The R2 point of the estimates was 0.9884. 

Based on these, the model was considered applicable in the search space defined by the 

training patterns. 
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1. INTRODUCTION

The built environment represents one of the largest energy-

consuming industry in the world [1, 2]. The main reason for 

this can be identified and traced back to the beginning steps of 

establishing a building; namely the design phase [3, 4]. At this 

stage numerous decisions are made that has enormous effects 

on the later realized buildings energy and comfort 

performance. 

The research project targets to create an artificial 

intelligence-based model to advise the most energy efficient 

building configuration for predefined customer and designer 

requirements and restrictions of laws and orders. As a first step, 

a linear regression model is tested to estimate heating energy 

demand simulation results. Building configurations of the 

experiment was restricted to a 6-block residential building and 

simulations were made by using local meteorological data. 

When applying machine learning concepts, first used linear 

regression estimated the energy demand with R2=0.73. After 

providing non-linearity by extending the input set by 

multiplicative combinations of original inputs up to 3rd power. 

Resulting polynomial regression obtained 0% relative error 

average and 1.6% standard deviation. The R2 point of the 

estimates was 0.9884. This accuracy is not worse than the 

accuracy of weather statistics based energetic simulations, 

therefore accepted for further work by architect experts. 

2. RELATED WORKS

It is crucial to fully understand the effects of (certain) design 

parameters to decrease this negative effect on our environment. 

Certain types of sensitivity analysis methods are the most 

effective for this purpose [5, 6]. 

Regression models serve as an obvious solution for 

analyzing building properties, since building design variables 

can be easily translated or converted to numerical values that 

are in correlation. Linear regression is a widely accepted and 

applied mathematical approach/method, known for helping to 

analyze large databases in terms of the relationships between 

independent and dependent variables.  

Several studies utilizing regression models focus on how 

natural lighting effects heating and cooling energy use [7], or 

lighting energy demand or concentrate on the effects of 

building design parameters on daylighting [8]. 

Numerous studies have proved the predictive power of 

regression models. Building repair time estimation is also 

representing high importance considering the increase in 

deteriorating buildings [9]. Sajjad et al. [10] proposed three 

buildings energy consumption prediction by a unique multi-

output (MO) sequential learning model predicting heating and 

cooling loads also. A multiple linear regression model was 

developed [11] with an analysis of variance method (ANOVA) 

for predicting the annual heating and cooling energy demands 

in the three climate regions. 

Another study identified a total of 12 key building design 

variables through parametric analysis [12], and considered as 

inputs in the regression models. A pseudo-random number 

generator based on three simple multiplicative congruential 

generators was employed to generate random designs for 

evaluation of the regression models. The comparative analysis 

showed that the margin of error at these building cases are 10%. 

Based on these results an estimation of energy savings can be 

made. 
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Research was focused on indoor environmental quality in 

zero energy buildings to predict the expected variation of IEQ 

according to various standards [13]. 

A study about urbanized areas [14] aimed at developing a 

surrogate model-based integrated optimization system to 

obtain energy-optimal thermal designs for residential 

buildings in the most urbanized cities in Turkey under 

different levels of budget constraints. 

Kudabayev et al. [15] studied the thermal system of a room 

in a building. Using a proposed a mathematical model the 

results show that thermal insulation and thermal capacity of 

walls have effect heating and cooling energy demand.  

According to the idea above, another study describes 

numerical simulations, made using ANSYS/FLUENT 16 

software, to select thermal agents for building parts [16].  

A further study aimed at creating tools to assess the 

relationship between heating energy use and indoor 

temperatures at different levels of occupant behavior in 

residential buildings [17]. 

According to Zou et al. [18] three steps are required to 

provide architects with robust and accurate design references 

when conducting design tasks. The first step is to create a 

database by generating the building objects randomly and 

performing building simulations on them. The next step is to 

train artificial neural network (ANN) models as a surrogate for 

demanding building simulation to predict the building 

performance accurately and quicker than a simulation. The last 

step is the optimization based on actual design constraints. 

Harish and Kumar have conducted a review of all the 

significant modeling methodologies which have been 

developed and adopted to model the energy systems of 

buildings [19]. 

The complex correlations or relations between design 

variables cannot be described with a simple mean average 

based weighted order system. Equal values can occur, and no 

order of equal values is properly established, or nearly 

identical values may receive the same score. Cases with 

different energy or comfort score compositions may also give 

the same total score. 

 

 
3. BASELINE DATA AND BOUNDARY CONDITIONS 

 

Creating a database is essential to discover correspondences 

and their margins related to the connection of the input and 

output parameters. It is also crucial in developing a regression 

model. 

The generated configurations scale and the introduced 

modular system was based on a real award-winning active 

house. This conscious decision was made to ensure later 

validation steps with the help of measured data from a building 

monitoring system. Furthermore, this fact is forming the basis 

of an 80% energy saving [20, 21] potential via utilizing passive 

design components. 

During an exemplary modelling uniform building blocks 

were used to form a generic family house. From all possible 

options 167 building configurations were selected by experts, 

based on various architectural design rules. These 

configurations were transformed into building cases by 

applying several different structures, wall- window ratios, and 

orientations to each configuration. 

It is possible to deliver detailed, complex analysis in annual, 

hourly resolution about the time dependent daylight, comfort 

and energy behavior of the buildings with the help of dynamic 

thermal simulation calculations, taking into account the local 

climate conditions. IDA ICE 4.8 indoor climate and energy 

dynamic thermal simulation software provided the calculation 

engine. Further, IDA ICE is capable of high-level visual 

representation and post processing considering various 

standards. 

To create the model of the present paper, we created 5010 

simulation samples using the IDA ICE dynamic thermal 

simulation program. The geographic location of the site and 

the local climate conditions were considered at the thermal 

simulations (ASHRAE IWEC2 Climate Database). Artificial 

illumination, equipment and occupants were modelled 

according to standard usage of typical single-family houses. 

The heat transfer system of the interior and the heating central 

system was scaled with appropriate performance. The air 

handling unit (AHU) system provides regular satisfactory air 

change (ACH) rates. The same boundary conditions were 

applied to the 5010 building cases’ simulations: climate and 

location data, HVAC and operation settings. One of the 

purposes of the simulations is a detailed comparative analysis 

of heating energy demand. Based on the identic boundary 

conditions and settings, differences in the energy simulation 

results were expected, because of diverse building shape. 

 

 

4. SIMULATED MODELS 

 

 
 

Figure 1. Extension of configurations to building models 

 

The following building design variables were considered, to 

provide the simulation engine with the necessary building 

properties (Figure 1). 

• Two different structures, one meeting the minimum 

standards, while the other is almost meeting or exceeding the 

passive house standards. 

•Three different window wall ratios were applied to the 

generated geometry configurations. Namely 30%, 60% and 
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90% ratios were prepared on the main facade (-area 

representing the largest surface facing the same direction). 

• Five different orientations were chosen to enable the 

simulation engine applying the chosen climate weather dataset. 

The orientation directions are 90, 135, 180, 225, 275 degrees, 

where 0 degrees represents North. 

Five orientations were considered in the investigation, 

including the most solar radiation dominant South, and two 

surroundings on each side: East, South-East, South-West and 

West directions. The main facades of the models were turned 

in the five different directions, because these have the most 

effect on (can decrease) heating energy demand.  

Internal walls and partitions are not included, only slabs 

were used to divide the levels from each other. This 

simplification was consciously undertaken. Slabs were 

necessary in order to avoid multiple storey-high indoor spaces, 

which are not typical for residential housing. Diverse sloping 

roofs, galleries, stairs, etc. represent all these – in first research 

step non-traceable and overcomplicating – issues, which must 

be considered in further research. All structure, glazing ratio 

and orientation combinations of every building configuration 

resulted a total of 5,010 building model sample variations for 

the simulation. 

 

 

5. DESCRIPTIVE VARIABLES OF BUILDING 

CONFIGURATIONS 

 

Strong dependency of building block coordinates is hard to 

be represented as independent inputs. Therefore, instead of 

representing the building configurations using the block 

coordinates, 14 descriptors were introduced into the system. 

Groups of number of different surfaces, edges and vertices 

serve as set of simple descriptive variables as shown in Figure 

2 and Table 1. 

 

   

(a) surfaces 
(b) positive and 

negative edges 

(c) positive 

vertices 

 

Figure 2. An exemplary geometry configuration illustrating 

introduced design variables 

 

Further to the set of simple descriptive variables, a complex 

architectural descriptor is also introduced. The transmission 

heat loss surface to heated floor space ratio: Aenvelope/Stotal is 

used, expressed in Eq. (1). 

 
𝐴𝑒𝑛𝑣

𝑆𝑡𝑜𝑡
=
𝐴𝑒𝑛𝑣−𝑎𝑖𝑟 + 𝐴𝑒𝑛𝑣−𝑔𝑟𝑜𝑢𝑛𝑑 ∙ 0.71

𝑆𝑡𝑜𝑡
 (1) 

 

where Aenv-air means the roof and façade structures’ surface in 

m2, Aenv-ground means floor surface adjacent to ground in m2 and 

Stot means the total net floor space in m2. The factor 0,71 is a 

dynamic thermal simulation-based value, expressing an 

average of lower transmission heat loss rates related to ground 

surfaces in family house sized geometry cases. The smaller the 

Aenv/Stot value, the higher the energy efficiency of the building 

geometry.  

In the case of the current study the dependent variable 

(output variable) is the estimated annual heating energy 

demand. 

In the present work, we propose the use of regression 

models to replace the simulation process in the search space 

under consideration. In the figure, the thick red arrow 

represents the generation of the expert input data. The green 

colored modelling is either simulation, or regression should 

the search space be adequately known. 

 

Table 1. Parameters of models 

 
Name of the parameter Explanation Group 

Generic input 

structure various 
building design 

parameter 
wall window rate percent 

orientation degree 

Set of simple input variables 

g connected to ground 

surfaces 

r roof 

b balcony 

w external wall 

a 
arcade 

(slab connected to air) 

g edge ground edge_N.o. 

edges 

r positive edge roof edge_N.o. 

r negative edge roof edge_N.o. 

a positive edge wall edge_N.o. 

a negative edge wall edge_N.o. 

arcade positive edge arcade edge_N.o. 

g vertex g vertex_N.o. 

vertexes a air vertex wall vertex_N.o. 

arcade vertex arcade vertex_N.o. 

Complex geometry descriptor input 

A/S 
envelope surface 

floor surface 
coefficient 

Output 

heating energy demand [kWh/a] energy results 

 

 

6. MACHINE LEARNING 

 

According to Mitchel’s illustrative, formalizable definition 

of machine learning [22], “a computer program is said to learn 

from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E.” In other words, 

solutions of similar examples may improve the performance 

of problem solving together with its measure. Therefore, to use 

the machine learning procedure, the followings are required:  

•Task class definition: Estimating the annual energy 

demand based on building properties. 

•Experience from solving similar tasks: Analytical energy 

demand simulations using IDA ICE simulation software. 

•Efficiency measurement: Quadratic and absolute 

differences. 

With the above mentioned, let us create the hypothesis 

where the practical model solves unknown tasks within the 

task class with acceptable accuracy based on the previously 

solved similar examples. For the model creation and efficiency 

measurement, the IDA ICE simulation dataset is split into two 

parts. A major part of simulation results (75%) was used to 

build or train the model. This set is called “training data”. 

While through the remaining 25% of experience, the 

efficiency of the model was measured or tested. This smaller 

set is called “test data.” In the first step, model parameters are 

set based on training data, then model performance is 
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measured using test data, which is unknown for the model. The 

performance measure is the absolute and relative distance of 

the model output and the already known simulation result, 

calculated using Manhattan (L1) distance. The model is 

accepted or rejected by the experts based on average distances. 

In the current paper, linear regression is applied. Its 

advantages are its speed and easy application, but 

disadvantage is the linear approximation, which will be 

detailed later. 

 

 

7. LINEAR REGRESSION 

 

Regression is a wildly and commonly used statistical 

method, whereby details of dependencies of explanatory and 

response variables are to be explored and determined. 

Linear regression [23] is a special case of general regression 

calculation where the dependent variable is obtained as a linear 

combination of descriptive variables, as shown in Eq. (2), with 

a first-order Taylor series.  

 

𝑦 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑚𝑥𝑚 + 𝜀 (2) 

 

ℎ(𝑥) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑚𝑥𝑚 (3) 

 

𝜀 = 𝑦 − ℎ(𝑥) (4) 

 

where, y is the dependent or output variable, x1…xm are 

descriptor or explanatory variables, β0…βm are parameters of 

linear combination, h(x) of Eq. (3) is the linear regression 

hypothesis function and Eq. (4) shows ε, the approximation 

error of linear regression. 

 

7.1 Hypothesis 

 

According to Eq. (3), there exists a set of β0…βm parameters 

of the hypothesis, where approximation error of Eq. (4) would 

remain under a certain acceptance threshold specified by 

architects. The least squares analytical method [24] is used to 

determine appropriate β0…βm parameters. 

 

7.2 Model creation 

 

When creating the multivariate linear regression model, it is 

supposed that the dependent variable is determined by many 

explanatory variables. 

Values of the explanatory variables of all measures can be 

described by the matrix of Eq. (5) 

 

𝑿𝑜 = [

𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮

𝑥𝑛1 ⋯ 𝑥𝑛𝑚
] (5) 

 

where, n is the number of measures, m is the number of 

explanatory variables. Then xij item of the matrix is the value 

of j-th explanatory variable during the i-th 

measure/observation. 

Members of Eq. (3) hypothesis can be described as column 

vectors. Please note that the first column index of the matrix 

X0 of Eq. (5) is 1, but the first row index of β column vector 

of Eq. (6.b) is 0. In other words, there is no x0 explanatory 

variable beside the constant parameter (β0) in Eq. (3), therefore 

X0 matrix must be extended with a column of constant 1 values, 

according to Eq. (6). 

𝑋 = [
1
⋮
1

𝑥11 … 𝑥1𝑚
⋮ ⋱ ⋮
𝑥𝑛1 … 𝑋𝑛𝑚

] (6) 

 

As a consequence, Eq. (2) of linear regression can be 

formulated as Eq. (7): 

 

𝑦 = 𝑋𝛽 + 𝜀 (7) 

 

where, ε is the column vector containing linear regression 

approximation errors of each measure/observation and its εi 

element is the approximation error of the i-th measure. 

In the calculation of β parameters, to solve a linear equation 

with m unknowns, the method of least squares is applied. Here 

the β parameter vector is calculated by Eq. (8). 

 

𝛽 = (𝑋′𝑋)−1𝑋′𝑦 (8) 

 

The estimation of the newly created linear regression model, 

applying β parameter vector can be given by Eq. (9). 

 

𝑦̃ = 𝑋𝛽 (9) 

 

The absolute error of linear regression is given in Eq. (10). 

 

𝜀𝑎 = 𝑦 − 𝑦̃ (10) 

 

7.3 Model evaluation 

 

In the current paper the R2 metrics [25], detailed in Eq. (11), 

is used to evaluate the performance of the regression model. 

 

𝑅2 = 1 −
∑(𝑦 − 𝑦̃)2

∑(𝑦 − 𝑦̅)2
 (11) 

 

The best score of R2 measure is 1, the lower results mean 

lower performance. Please note that, negative values can also 

be results of poor performance.  

The performance is further measured by absolute error, 

given above, and the relative error, given in Eq. (12). Please 

note that this error is relative to the esteemed value. 

 

𝜀𝑟 =
(𝑦 − 𝑦̃)

𝑦
 (12) 

 

7.4 Approximation results 

 

During the performed architectural experiment, out of 5,010 

simulations, 3,757 samples (75%) were used for model 

creation and remaining 1,253 samples (25%) were used for 

independent test of model performance. The selection of train 

and test samples was done by pseudo-random decisions with 

even distribution. Please note that should significant 

difference between training and test results occur, the model 

structure or the train-test sample selection method must be 

revised. 

In the first case of the experiment, besides engineering 

inputs (structure, wwr, orientation), to describe a building 

configuration one complex descriptor (A/S) was used. In the 

second case, 14 simple descriptors were numerated from the 

building configuration (for example faces, edges, vertices) and 

these were used with engineering input. The inputs are detailed 

in Table 1. 
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Through the experiment cases, engineering inputs have not 

changed, therefore the difference of cases reflects usefulness 

of the applied building configuration descriptors. As shown in 

first row of Table 3 and Figure 3, R2 score of multiple simple 

descriptors is slightly higher (0.7489) than score of single 

complex descriptor (0.7273), but both are far from the best 

value (1.0). 

 

 
 

Figure 3. R2 score of linear regression 

 

Based on the K2 test proposed by D’Agostino [26] and the 

Anderson-Darling [27] test performed on the distribution of 

error functions, it can be stated that absolute error function 

does not, but relative error function has normal distribution. 

Therefore, the mean and standard deviation are valid 

descriptors of the relative error. Applying these, it can be noted 

that even though relative error is under 1%, according to 2σ 

rule of normal distribution, the 8% std. dev (Table 2, Figure 

4). results a ±16% interval for containing 95% of estimated 

values.  

 

Table 2. Standard deviance of relative error [%] 

 
std. 

dev. 

A/S 14 descriptors 

Training Test Training Test 

σ 8.0 7.9 7.5 8.0 

 

 
 

Figure 4. Absolute error σ2 of linear regression 

 

The absolute error is not normal, thus there is no 

information about its accuracy, please note that average of 

absolute approximation error was under 1.0 kWh/year. 

Based on the above the following conclusions can be drawn. 

The function of annual heating energy demand cannot be 

estimated as a linear combination of the described input 

variables neither using single complex or multiple simple 

building structure descriptors. Understanding the extracted 

parameters of normal distribution, more than 30% of 

estimations are expected to be between 2 and 3 σ from the 

mean, in other words that results 16-24% error for more than 

30% of estimations. In this form, the linear regression model 

is not suitable for replacing building energy requirement 

simulations. 

8. NON-LINEAR REGRESSION 

 

As presented in the previous paragraph, approximation of 

annual heating energy demand by linear regression is only 

possible with unacceptable error. This is obviously because the 

energy demand function is not linear. It would be necessary to 

apply a non-linear approximation method. All methods 

considered non-linear which do not use linear approximation 

e.g. logarithmic, exponential, trigonometric, etc. Non-linear 

transformations applied on input variables could also be part 

of non-linear regression. In the non-linear approximator 

polinom of the applied method, non-linearity comes from the 

higher degree of input variables. Such a regression is called 

polynomial regression [28]. Difficulty of this method is to 

specify the minimum sufficient degree of input variables and 

their multiplicative combinations to keep the model as simple 

as possible. 

However, when looking back to the definition of linear 

regression, please note that there were no restrictions to the 

dependency of the input variables. That is when the solution 

of polynomial regression above is splitted into specifying 

degree of descriptors and their coefficients while on the other 

hand the exponential growth of model complexity together 

with the expansion of computation time of the analytical 

solution are accepted, then after adding second and third 

degree of input variables (and their multiplicative 

combinations up to 3rd degree), the solution is simplified to 

the previously explained multivariate linear regression model. 

Total numbers of input variables (including engineering 

parameters, building configuration descriptors and their 

multiplicative combinations) are listed in Table 3. As a result 

of the modifications, the new model is now able to 

approximate non-linear functions. 

 

Table 3. Total number of input variables 

 

Input type A/S 
Simple 

descriptors 

engineering 3 3 

building configuration 1 14 

total 1st degree 4 17 

total 2nd degree 14 170 

total 3rd degree 34 1139 

 

8.1 Approximation accuracy 

 

When accuracy of approximations is measured by R2 score, 

shown in Eq. (9), Table 4 contains model performances. Upon 

these, it can be stated that extending input features with their 

maximum 3rd powers results the best approximation, but 

application of max. 2nd powers also results huge improvement 

in accuracy. Applying the set of simple building geometry 

descriptors besides engineering inputs performs slightly better 

(R2=0.98) than the single, complex descriptor (R2=0.95). 

 

Table 4. R2 scores by different degree of inputs 

 

max. 

degree 

A/S 14 descriptors 

Training Test Training Test 

1st  0,7240 0,7363 0,7525 0,7365 

2nd  0,9311 0,9329 0,9623 0,9632 

3rd  0,95244 0,9567 0,9899 0,9884 

 

Rate of approximation accuracies, measured on test data, 

which is unknown for the model, is presented in Figure 5. Test 
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data is unknown for the model because it was not part of model 

creation or training. 

 

 
 

Figure 5. R2 scores by different degree of inputs 

 

Examining error function of the extended linear regression 

models applying higher degree of input variables, it can be 

stated that distribution of the absolute error arising from 

approximation is not, but the distribution of relative error can 

be considered as normal distribution. Therefore, the mean and 

standard deviation and histogram can be examined and used 

for confidence estimation similarly to the situation discussed 

earlier. 

 

Table 5. Standard deviation of approximations [%] 

 
Input degree A/S 14 descriptors 

max. 1st power 7,9 8,0 

max. 2nd power 3,9 3,1 

max. 3rd power 3,3 1,6 

 

Standard deviations of relative approximation errors 

measured on test (unknown for model) data is listed in Table 

5. Differences and rates of standard deviations of relative 

approximation errors measured on test data is depicted in 

Figure 6. 

 

 
 

Figure 6. Relative error σ2 [%] 

 

Based on the above mentioned, it is visible that when testing 

a multivariate linear regression model which applies max. 3rd 

powers of input variables 0.9884 R2 score was reached, while 

standard deviation relative error of the approximation was 

1.6%. Therefore, based on 3 σ rule of normal distribution, most 

probably the model will approximate 68% of the results with 

less than 1.6% relative error and 99% of the results will have 

less than 4.8% relative error. 

This is further illustrated in Figure 7, where relative errors 

of approximations made by linear regression models with 

different degree of input variables on test (unknown for the 

model) data are collected into 4 bins. The bins are declared as 

the absolute value of the distance from the mean in a step of 

standard deviance. When describing numerically, the selected 

model estimates the 76.5% of the data with maximum 1 σ 

relative error and the rate of estimations with larger than 3 σ is 

less than 0.9%. 

 
 

Figure 7. Histogram of absolute errors by reliability 

 

The histogram shown in Figure 5 in accordance with 

executed normality tests fits the histogram of absolute value of 

the Gaussian bell curve. Rate of estimations out of 3 σ interval 

from the mean is less than 1% which is slightly higher than the 

rate declared by 3 σ rule (0.3%). Examination of these points 

are detailed in the next chapter. 

 

8.2 Approximation error 

 

Approximately 0.3% of estimation result error values 

farther than 3 σ from its average can be accepted in general, 

according to the behavior of normal distribution. It is visible 

in Table 6 and Figure 8 that when using 1st power of input 

variables, the count and rate of outsider points was 0.  

 

Table 6. Number and rate of estimations out of 3σ  

 
Input degree Out of 3σ A/S 14 descriptors 

1st 
count 0 0 

% 0.0 0.0 

2nd 
count 25 13 

% 0.5 0.3 

3rd 
count 37 49 

% 0.7 1.0 

 

But when using 2nd and 3rd power of the input variables the 

rate of such data points was almost 0.5% and 0.7%, which is 

almost two times more than expected. 

 

 
 

Figure 8. Rate of estimations out of 3σ [%] 

 

 
 

Figure 9. Number of estimations out of 3σ [pieces] 

 

Increasing rate of similar outsider points may look wrong, 

but it is indeed good. The reason is that the rate is closely 

related to the standard deviation of the normal distribution. 
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When general accuracy is increasing, that will decrease the 

estimation error interval through the decrement of σ of normal 

distribution. This could bring a slight increase of the number 

(and rate) of estimations out of 3σ. Now it is understandable 

that 0 outsider points of the first model was because of 

unacceptably large σ. The increment of number and rate of 

outsider points does not decrement the acceptability of the 

estimation model. Nevertheless, analysis of such points as 

anomaly points and trying to identify the reasons of anomaly 

by architects and building engineer experts could significantly 

increase the reliability of the process. 

It can be seen in Figure 9 that the number of points to be 

examined as anomaly point is around 40 for the whole 

experiment. Thus, the resources required for further anomaly 

analysis can easily be provided. 

 

 

9. CONCLUSION 

 

Based on analysis and interpretation of experiment results, 

it can be stated that applying a multivariate linear regression 

model using at most 3rd degree of 14 simple building 

configuration descriptors besides engineering inputs can be 

used to estimate annual heating energy demand of buildings in 

conditions predefined by engineering parameters. The 

estimation accuracy measured by R2 score acquired 0.9884. 

The relative error of expected output estimations had 0% 

average and 1.6% standard deviation. Therefor expected value 

of relative estimation error for more than 99% of the sample 

space is under 5%. As a consequence, in the predefined 

environment, the presented multivariate linear regression 

model can replace the simulations. 

In other words, the linear regression model containing only 

the input variables in their original form is not suitable for 

replacing building energy requirement simulations. It was 

necessary to increase the model complexity up to the 3rd degree 

to achieve applicable estimation results. Even though the 

complexity of the model became greater and thus the number 

of computational steps increased exponentially, it is worth 

mentioning, that the total computational time did not change 

significantly in the case of the experiment. 

However, it is important to state that the experiment of 

approximation was made in the search space stretched by well 

known, discrete values of explanatory variables. Extension of 

this search space with new discrete values along existing 

dimensions and adding new dimensions or transferring values 

into the continuous domain requires modification in the model 

accordingly.  

Furthermore, the approximated simulations use local 

weather statistics, therefore their approximations are also 

location dependent.  

Although the proposed model can estimate heating energy 

demand accurately only in restricted manners, it is still useful 

as performance measure in energy demand comparison of 

building configurations. 

 

 

10. FUTURE WORKS 

 

Based on conclusions above, a neural network model is 

under construction, to extract required features and avoid 

using higher power of inputs. Using point cloud representation 

of the search space is also planned to make configuration size, 

structure and functionality flexible. These changes could result 

a model suitable to compare a wide range of building 

configurations, letting to select the energy efficient. 
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