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This article presents a design method to improve the robustness in stability and 

performance of an LQG controller by the LMI approach applied to a multivariable system 

subject to parametric uncertainties, where its variations are known to have a direct impact 

on the degradation of the robustness margins of a classical LQG controller. The main of 

this work is to synthesize a robust Linear Quadratic Gaussian (LQG) controller 

reformulated by the Linear Matrix Inequality (LMI) approach and to apply it on an ill-

conditioned system. Our choice fell on a doubly fed induction generator (DFIG) of the 

aero-generator to produce electrical energy, whose physical parameters are uncertain due 

to several factors: winding heating, magnetic saturation..., this makes it difficult to 

maintain the voltage at 220V and the frequency at 50Hz. First, the mathematical model of 

DFIG is written in a d-q reference frame. The singular values of the uncertainties are 

quantified and multiplied at the system output, and then the robustness conditions are 

determined. Secondly, the robust control law by the LQG synthesis based on the solution 

of the convex optimization problem under LMI Eigenvalue problem is elaborated and 

detailed. The simulation results of the stability and performance robustness of the LQG 

controller by the LMI approach with nominal and disturbed model of the DFIG are 

presented and discussed on the method efficiency. 
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1. INTRODUCTION

Wind energy is one of the various renewable energy sources 

used to produce clean electric energy without any pollution 

and which does not require any fuel (100% natural). Thus, in 

the winter, the electrical energy yield will be higher through 

wind power which covers the significant demand for energy 

consumption, for this reason the aero-generators are used to 

convert the wind's kinetic energy into electrical power [1]. The 

aero-generator is mainly equipped with a machine containing 

a doubly-fed induction generator (DFIG) because of its ease of 

construction and simplicity maintenance, reliability and 

minimal cost [2]. Nevertheless, it is difficult to maintain the 

voltage and frequency produced by the DFIG at the requested 

values (voltage equal to 220V and frequency equal to 50Hz), 

Due to the influence of disturbances which affect the good 

functioning of the generator, come primarily from the 

variations of the wind intensity at the blades level of wind 

turbine and the electrical energy consumption via the electrical 

network directly connected to DFIG [1, 2], see Figure 1. 

In addition, control of the DFIG is quite difficult because of 

the coupling existing between the flux and the electromagnetic 

torque [3], which implies a nonlinear model, its linearization 

around the operating point leads to an approximate model. 

Thus, its parameters, resistances and cyclic inductances of the 

rotor and stator windings are variable due to the physical 

phenomena: Heating, magnetic saturation [3, 4], so that the 

behavior of the DFIG changes continually and causes a gap 

between its real and approximate model, these model 

uncertainties degrade the performances of the applied control 

and cause the operating instability of the DFIG. To overcome 

this problem, we propose to synthesize a robust controller 

which ensures stability and performances robustness 

conditions for the nominal and perturbed (uncertainty plant) 

operating modes. In this paper, we are interested the 

development of a robust control law by the LQG (Linear 

Quadratic Gaussian) synthesis, which is a combination of two 

parts [5, 6]: LQ (Linear Quadratic) state feedback control and 

Kalman Estimator, the resolution of this LQG stochastic 

control problem is known as the separation theorem [6-8] 

based on the minimization of a quadratic criterion. 

This robust control method improves the performance of 

doubly-fed induction generators in terms of set-point tracking, 

parametric variations and sensitivity to disturbances [9]. 

However, the Kalman Estimator installed in the LQG 

controller weakens the good robustness properties of the LQ 

control by state feedback, an infinite gain margin, and a 60deg 

phase margin [10, 11]. To improve these properties of 

robustness [12-14], have demonstrated a new design based on 

LQG, LTR (Loop Transfer Recovery), which allows 

recovering the robustness properties of the LQ control by state 

feedback. The classic LQG regulator has proven its 

effectiveness in many control problems of linear systems with 

good robustness margins, however, when the systems are 

affected by parametric uncertainties, the classic LQG regulator 

becomes insufficient and loses its robustness. 

To fix this problem, Our objective is to reformulate the 

classical LQG control problem by the LMI approach (Linear 
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Matrix Inequalities) based on the Lyapunov function to 

guarantee the asymptotic stability of the LQ control set and the 

estimator while keeping their good stability margins and to 

maintain the desired good performance in the presence of 

parametric uncertainties, which reinforces the LQG controller 

to ensure the conditions of robustness on the stability and the 

desired performance in closed loop. Therefore, it is proposed 

to introduce the method of Lyapunov to solve separately the 

two parts, Problem LQ and the Estimator, in LMI form, in 

order to ensure internal stability of the control loop and to 

satisfy the desired performances. The interest of the LMIs is 

that they can be solved by convex programming under the 

eigenvalue problem (LMI-EVP) by making a change of 

variables [15-17]. Its resolution is developed by an algorithm 

known as the point-interior method [16, 18], which gives two 

advantages to the convex optimization problem [19]: 

The computing time to find a solution is reasonable. There 

is no local minimum of the cost function to optimize the result 

obtained corresponds to a single global minimum. Finally, the 

gain matrices of the Kalman estimator and the state feedback 

control are constructed from the solutions found. 

This design technique of the LQG Robust controller by the 

LMI approach, applied to the uncertain DFIG model, shown 

in the simulation part a good trajectory tracking, as well as the 

maintaining of the output voltage at the set value of 220V and 

the frequency at 50Hz, despite the uncertainties of the DFIG 

model with the full guarantee of robustness conditions. 

This paper is organized as follows: 

Section 2 presents the (DFIG) doubly-fed induction 

generator description of the aero-generator, modeled by the 

Park's transformation and given in the state space. Section 3 

presents the concepts of robustness conditions. Section 4 

presents the robust LQG control synthesis method using LMI 

approach. Section 5 presents the simulation results of our 

application, which are presented in the frequency-domain and 

in the time-domain. Finally, the last section will be devoted to 

the conclusion. 

 

 

2. GENERAL PLANT DESCRIPTION  

 

The following figure shows the overall diagram of the 

process to be controlled, the aero-generator: 

 

 
 

Figure 1. Aero-generator system 

 

The aero-generator process uses two levels of energy 

conversion, the first is the conversion of kinetic energy from 

the wind into mechanical energy via the turbine (together, 

turbine rotor which is composed of blades and speed multiplier 

(Gearbox) mounted on the shaft [1]). The second transforms 

mechanical energy into electrical energy through a generator 

“DFIG” based on doubly-fed asynchronous machine where its 

stator is connected directly to the electrical network, as well as 

its rotor by means of a static converter to be able to send the 

commands of the robust controller supplied by the algorithm 

of LQG synthesis. And to control stator power (the output of 

the DFIG) to the same requirements of the electrical network 

power, with the following references: voltage and frequency 

respectively equal to 220Volts and 50Hz, whatever are the 

perturbations affecting the aero-generator; The variations of 

the wind speed and the electrical energy consumption under 

the shape of an active or reactive power. For more details on 

the modeling of Aero-generator see References [20-22]. 

The electrical equations of the doubly-fed induction 

generator (DFIG) are modeled by the Park transformation uses 

d-q reference frame on the stator and the rotor of DFIG, for 

more details see [23-25]. 

The dynamics of the process to be controlled is described 

by the following differential equations [9, 26-28]: 

The components of the stator voltage vector are given by 

following equations [9, 26, 27]: 

 

𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +
𝑑Φ𝑑𝑠

𝑑𝑡
− 𝜔𝑠Φqs (1) 

 

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑Φ𝑞𝑠

𝑑𝑡
+ 𝜔𝑠Φds (2) 

 

The components of the rotor voltage vector are given by 

following equations [9, 26, 27]: 

 

{
 
 

 
 𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 +

𝑑Φ𝑑𝑟

𝑑𝑡
− 𝜔𝑟Φqr

𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 +
𝑑Φ𝑞𝑟

𝑑𝑡
+ 𝜔𝑟Φdr

 

(3) 

(4) 

 

The equations of stator flux vector components [9, 26-28]: 

 

{

Φ𝑑𝑠 = 𝐿𝑠𝐼𝑑𝑠 +𝑀𝐼𝑑𝑟

Φ𝑞𝑠 = 𝐿𝑠𝐼𝑞𝑠 +𝑀𝐼𝑞𝑟

 

(5) 

(6) 

 

The equations of the rotor flux vector components [9, 26-

28]:  

 

{

Φ𝑑𝑟 = 𝐿𝑟𝐼𝑑𝑟 +𝑀𝐼𝑑𝑠

Φ𝑞𝑟 = 𝐿𝑟𝐼𝑞𝑟 +𝑀𝐼𝑞𝑠

 

(7) 

(8) 

 

The electromagnetic torque equation [9, 26-28]: 

 

𝐶𝑒 = 𝑝
𝑀

𝐿𝑠
(Φ𝑑𝑠𝐼𝑞𝑟 −Φ𝑞𝑠𝐼𝑞𝑟) (9) 

 

The mechanical equation [9, 26-28]: 

 

𝐶𝑚 = 𝐶𝑟 + 𝐽
𝑑Ω

𝑑𝑡
+ 𝑓Ω (10) 

 

where: 

𝑉𝑑𝑠, 𝑉𝑞𝑠: stator voltages along the axis d and q. 
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𝑉𝑑𝑟 , 𝑉𝑞𝑟: rotor voltages along the axis d and q. 

𝐼𝑞𝑠, 𝐼𝑑𝑠: stator currents along the axis d and q. 

𝐼𝑞𝑟 , 𝐼𝑑𝑟: rotor currents along the axis d and q. 

Φ𝑞𝑠, Φ𝑑𝑠: stator fluxes along the axis d and q. 

Φ𝑞𝑟 , Φ𝑑𝑟: rotor fluxes along the axis d and q. 

𝑅𝑠, 𝑅𝑟: winding resistance of stator and rotor per phase.  

𝐿𝑠, 𝐿𝑟: cyclic inductances of stator and rotor. 

ωs, ωr: stator and rotor angular velocities. 

𝑀: cyclic mutual inductance between stator and rotor. 

𝑝: number of pole pairs. 

𝐶𝑟: resistant torque. 

𝑓: viscous friction coefficient. 

𝐽: moment of inertia. 

 

2.1 State space model of DFIG 

 

Before applying robust control synthesis of LQG by LMI 

approach, we must describe the system model into state space. 

We will first develop the basic principle of our control loop, 

illustrated in the synoptic diagram of Figure 2, which is an 

element of a controlled system, the regulator seeks to 

minimize the tracking error "e", i.e. the difference between the 

set point value of the stator voltages "r: Vds_ref, Vqs_ref" and 

the measured output quantities of the stator voltages "y: Vds, 

Vqs", the controller then generates a control signal consisting 

of the stator currents and voltages "u: Idr, Iqr, Vdr, Vqr" in 

order to maintain the stator voltages at 220V and the frequency 

at 50Hz, despite the influences of disturbances, power grid 

consumption variations, and wind speed changes. 

 

 
 

Figure 2. Feedback control of the perturbed aero-generator 

 

where: K and G are respectively the robust controller and the 

Aero-generator.  

The signals are:  

The reference signal ‘r’ is the stator voltage 

vector [𝑉𝑑𝑠_𝑟𝑒𝑓 𝑉𝑞𝑠_𝑟𝑒𝑓]
′
. 

The control signal ‘u’ is a combined vector of the stator 

currents and the rotor voltages we can be 

written: [𝐼𝑑𝑠 𝐼𝑞𝑠  𝑉𝑑𝑟  𝑉𝑞𝑟]
′
. 

The measured output signal ‘y’ is the stator voltage 

vector [𝑉𝑑𝑠 𝑉𝑞𝑠]
′
. 

The error signal ‘e’ is the difference between the reference 

signal and the measured output signal. 

Perturbations: are the variations in the electrical network 

consumption and in the wind speed. 

In steady state the stator currents are constant, in addition 

their negative values must be eliminated in order to balance 

the heating in the stator windings [29], can be described by the 

following equation: 

 
𝑑𝐼𝑞𝑠(𝑡)

𝑑𝑡
=
𝑑𝐼𝑑𝑠(𝑡)

𝑑𝑡
= 0 (11) 

 

By combining the previous Eqns. (5)-(8) with (11), we 

obtain: 

 

{
 
 

 
 
𝑑𝜑𝑑𝑠
𝑑𝑡

=
𝑀

𝐿𝑟

𝑑𝜑𝑑𝑟
𝑑𝑡

𝑑𝜑𝑞𝑠

𝑑𝑡
=
𝑀

𝐿𝑟

𝑑𝜑𝑞𝑟

𝑑𝑡

 

(12) 

(13) 

 

We take the manipulation of the previous Eqns. (1)-(8) and 

combining them with Eqns. (12) and (13), and choosing the 

rotor-flux vector as a state vector 𝑥 = [Φdr Φqr]
′
, we then get 

the following state space model (14): 

 









DuCxy

BuAxx
 (14) 

 

where: 

 

𝐴 =

[
 
 
 
−𝑅𝑟
𝐿𝑟

𝜔𝑟

−𝜔𝑟
−𝑅𝑟
𝐿𝑟 ]

 
 
 

;  𝐵 =

[
 
 
 
𝑅𝑟 . 𝑀

𝐿𝑟
0 1 0

0
𝑅𝑟 . 𝑀

𝐿𝑟
0 1

]
 
 
 

; 

𝐶 = −
𝑀

𝐿𝑟
.

[
 
 
 
𝑅𝑟
𝐿𝑟

𝜔

−𝜔
𝑅𝑟
𝐿𝑟 ]
 
 
 

; 

𝐷 =

[
 
 
 
 𝑅𝑠 +

𝑀2

𝐿𝑟
2 . 𝑅𝑟 −𝜎. 𝐿𝑠. 𝜔𝑠

𝑀

𝐿𝑟
0

𝜎. 𝐿𝑠. 𝜔𝑠 𝑅𝑠 +
𝑀2

𝐿𝑟
2 . 𝑅𝑟 0

𝑀

𝐿𝑟]
 
 
 
 

. 

 

We consider: 𝜔 = 𝜔𝑠 − 𝜔𝑟 , is the rotor speed and 𝜎 = 1 −
𝑀2

𝐿𝑠.𝐿𝑟
, is the dispersion coefficient. 

The internal representation of the state space (14) is given 

by the Figure 3. 

 

 
 

Figure 3. Internal model representation 

 

where, the nominal parameters of the DFIG are given in the 

following Table 1:

  

𝐾(𝑆) 𝐺(𝑆) 𝑢 𝑒 𝑦 𝑟 + 

- 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 

න  

𝑹𝒓
𝑳𝒓
ൗ  

𝝋ሶ 𝒅𝒓 𝑽𝒅𝒓 𝝋𝒅𝒓 

𝑴𝑹𝒓
𝑳𝒓
ൗ  𝑰𝒅𝒔 

  - 

𝝎𝒓 

න   

𝑹𝒓
𝑳𝒓
ൗ  

𝝋ሶ 𝒒𝒓 𝑽𝒒𝒓 

𝝋𝒒𝒓 

𝑴𝑹𝒓
𝑳𝒓
ൗ  

𝑰𝒒𝒔 
   - 

𝝎𝒓 

  - 

𝑴𝑹𝒓
𝑳𝒓

𝟐൘  

𝑴𝑹𝒓
𝑳𝒓

𝟐൘  

𝑴

𝑳𝒓
𝝎 

𝑴

𝑳𝒓
𝝎 

𝑴
𝑳𝒓
ൗ  

𝑴
𝑳𝒓
ൗ  

- 

- 

   - 

𝑹𝒔 +
𝑴𝟐

𝑳𝒓𝟐
𝑹𝒓 

𝑹𝒔 +
𝑴𝟐

𝑳𝒓𝟐
𝑹𝒓 

𝝎𝒔𝑳𝒔𝝈 

𝝎𝒔𝑳𝒔𝝈 

    - 

𝑽𝒅𝒔 

𝑽𝒒𝒔 
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Table 1. Nominal parameters of the DFIG 

 

Parameter Value Unit Parameter Value Unit 

𝑅𝑠 0,445 Ω M 0,034 H 

𝑅𝑟 0,19 Ω 𝝎𝒔 100. 𝜋 rad/s 

𝐿𝑠 0,07 H 
𝝎𝒓 148,70 rad/s 

𝐿𝑟 0,0213 H 

 

By substituting these numerical values in the state space 

equations of the DFIG (14), the following model is obtained: 

 

𝐴 = [
−8,92  148,7
−148,7 −8,92

] ; 𝐵 = [
0,3033 0 1 0
0 0,3033 0 1

]

𝐶 = [
−14,24  −264,1
   264,1  −14,24

]

𝐷 = [
0,9291 −4,941 1,596 0
4,941     0,9291 0 1,596

]

 

 

The unit step response of the DFIG in nominal operating 

regime is shown in the following Figure: 

 

 
 

Figure 4. Open loop step responses of DFIG 

 

From Figure 4, we see that the system outputs oscillate at 

the same frequency which varies as a function of the rotor 

rotational speed, but the amplitude of each output is different 

and gradually decreasing to a constant value (under-damped 

response) because of the coupling. 

 

2.2 Transfer matrix model of DFIG 
 

The Process (DFIG) can be represented by the following 

transfer matrix: 
 

𝐺(𝑠) = 𝐶. (𝑠. 𝐼 + 𝐴)−1. 𝐵 + 𝐷 (15) 
 

⇒  𝐺(𝑠) = [
𝐺11(𝑠) 𝐺12(𝑠) 𝐺13(𝑠) 𝐺14(𝑠)

𝐺21(𝑠) 𝐺22(𝑠) 𝐺23(𝑠) 𝐺24(𝑠)
] (16) 

 

𝐺11(𝑠) =
0,929 (s2  +  13,19 s +  3,497 . 104)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺12(𝑠) =
−4,941 (s2  +  34,05 s +  2,247. 104)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺13(𝑠) =
1,596  (s2  +  8,92 s +  4,672 . 104)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺14(𝑠) =
−264,113 (s + 16,94)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺21(𝑠) =
4,941 (s2  +  34,05 s +  2,247. 104)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺22(𝑠) =
0,929 (s2  +  13,19 s +  3,497 . 104)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺23(𝑠) =
264,113 (s + 16,94)

(s2  +  17,84 s +  2,219 . 104)
 

𝐺24(𝑠) =
1,596 (s2  +  8,92 s +  4,672 . 104)

(s2  +  17,84 s +  2,219 . 104)
 

 

The DFIG has two complex conjugate modes, are given by: 

 

det(𝑠 𝐼2 − 𝐴) = 0 ⇒  {
𝑠1 = −8,92 −  𝑗 148,7
𝑠2 = −8,92 +  𝑗 148,7

; 

 

The following figure representats the process principal 

gains. 

 

 
 

Figure 5. Principal Gains of the “DFIG” G(s) 

 

From Figure 5, we remark that the gap between the 

maximum and minimum principal gain of the process is 

important in medium frequencies because of its two complex 

conjugate modes, which explains the coupling of the DFIG 

confirmed in the Figure 4, where the control becomes difficult 

in this case Frequency range. 

 

 

3. ROBUSTNESS CONCEPTS  

 

It is necessary to recall the robustness notions of feedback 

system, Figure 6, in the frequency domain. 
 

 
 

Figure 6. System control configuration with output 

multiplicative perturbation 

 

The system considered is shown in Figure 6, where: K(s) 

and  𝐺𝑝(𝑠), the robust controller and the perturbed process, 

respectively. 
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the process including all perturbations [12, 30], mentioned in 

the previous sections, which act on the plant. 

Thus, the DFIG is subject to the following parametric 

variations which will cause important dynamic variations: 

 

- Rotor and stator resistance uncertainties ‘ΔRr and ΔRs’ 

vary by 50% around their nominal values. 

- Rotor and stator inductance uncertainties ‘ΔLr and ΔLs’ 

vary by 20% around their nominal values. 

- Rotor angular velocity uncertainty ‘Δωr’ vary by 15% 

around its nominal value. 

From where the following relationships can be written: 

 

𝐺𝑝(𝑠) = [𝐼 + Δm(s)]. 𝐺(𝑠) (17) 

 

From (14) we will have: 

 

𝛥𝑚(𝑠) = (𝐺𝑝(𝑠) − 𝐺(𝑠)). 𝐺
−1 (18) 

 

We introduce the notion of maximum singular values 

denoted ' 𝜎 ' in relation (18), to quantify the output 

multiplicative uncertainties of the process "Aero-generator", 

which gives: 

 

𝜎[Δm(jω)] = 𝜎([𝐺𝑝(𝑗𝜔) − 𝐺(𝑗𝜔)]. 𝐺
−1(𝑗𝜔)) (19) 

 

 
 

Figure 7. Process uncertainties (Δm(s)) 

 

From Figure 7 we show plot of the relationship (19), it is 

found that the maximum singular values of the output 

multiplicative uncertainties of the Aero-generator are lower at 

the low frequencies whereas in the medium and high 

frequencies the uncertainties increase due to the disturbance 

effects [14]. 

It is also noted that there is a peak at the pulsation of 146,6 

rad/s, which means that the process is strongly coupled at the 

medium frequencies 

From where, the choice of the stability specification Wt is 

given by the following relation [12, 14]: 

 

𝜎[𝛥𝑚(𝑗𝜔)] ≤ 𝜎[𝑊𝑡(𝑗𝜔)]      ∀ 𝜔 (20) 

 

From the relation (20), the maximum singular values of the 

stability specification Wt represents the upper bound of the 

maximum singular values of the uncertainties; see Figure 8, 

therefore the stability specification in all frequency range is 

given by: 

 

𝑊𝑡(𝑗𝜔) = 0,9. [
(1 + 𝑗 0,023𝜔) 0

0 (1 + 𝑗 0,023𝜔)
] (21) 

 

 
 

Figure 8. Choice of the stability specification Wt(s) 

 

3.1 The robustness conditions on stability and 

performances 

 

The robustness conditions on the stability and the 

performances corresponding to the output multiplicative 

uncertainties (18) are respectively [12, 31]: 

 

𝜎[𝑇(𝑗𝜔).𝑊𝑡(𝑗𝜔)] < 1 (22) 

 

𝜎[𝑆(𝑗𝜔).𝑊𝑝(𝑗𝜔)] ≤ 1 (23) 

 

Is the nominal process transfer matrix defined by: 

 

𝑇(𝑗𝜔) = 𝐺(𝑗𝜔). 𝐾(𝑗𝜔). [𝐼 + 𝐺(𝑗𝜔). 𝐾(𝑗𝜔)]−1 (24) 

 

It represents the transfer matrix between the reference r and 

the output y; it reflects the measurement noises influence on 

the output and the error ԑ [14, 31]. 

And S(jω) is the sensitivity matrix defined by: 

 

𝑆(𝑗𝜔) = [𝐼 + 𝐺(𝑗𝜔). 𝐾(𝑗𝜔)]−1 (25) 

 

It represents the transfer matrix between the reference r and 

the error ԑ, it reflects the perturbations influence on the output 

y and on the error ԑ [14, 31]. 

T(jω) and S(jω) are complementary: 

 

𝑆(𝑗𝜔) + 𝑇(𝑗𝜔) = 𝐼 (26) 

 

The relation (26) recalls the stability-performance dilemma 

of a system i.e. any stability adjustment results in 

performances adjustment [14, 31]. 

𝑊𝑝(𝑗𝜔) : Represents the weighting matrix function, is 

chosen in order to satisfy the performance specifications so as 

to ensure the precision and rapidity of the closed-loop system. 

Our choice is obtained as follows: 
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𝑊𝑝(𝑗𝜔) =

[
 
 
 
 
(1 + 𝑗 0,05𝜔)

𝑗 0,05𝜔
0

0
(1 + 𝑗 0,05𝜔)

𝑗 0,05𝜔 ]
 
 
 
 

 (27) 

 

The singular values of the matrix of the specifications on 

the performances are shown in Figure 9, we observe that they 

are too important at low frequencies and this guarantee good 

precision, i.e. zero static error, integrator effect (integral 

action). 

 

 
Figure 9. Choice of the performance specification Wp(s) 

 

 
 

Figure 10. Robustness conditions of process “DFIG” 

 

According to Figure 10, the robustness conditions are set 

such that the chosen specification functions must be the upper 

bounds of the loop nominal operating regime in order to 

guarantee stability against the influences of the model 

uncertainties by the rejection of disturbances effects in low 

frequencies and to ensure desired performances with the 

rejection of measurement noises in high frequencies. 

 

3.2 The stability robustness condition 

 

Suppose that the nominal process G(s) is stable 

(with 𝛥𝑚(𝑠)  =  0), then the perturbed regime is also stable 

[12] if and only if the robustness condition on stability is 

satisfied [12, 14, 31]: 

 

𝜎[𝑇(𝑗𝜔)] < 𝜎[𝑊𝑡(𝑗𝜔)] 
−1 (28) 

 

3.3 The performance robustness condition 

 

If the robustness condition on the stability (28) is respected, 

then the disturbed regime ensures the desired performances 

(without overshoot, settling time and precision) in closed loop 

if and only if the following robustness condition on the 

performances is satisfied [12, 31, 32]: 

 

𝜎[𝑆(𝑗𝜔)] ≤ 𝜎[𝑊𝑝(𝑗𝜔)] 
−1 (29) 

 

 

4. THE ROBUST LQG CONTROL  

 

In this section we present the LQG control and its 

robustness properties, it is an optimization method which 

consists in designing a robust controller, in the internal loop 

consisting of a Kalman Filter in order to estimate the system 

state and the latter is looped by a state feedback control "LQ" 

[5]. 

First of all, if the system type is zero, an additional 

integrator is added to the process where it becomes an 

augmented process so that the steady-state error is eliminated 

and ensures the precision of the LQG controller [13]. 

The augmented process becomes: 

 

{
𝑥ሶ(𝑡) = 𝐴𝑎𝑥(𝑡) + 𝐵𝑎𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑎𝑥(𝑡) + 𝐷𝑎𝑢(𝑡)

 (30) 

 

With: 𝐴𝑎 = [
𝐴 0𝑛×𝑙
𝐶 0𝑙× 𝑙

] ;  𝐵𝑎 = [
𝐵
𝐷
] ; 𝐶𝑎 =

[0𝑙×𝑛 𝐼𝑙×𝑙];  𝐷𝑎 = 0𝑙×𝑚; 
where: m is the inputs number, l is the outputs number and n 

is the states number of the system. 

 

4.1 Position of the LQG problem 

 

In most cases, the system state representation does not have 

a complete knowledge of the state vector; however, the 

application of the LQ control by state feedback requires 

knowledge of all its state variables. For this purpose, we first 

have to reconstruct all the non-measurable state variables (and 

/ or with noises) of the process by introducing a state estimator 

"KALMAN Filter" Then by applying to the estimated state 

variables the state feedback control LQ (Figure 11) which 

minimizes a stochastic quadratic criterion with the 

fundamental hypothesis is that the noises are of a Gaussian 

white nature, this problem is known as Gaussian Quadratic 

Linear LQG [5, 33]. 

We add two Gaussian white noises to our augmented 

process of the aero-generator, which leads to a stochastic 

process, represented in the following state space: 

 

{
𝑥ሶ(𝑡) = 𝐴𝑎𝑥(𝑡) + 𝐵𝑎𝑢(𝑡) + 𝑤(𝑡)

𝑦(𝑡) = 𝐶𝑎𝑥(𝑡) + 𝑣(𝑡)                    
 (31) 

 

With v(t) and ω(t) are independent centered Gaussian noises 

with covariance matrix [5]: 

 

𝐸[𝑣(𝑡)𝑣′(𝑡 + 𝜏)] = 𝑉 𝛿(𝑡) > 0,  

𝐸[𝑤(𝑡)𝑤′(𝑡 + 𝜏)] = 𝑊 𝛿(𝑡) > 0, 

and 𝐸[𝑤(𝑡)𝑣′(𝑡 + 𝜏)] = 0 
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This LQG control problem consists to minimize the 

following quadratic criterion [5]: 

  

𝐽 = 𝐸 [න(𝑥′(𝑡) 𝑄 𝑥(𝑡) + 𝑢′(𝑡)𝑅 𝑢(𝑡))𝑑𝑡

∞

0

] (32) 

 

With: R = R′ > 0 𝑎𝑛𝑑 𝑄 = Q′ > 0 two weighting matrices 

The solution of this LQG control problem is obtained by 

applying the separation theorem [6, 7, 8], divides the problem 

into two distinct parts. 

- By using a Kalman Filter as an observer to reconstruct the 

estimated values 𝑥̂ of the system state x (provided that the 

triplet (𝐶, 𝐴,𝑊1/2) is detectable [25, 34]), in the sense of 

the minimum error variance, which is unbiased, i.e. the 

estimation error 𝜀(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) is independent of the 

system state x(t) (31), where it vanishes under steady state 

[33, 35]. 

- By applying to the estimated state x the state feedback 

control 𝑢(𝑡) = −𝐾𝑥̂(𝑡)  and considering this estimated 

state as if the exact state x of the process [33], that is, 

suppressing v(t) and w(t) of the state equation (31) and the 

mathematical expectation "E" in criterion (32). 

Where, K is calculated by solving the deterministic optimal 

control problem (LQ) which stabilizes the system. Hence, 

the triplet (𝐴, 𝐵, 𝑄1/2) must be stabilizable [25, 34]. 

Then, once both parties are resolved, their solutions are 

combined to form a single solution to the complete problem 

(Figure 11). 

 

 
 

Figure 11. Structure of the LQG Control, with the 

Augmented Plant is considered strictly proper (𝐷𝑎 = 0) 

 

1.1. Formulation of the Problem LQG by applying the 

Separation Theorem 

Step 1: the reconstruction of the estimated state 𝑥̂ by the 

Kalman Filter. 

- Principle of the Kalman Filter 

Let us now return to our stochastic process (uncertain 

system) represented in (31), whose: 

𝑤(𝑡): is an upper bound signal, that is, the process state x(t) 

does not evolve exactly as deterministic model predicts (30), 

it represents the external perturbations acting on the process 

(wind speed variations on the aero-generator blades, electrical 

energy consumption via the electrical network directly 

connected to DFIG) and also the modeling errors or 

uncertainties (parametric variations of the DFIG because of 

the physical phenomena, the gap between the non-linear model 

and the tangent linear model due to linearization, ...). 

𝑣(𝑡): represents measurement noise related to the sensors 

used. 

Kalman Estimator (see Figure 11) is a dynamic system with 

two inputs, u signal control (process input) and y measurement 

(process output), and an output which is the process estimated 

state 𝑥̂(𝑡) given by the following equation of Kalman Filter 

(Kalman State Estimator): 

 

𝑥̂ሶ (𝑡) = (𝐴𝑎𝑥̂(𝑡) + 𝐵𝑎𝑢(𝑡)) + 𝐿. 𝑒(𝑡) (33) 

 

where: 𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡) and 𝑦̂(𝑡) = 𝐶𝑎 𝑥̂(𝑡) (34) 

 

L: Estimator (Kalman) gain matrix. 

Substituting (34) into (33), we will have for the system 

described in (30): 

 

𝑥̂ሶ = 𝐴𝑎𝑥̂(𝑡) + 𝐵𝑎𝑢(𝑡) + 𝐿 𝐶𝑎(𝑥 − 𝑥̂) (35) 

 

Assumptions: 1- the (𝐴𝑎, 𝐶𝑎) pair is detectable, 

2- w and v: Centered and independent white 

Gaussian noises. 

We know that the estimation error is given by: 

 

𝜀(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) ⇒ 𝜀ሶ(𝑡) = 𝑥ሶ(𝑡) − 𝑥̂ሶ (𝑡) 

⇒ 𝜀ሶ(𝑡) = (𝐴𝑎 − 𝐿𝐶𝑎) (𝑥(𝑡) − 𝑥̂(𝑡)) 

⇒ 𝜀ሶ(𝑡) = (𝐴𝑎 − 𝐿𝐶𝑎)𝜀(𝑡) 

(36) 

 

If the eigenvalues of (𝐴𝑎 − 𝐿𝐶𝑎) have a strictly negative 

real part then the Estimator is asymptotically stable and the 

estimation error tends to zero, so the Estimator is constructed. 

Step 2: Application of the state feedback control 𝑢(𝑡) =
−𝐾𝑥̂(𝑡) on the estimated state. 

Before applying the LQ control, the estimator realized in the 

first step (Kalman filter) must be used to perform the feedback 

control on the estimated state. 

Thus, we can rewrite the state equations of the stochastic 

process (31) in the form: 

 

{
𝑥ሶ(𝑡) = 𝐴𝑎𝑥(𝑡) + 𝐵𝑎𝑢(𝑡) + 𝑤(𝑡)                             

𝑥̂ሶ (𝑡) = 𝐴𝑎𝑥̂(𝑡) + 𝐵𝑎𝑢(𝑡) + 𝐿𝐶𝑎(𝑥 − 𝑥̂) + 𝐿𝑣(𝑡)
 (37) 

  

Let us set 𝑢(𝑡) = −𝐾𝑥̂(𝑡), from the state equations (37), it 

comes: 

 

{
 
 

 
 𝑥ሶ(𝑡) = 𝐴𝑎𝑥(𝑡) − 𝐵𝑎𝐾𝑥̂(𝑡) + 𝑤(𝑡)    

𝑥̂ሶ (𝑡) = 𝐴𝑎𝑥̂(𝑡) − 𝐵𝑎𝐾𝑥̂(𝑡) + ⋯         

          …+  𝐿𝐶𝑎(𝑥(𝑡) − 𝑥̂(𝑡)) + 𝐿𝑣(𝑡)

 

(38.a) 

(38.b) 

 
We subtract (38.a) from (38.b) and substituting in the 

obtained equation by the relation of the estimation error 

vector  𝜀(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) , then we deduce the following 

equation for the evolution of the state estimation error: 

 

⇒ 𝜀ሶ(𝑡) = (𝐴𝑎 − 𝐿𝐶𝑎)𝜀(𝑡) + 𝑤(𝑡) − 𝐿𝑣(𝑡) (39) 

 

The new state representation can be put in the following 

modal form: 

 

{
𝑥ሶ(𝑡) = 𝐴𝑎𝑥(𝑡) − 𝐵𝑎𝐾(𝑥(𝑡) − 𝜀(𝑡)) + 𝑤(𝑡)

𝜀ሶ(𝑡) = (𝐴𝑎 − 𝐿𝐶𝑎)𝜀(𝑡) + 𝑤(𝑡) − 𝐿𝑣(𝑡)        
 (40) 

 

⇒ (
𝑥ሶ(𝑡)

𝜀ሶ(𝑡)
) = (

𝐴𝑎 − 𝐵𝑎𝐾 𝐵𝑎𝐾
0 𝐴𝑎 − 𝐿𝐶𝑎

) (
𝑥(𝑡)

𝜀(𝑡)
) + ⋯

…+ (
𝐼 0
𝐼 −𝐿

) (
𝜔(𝑡)

𝑣(𝑡)
)

 (41) 
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From this modal representation (41), we notice that the state 

matrix (
𝐴𝑎 − 𝐵𝑎𝐾 𝐵𝑎𝐾

0 𝐴𝑎 − 𝐿𝐶𝑎
)  is a triangular matrix, Its 

modes are the eigenvalues of the elements of the diagonal: 

(𝐴𝑎 − 𝐵𝑎𝐾) et (𝐴𝑎 − 𝐿𝐶𝑎) Are respectively the dynamics of 

the state feedback and the dynamics of the estimator which are 

separated That is to say that the eigenvalues of the control are 

adjusted by the state feedback gain matrix K independently of 

the eigenvalues of the estimator which are adjusted by the 

matrix L of the estimator, it is the separation principle. 

Step 3: The Separation of the quadratic criterion to be 

minimized for the LQG control. 

Taking the chosen estimation error vector 𝜀(𝑡) = 𝑥(𝑡) −
𝑥̂(𝑡), implies that the state vector is given by the following 

relation: 
 

𝑥(𝑡) = 𝜀(𝑡) + 𝑥̂(𝑡) (42) 
 

If this Eq. (42) is combined with criterion LQG (32), we 

obtain: 
 

𝐽𝐿𝑄𝐺 = 𝐸

[
 
 
 
 
න ((𝜀(𝑡) + 𝑥̂(𝑡))

′
𝑄 (𝜀(𝑡) + 𝑥̂(𝑡)) + ⋯

∞

0

     … + (𝑢′(𝑡) 𝑅 𝑢(𝑡))) 𝑑𝑡 ]
 
 
 
 

 (43) 

 

⇒  𝐽𝐿𝑄𝐺 = 𝐸

[
 
 
 
න(𝜀′(𝑡)𝑄 𝜀(𝑡) + 𝑥̂′(𝑡)𝑄 𝑥̂(𝑡) + ⋯

∞

0

…+ 2 𝑥̂′(𝑡) 𝑄 𝜀(𝑡) + 𝑢′(𝑡) 𝑅 𝑢(𝑡))𝑑𝑡]
 
 
 

 (44) 

 

Since 𝑥̂(𝑡) is not random it comes: 
 

𝐽𝐿𝑄𝐺 = න(𝑥̂′(𝑡) 𝑄 𝑥̂(𝑡) + 𝑢
′(𝑡) 𝑅 𝑢(𝑡))𝑑𝑡 + ⋯

∞

0

             …+ 𝐸 [න (𝜀′(𝑡)𝑄 𝜀(𝑡)) 𝑑𝑡

∞

0

] + ⋯

     …+ [2න 𝑥̂′(𝑡)𝑄 𝐸[𝜀(𝑡)]𝑑𝑡

∞

0

]

 (45) 

 

⇒ 𝐽𝐿𝑄𝐺 = 𝐽𝐿𝑄 + 𝐸 [න(𝜀′(𝑡) 𝑄 𝜀(𝑡))𝑑𝑡

∞

0

] (46) 

 

where: 𝐸[𝜀(𝑡)] = 0  because ε is a centered random vector 

(zero mean). 

Hence the LQG control criterion is composed in two parts 

𝐽𝐿𝑄𝐺 = 𝐽𝐿𝑄 + 𝐽𝑒 (separation principle). 
 

𝐽𝐿𝑄 = න(𝑥̂′(𝑡) 𝑄 𝑥̂(𝑡) + 𝑢
′(𝑡) 𝑅 𝑢(𝑡))𝑑𝑡

∞

0

 (47) 

 

𝐽𝐿𝑄 : It is a quadratic criterion LQ type applied to the 

estimated state 𝑥̂(𝑡) of the Kalman filter. 

Therefore the Kalman filter must be designed so that the 

quantity 𝐸[∫ (𝜀′(𝑡) 𝑄 𝜀(𝑡))𝑑𝑡
∞

0
] is the smallest possible value. 

 

𝐽𝑒 = 𝐸 [න 𝜀′(𝑡)𝑄 𝜀(𝑡)𝑑𝑡

∞

0

] = 𝑡𝑟[𝑄𝐸{𝜀(𝑡)𝜀′(𝑡)}] (48) 

The minimum of the criterion (48) is obtained by the 

estimator (Kalman) gain matrix L, so that the estimation error 

covariance matrix, 𝑃𝑓(𝑡) = 𝐸{𝜀(𝑡)𝜀
′(𝑡)}, is the minimum [33, 

35]. 

 

4.2 Reformulation of the LQG problem by the LMI 

approach 

 

The problem can be rewritten as an LMI problem while 

considering the estimator problem as a LQ control problem 

because of the existing correspondences between the control 

and the estimator Dual / primal, Verified by Kalman (1960) 

[36]. We assume that the system is observable and (36) give 

the dynamics of the error between the measured state and the 

estimated state: 

 

𝜀ሶ(𝑡) = (𝐴𝑎 − 𝐿𝐶𝑎)𝜀(𝑡) 
 

The objective is to determine the gain of the Estimator 'L' so 

that the poles of (𝐴𝑎 − 𝐿𝐶𝑎) are stable. If by transposing the 

expression of the dynamic matrix (𝐴𝑎 − 𝐿𝐶𝑎), it comes that 

this objective is equivalent to determine a state feedback for a 

fictitious system (𝐴𝑎′, 𝐶𝑎′). 
Indeed, then:  

 

𝑑𝑒𝑡(𝑠𝐼 − (𝐴𝑎 − 𝐿𝐶𝑎)) = 𝑑𝑒𝑡(𝑠𝐼 − (𝐴𝑎′ − 𝐶𝑎′𝐿′)) 
 

which implies determine the fictitious state feedback with gain 

matrix K for the fictitious state-space system (𝐴𝑎′, 𝐶𝑎′) and we 

calculate the estimator gain by: 𝐿 = 𝐾′. 
The primal / dual correspondences are summarized in the 

following Table 2 [33]: 

 

Table 2. Primal / Dual correspondences between LQ control 

and Estimator 

 

Primal Dual 

𝐴𝑎 

𝐵𝑎 

𝐶𝑎 

𝑄 

𝑅 

𝐾 

𝑃 

𝐴𝑎
′  

𝐶𝑎
′  

𝐵𝑎
′  

𝑊 

𝑉 

𝐿′ 
𝑃𝑓 

 

4.3 Determination of the state feedback gain matrix K by 

using LMI-EVP problem 

 

The formulation of this LQ control problem by LMI-EVP 

problem solving is based using the method given by [16, 37]. 

- Position of the LQ control Problem by LMI approach 

We consider the linear time-invariant stochastic system 

described by (31), the LQ control problem consists to find a 

gain matrix K such that the quadratic criterion (32) is 

minimum, which gives: 

 

min
𝐾
𝐽𝐿𝑄 = min

𝐾
[න(𝑥̂′(𝑡)𝑄 𝑥̂(𝑡) + 𝑢′(𝑡)𝑅 𝑢(𝑡))𝑑𝑡

∞

0

] (49) 

 

Let us put the state feedback control law of the form 𝑢(𝑡) =
−𝐾𝑥̂(𝑡), we consider that the estimated state 𝑥̂(𝑡) as being the 

exact measure of state 𝑥(𝑡) of the deterministic case, whence 

the criterion (49) becomes: 

810



 

min
𝐾
𝐽𝐿𝑄 =min

𝐾

[
 
 
 
න 𝑥′(𝑡)𝑄 𝑥(𝑡) + ⋯

∞

0

                          

       …+ 𝑥′(𝑡)𝐾′𝑅1/2𝑅1/2𝐾𝑥(𝑡)𝑑𝑡]
 
 
 
 (50) 

 

We introduce the Trace operator in criterion (50), we will 

have: 

 

min
𝐾
𝐽𝐿𝑄 = min

𝐾

[
 
 
 
න 𝑇𝑟(𝑄 𝑥(𝑡)𝑥′(𝑡) + ⋯

∞

0

                     

   …+ 𝑅1/2 𝐾 𝑥(𝑡)𝑥′(𝑡)𝐾′ 𝑅1/2)𝑑𝑡]
 
 
 

 (51) 

 

We know that: 𝑃(𝑡) = ∫ 𝑥(𝑡)𝑥′(𝑡)𝑑𝑡
∞

0
 is the solution of the 

Lyapunov equation where: 𝑃(𝑡) = 𝑃′(𝑡) > 0, Then criterion 

(51) becomes [16]: 

 

min
𝑃,𝐾

𝑇𝑟[(𝑄 𝑃 + 𝑅1/2 𝐾 𝑃𝐾′ 𝑅1/2)] (52) 

 

The system (31) is asymptotically stable in Closed-Loop by 

state feedback law 𝑢(𝑡)  =  −𝐾 𝑥(𝑡)  if and only if all the 

eigenvalues of (𝐴𝑎 − 𝐵𝑎𝐾) have a strictly negative real part, 

i.e. there is no pole on the imaginary axis. 

To prove the asymptotic stability, we will apply the 

Lyapunov stability theorem: 

Let the Lyapunov function 𝑉(𝑥) =  𝑥’𝑃𝑥, ∀𝑥 ≠ 0  where 

𝑃 = 𝑃’ > 0 is the solution of the Lyapunov equation whose 

necessary stability condition is given by the research of [38]: 

 
𝑑𝑉(𝑥)

𝑑𝑡
< 0 (53) 

 

⇒ 𝑥′((𝐴𝑎 − 𝐵𝑎𝐾)′𝑃 + 𝑃(𝐴𝑎 − 𝐵𝑎𝐾))𝑥 < 0, ∀ 𝑥 ≠ 0 (54) 

 

where: ((𝐴𝑎 − 𝐵𝑎𝐾)
′𝑃 + 𝑃(𝐴𝑎 − 𝐵𝑎𝐾)) = −𝐼𝑛  (55) 

 

The inequality (54) is bilinear (BMI), because it includes 

the multiplication of the variables P and K, by changing the 

variable 𝑥 = 𝑃−1𝑥̃, we obtain: 

 
⇒ 𝑥̃′(𝑃−1(𝐴𝑎 − 𝐵𝑎𝐾)′ + (𝐴𝑎 − 𝐵𝑎𝐾)𝑃

−1)𝑥̃  < 0,
∀ 𝑥 ≠ 0

 (56) 

 

Similarly, the inequality (56) is not affine (non-convex) due 

to apparition of the multiplicative term P.K, so we need to 

introduce a new variable, see the research of [16],  𝑌 = 𝐾𝑆 

where 𝑆 = 𝑃−1 in the inequality (56) to convert it from BMI 

into LMI, we will have: 

 

⇒ 𝑥̃′(𝑆 𝐴𝑎
′ − (𝐾𝑃−1)′𝐵𝑎

′ + 𝐴𝑎𝑆 − 𝐵𝑎(𝐾𝑃
−1))𝑥̃ < 0,

∀ 𝑥 ≠ 0
 (57) 

 

⇒ 𝑥̃′(𝑆 𝐴𝑎
′ − 𝑌′𝐵𝑎

′ + 𝐴𝑎𝑆 − 𝐵𝑎𝑌)𝑥̃  < 0, ∀ 𝑥 ≠ 0 (58) 

 

This condition can be formulated into the following LMI 

optimization problem: 

The controllable system (31), is stable if and only if 

 
(𝐴𝑎𝑆 + 𝑆 𝐴𝑎

′ − 𝑌′𝐵𝑎
′ − 𝐵𝑎𝑌) + 𝐼𝑛 < 0,

𝑤𝑖𝑡ℎ: 𝑆 = 𝑆′ > 0 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒                
 (59) 

 

From (52) and (59), the gain matrix K by state feedback is 

calculated by minimizing the following LMI expression: 

 

min
𝑆,𝐾

𝑇𝑟[(𝑄 𝑆 + 𝑅1/2 𝐾 𝑆𝐾′ 𝑅1/2)]

Subject to: 𝐴𝑎𝑆 + 𝑆 𝐴𝑎
′ − 𝐵𝑎𝑌 − 𝑌

′𝐵𝑎
′ + 𝐼𝑛 < 0,

𝑆 = 𝑆′ > 0

 (60) 

  

With: 𝐾 = 𝑌. 𝑆−1, where: S is Lyapunov Matrix. 

is equivalent to: 

 

min
𝑆,𝐾

𝑇𝑟[(𝑄 𝑆 + 𝑅1/2 (𝐾 𝑆)𝑆−1(𝐾 𝑆)′ 𝑅1/2)] 

Subject to: 𝐴𝑎𝑆 + 𝑆 𝐴𝑎
′ − 𝐵𝑎𝑌 − 𝑌

′𝐵𝑎
′ + 𝐼𝑛 < 0,

𝑆 = 𝑆′ > 0

 (61) 

 

Replacing the new variable Y = KS in the cost function of 

expression (61), we find 

 

min
𝑆,𝑌

 [𝑇𝑟(𝑄 𝑆) + 𝑇𝑟 (𝑅
1
2 𝑌 𝑆−1 𝑌′ 𝑅

1
2)]

Subject to: 𝐴𝑎𝑆 + 𝑆 𝐴𝑎
′ − 𝐵𝑎𝑌 − 𝑌

′𝐵𝑎
′ + 𝐼𝑛 < 0,

𝑆 = 𝑆′ > 0

 (62) 

 

The term 𝑇𝑟(𝑅1/2 𝑌 𝑆−1 𝑌′ 𝑅1/2)  present in the objective 

function is nonlinear; it must be changed by a second auxiliary 

variable X [16]. 

 

𝑇𝑟 (𝑅
1
2 𝑌 𝑆−1 𝑌′ 𝑅

1
2) =

{

min
𝑋
𝑇𝑟(𝑋)

Subject to: 𝑋 > (𝑅
1
2 𝑌 𝑆−1 𝑌′ 𝑅

1
2)

 (63) 

 

In order to decompose the inequality (63), we must use the 

Schur complement as follows, for more details see the 

researches of [17,39]: 

 

𝑋 > (𝑅
1
2 𝑌 𝑆−1 𝑌′ 𝑅

1
2) 

⟺ [ 𝑋 𝑅1/2𝑌
𝑌′𝑅1/2 𝑆

] > 0 
(64) 

 

This problem is equivalent to the eigenvalues problem. 

Finally, the Formulation of the state feedback control (LQ 

problem) into LMI approach is given by the following 

expression: 

 

min
𝑆,𝑌,𝑋

𝑇𝑟(𝑄 𝑆) + 𝑇𝑟(𝑋)

Subject to: 𝐴𝑎𝑆 + 𝑆 𝐴𝑎
′ − 𝐵𝑎𝑌 − 𝑌′𝐵𝑎

′ + 𝐼𝑛 < 0,

[ 𝑋 𝑅1/2𝑌
𝑌′𝑅1/2 𝑆

] > 0,      𝑆 > 0

 (65) 

  

This is a LMI-eigenvalue problem (LMI-EVP), once this 

problem of the minimization under constraints is solved, the 

state feedback gain matrix of the LQ control is calculated 

by: 𝐾 = 𝑌. 𝑆−1. 
 

4.4 Determination of the Estimator Gain ‘L’ by using LMI-

EVP problem 

 

The summary of the Dual / primal correspondences between 

the LQ control and the Estimator given in Table 2, will allow 

us to directly express the optimality conditions of the estimator 
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(observer) gain matrix ‘L’ from those obtained for the control 

gain matrix K by the LMI approach expression (65): 

 

min
𝑃𝑓,𝑌,𝑋

𝑇𝑟(𝑊 𝑃𝑓) + 𝑇𝑟(𝑋𝑓)

Subject to: 𝐴𝑎
′ 𝑃𝑓 + 𝑃𝑓𝐴𝑎 − 𝑌𝑓𝐶𝑎 − 𝐶𝑎

′𝑌𝑓
′ + 𝐼𝑛 < 0,

[
𝑋𝑓 𝑉1/2𝑌𝑓

′

𝑌𝑓𝑉
1/2 𝑃𝑓

] > 0,     𝑃𝑓 > 0

 (66) 

  

This is an LMI-eigenvalue problem (LMI-EVP), once this 

minimization problem under constraints is solved, the 

Estimator Gain is calculated by: 𝐿 = 𝑃𝑓
−1. 𝑌𝑓. 

 

4.5 LQG controller 

 

From the dynamic equation of the Kalman filter (35) and 

the state feedback control law 𝑢(𝑡) = − 𝐾 𝑥̂(𝑡), the controller 

dynamics is given by: 

 

{
𝑥̂ሶ (𝑡) = (𝐴𝑎 − 𝐵𝑎𝐾 − 𝐿𝐶𝑎)𝑥̂(𝑡) + 𝐿𝑦(𝑡)

𝑢(𝑡) =  −𝐾 𝑥̂(𝑡)                                           
 (67) 

  

Thus, the state representation of the controller LQG can be 

rewritten by considering the tracking control law 𝑈(𝑠) =
𝐶(𝑠). (𝑌𝑟(𝑠)  − 𝑌(𝑠)) where 𝑌𝑟(𝑠) is the set-point (Figure 12), 

he comes: 

 

(𝑥̂
ሶ

𝑢
) = (

(𝐴𝑎 − 𝐵𝑎𝐾 − 𝐿𝐶𝑎) −𝐿
−𝐾    0

) (
𝑥̂

𝑦𝑟 − 𝑦
) (68) 

 

where, the LQG controller transfer matrix is obtained by 

performing the following calculation: 

 

𝐶(𝑠) = 𝐾(𝑠𝐼𝑛 − 𝐴𝑎 + 𝐵𝑎𝐾 + 𝐿𝐶𝑎)
−1𝐿 (69) 

 

 
 

Figure 12. Dynamics of the LQG robust controller with 

augmented plant in the closed loop 

 

 

5. SIMULATION RESULTS 

 

The implementation of the LQG controller is realized using 

the Matlab / Simulink software according to the following 

functional diagram (Figure 13). 

As indicated in the previous section that the LQG controller 

relies on the separation theorem, by using the estimated state 

𝑥̂ as if it were the exact measurement of the system state 𝑥 

“rotor fluxes” which requires adjusting the Kalman estimator 

by choosing variance matrices V and W; then adjusting the 

state feedback control (LQ) by choosing the weighting 

matrices Q and R to have a “good” state feedback. 

 

5.1 Adjustment of variance matrices W and V 

 

In order to obtain an observer to reconstruct (estimate) the 

state of the DFIG x “rotor fluxes”, the choice of the noise 

variance matrices V and W of the Kalman estimator is given as 

follows: 

 

{
𝑉 = 𝐸{𝑣𝑇𝑣} = √𝛼. 𝐼𝑚×𝑛

𝑊 = 𝐸{𝑤𝑇𝑤} = Ca
T. Ca

 (70) 

 

where: 𝛼 is determined by "loop-shaping" to ensure the robust 

performance condition (29) to achieve performance objectives, 

that is, the singular maximum values of the performances 

specification function are an upper bound on the maximum 

singular values of the sensitivity function, Figure 14.  

 

 
 

Figure 13. Functional diagram of the LQG controller with 

DFIG plant in feedback 

 

 
 

Figure 14. Principal gains of the stability and performances 

robustness conditions 

 

5.2 Adjustment of the Q and R weighting matrices 

 

To obtain a robust LQG controller, it must first be ensured 

that the relation of the robust stability condition is verified (28), 
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that is to say the maximum singular values of the 

complementary sensitivity function is bounded lower by the 

maximum singular values of the inverse multiplicative 

uncertainties function, Figure 14, to have a “good” state 

feedback, so for that we chose the weighting matrices Q and R 

of the quadratic criterion (32) in the following form: 

 

𝑄 = 𝐶𝑎
𝑇𝐶𝑎, 𝑎𝑛𝑑 𝑅 = √𝜌. 𝐼𝑛×𝑛 

 

5.3 Results in frequency domain 

 

According to Figure 14, it is observed that the robustness 

conditions are guaranteed, with a good margin of robustness 

in stability at High Frequencies, from where the values of 

parameters 𝛼 and 𝜌 are determined:  

 

𝛼 = 1,1 . 10−3 𝑎𝑛𝑑 𝜌 = 3. 10−5 

 

5.4 Results in time domain 

 

In this section, we will illustrate the results in the time 

domain. By applying a unit step signal to the DFIG input with 

the LQG controller in closed loop. 
 

 
 

Figure 15. Signals of the control and tracking error 

 

According to the Figure 15, we observe that the tracking 

error is reduced to zero and that the rotor voltages are low, 

which explains a minimization of the control energy. 

The subsequent figures illustrate the step responses of the 

closed-loop control system for the nominal and disturbed 

operating regimes of the DFIG. 
 

 
 

Figure 16. Temporal response of the LQG-controlled 

nominal plant “DFIG” in closed loop 

In the Figure 16, we show that the output stator voltages 

reached the set-point without overshoot with a good settling 

time. 

 

 
 

Figure 17. Temporal responses of the LQG-controlled 

uncertain DFIG plant (DFIG with disturbances) 

 

Similarly, the Figure 17 shows that the output stator 

voltages of all disturbed DFIG plants reach the set-point 

without overshoot with a good settling time, the presence of a 

weak coupling is observed in transient response. In the 

following, the values of the set-point (rotor voltages) are 

varied successively at 100V, 380V and 220V in order to be 

able to visualize the amplitude follow-up control. 

 

 
 

Figure 18. Step responses with reference tracking in the 

closed loop of the LQG-controlled uncertain “DFIG” plant 

 

According to Figure 18, the stator voltages of the nominal 

regime of DFIG and all its perturbed regimes, perfectly follow 

the set-point variations with good performances, also small 

interactions are observed during the change of set-point due to 

a weak coupling. 

In the subsequent results, a sinusoidal signal is applied to 

the input of the closed-loop controlled system with: 

𝑟(𝑡) = 𝑉𝑟𝑒𝑓 sin (𝜔. 𝑡) , where the pulsation is defined by 

𝜔 = 2𝜋. 𝑓 and the frequency 𝑓  is set at 50Hz, the set-point 

amplitude is 𝑉𝑟𝑒𝑓  varies from 100V to 220V. 
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Figure 19. Temporal responses of the stator voltages with 

reference tracking 

 

Figure 19, shows the output signals 𝑉𝑑𝑠 and 𝑉𝑞𝑠 during the 

transition from 100V to 220V. 

The enlargement of the transitional phase for nominal and 

disturbed plants (DFIG) is given in Figures 20 and 21 

respectively.  

Figure 20 presents the nominal DFIG system without 

uncertainty while Figure 21 illustrates the different uncertain 

models of the DFIG, from these representations we see that the 

frequency is maintained at 50 Hz, and that the outputs 𝑉𝑑𝑠, 
𝑉𝑞𝑠 of the nominal model (Figure 20) and uncertain (Figure 

21) follow the reference variation near 100 V to 220 V with a 

low tracking error and an appreciable response time, we also 

note a low coupling. 

 

 

 
 

Figure 20. Enlargement of the stator output voltages of the 

nominal plant 

 

 
 

Figure 21. Enlargement of the stator output voltages of the 

perturbed plant 

 

 

6. CONCLUSION 

 

In this paper, we applied the LMI approach for the design 

of a robust LQG controller to control the doubly-fed 

asynchronous machine (DFIG) of a aero-generator subject to 

disturbance influences. 

The robust command was developed using the LQG 

command synthesis method by the LMI approach where a 

Kalman estimator is presented as a LMI-EVP problem 

(eigenvalue problem) obtained from the Dual correspondences 

existing in the LQ control reformulated into LMI-EVP 

problem, in order to solve them by the convex optimization. 

Then the control and the estimator were combined into a single 

controller and applied to the DFIG model. The LQG regulator 

is adjusted in the frequency domain by the concept of loop-

shaping by acting on the weighting matrices of the LQ control 

to guarantee the robust stability condition and then on the 

noise covariance matrices of the Kalman estimator to 

reconstruct the unmeasured state of the DFIG “rotor flux” and 

to ensure the robustness condition on the desired performances. 

The results obtained in simulation showed the LMI 

approach satisfaction for the design of the robust LQG 

controller where its application on the DFIG model has been 

approved successfully the robustness guarantee of the stability 

and performances despite the influences of the disturbances 

and the parametric variations affecting DFIG. 

In general, the LQG control is well-designed to be 

implemented in practice, especially for rotating systems as in 

our case study, application to the DFIG for the production of 

electrical energy in the face of possible parametric 

uncertainties. In practice, the interest of this control is to use 

of the Kalman estimator to reconstruct the difficult-to-measure 
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rotor flux state variables, and the robust state feedback control 

reduces the influence of uncertainties and keeps the system 

stable with good performance. Finally, this study is a tool that 

allows automation engineers to implement robust LQG 

controller easily. 

Likewise, it is possible to apply the same design 

methodology using other robust controllers such as: H∞, mixed 

H2/H∞ and µ-analysis, by the LMI approach which will be 

interesting to implement and to make a comparative study in 

the next publication. 
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