
Android Malware Classification Using LSTM Model

Nagababu Pachhala1*, Subbaiyan Jothilakshmi1, Bhanu Prakash Battula2

1 Department of Information Technology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
2 Department of CSE, KKR & KSR Institute of Technology & Sciences, Guntur 522017, Andhra Pradesh, India

Corresponding Author Email: nagababupachhala2024@gmail.com

https://doi.org/10.18280/ria.360514 ABSTRACT

Received: 13 July 2022

Accepted: 6 December 2022

From last two decades, smartphone use is essentially widespread around the world, and

Android is the most popular open-source operating system, with the largest market share

and active user population of any open-source operating system. This has resulted in

malicious actors turning their attention toward the Android operating system to exploit user

reliance and vulnerabilities that exist inside the system. Hackers can take advantage of

consumers' sensitive data to engage in advertising, extortion, and theft. Most of the existing

anti-malware software’s cannot be able to detect all the malwares because of the intelligent

malwares. In this paper we use the deep learning based Long short-term memory (LSTM)

network for android malware classification. The model is effective in classification of

intelligent malwares. The proposed model is implemented using google colab. The model

is archiving more than the 98% accuracy in classification of android malwares.

Keywords:

malware, Android, deep learning, LSTM

1. INTRODUCTION

Today, cyber assaults [1] have risen to the top of the most

crucial problems contemporary civilization is dealing with.

According to ISO/IEC 27000:2009, these attacks are an

"attempt to damage, expose, modify, disable, steal, or obtain

unauthorized access to or make unauthorized use of anything

that has value to the organization." The efforts devoted to

combating these assaults have incurred significant

expenditures, which totaled $86.4 billion in 2017 due to the

activities. As diverse as these cyber-attacks [2] are presented

and conducted, many processes and tactics may be used to

counter and defeat them. These assaults have a lengthy history,

dating back to the 1970s with the introduction of the first

viruses. They have taken on many forms throughout the years,

adopting complicated processes, attempting to bypass

antivirus and reach the victim, or employing clever

obfuscation techniques intended to keep them from being

detected. The scope and complexity of the current malware

issue represent a significant challenge. Malware has shown to

be a potent weapon for launching wide-scale assaults against

many people and systems simultaneously.

Recently, ransomware assault [3], which infected thousands

of machines that were not correctly updated, encrypted data,

and demanded payment in bitcoin, is an example of hackers

made malware attacks While dealing with this kind of assault,

there are two main tasks to be completed: the development of

malware detectors capable of filtering and classifying

suspicious samples that include harmful bits of code; and the

mitigation of damages resulting from malware that has

managed to evade the detection system. This paper is

concerned with the former issue, which is addressed as an

offline job in which suspicious samples are examined to

determine if they are harmful or innocuous. Aside from that,

malware may be found not only on personal computers but

also on virtually any smart device that we use daily. Therefore,

when considering the vast number of gadgets in our

environment and their critical role in our everyday lives, the

issues connected with malware become more acute.

Particularly, our personal and sensitive information has been

compromised via mobile gadgets. Smartphones [4] are the

most prominent example of these gadgets. We save pictures,

texts, and many other personal data, banking, medical, and

other apps in mobiles. The security [5] of these devices from

malware is a time-consuming and challenging job. When it

comes to these devices, Android is both the mobile OS with

the shares globally and the mobile web browser, accounting

for close to 80% of all mobile operating systems. And the most

targeted platform for malware development, accounting for 99

percent of all mobile malware.

As a result, Android malware has taken on various forms,

such as scareware and ransomware [6], and has given several

distinct malware families. It is critical for Android malware

analysis and understanding to categorize and group dangerous

apps into sets that share similar behavioural patterns and

intents. Base Bridge, Plankton, Just, and Fake Run are just a

few of the malware families that have resulted in hundreds of

distinct programs that have successfully infected devices all

over the globe, even though the variations between them are

minor. Currently, Android malware is a severe, massive, and

difficult-to-solve issue. The design and implementation of

filters that correctly determine whether a suspicious sample is

benign or dangerous are the primary focus of efforts devoted

to malware countermeasures. It is feasible to assess the range

of activities that the application can do and make a judgment

based on a series of behavioral indicators that have been

extracted. The significance of this assignment cannot be

overstated. The enormous number of new applications

discovered every day, on the other hand, makes the use of tools

capable of dealing with vast quantities of samples on an

automated basis a need. As a result, it is essential to research

systems that can automate this process, thus preventing

Revue d'Intelligence Artificielle
Vol. 36, No. 5, October, 2022, pp. 761-767

Journal homepage: http://iieta.org/journals/ria

761

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360514&domain=pdf

malware samples from reaching users. As a result of this

situation, machine learning methods emerge as a vital tool for

addressing the issue. They may install malware detectors that

can handle large applications and differentiate between

harmful and benign software based on a prior training

procedure using previously labeled samples. This article uses

the Long short-term memory model to classify malware in

android systems. Section 2 summarizes the existing literature,

section 3 describes the proposed model, section 4 deals with

the experimental results and section 5 concludes the paper.

2. RELATED WORK

At this point, the subject of Android malware detection has

garnered a great deal of interest in the scientific literature. But

only a few studies have concentrated on the machine learning

methods utilized. According to our experience, none of them

has developed a precise description of mobile malware

detection systems based on the metrics and machine learning

methods used thus far. In this part, which focuses on 2017

through 2021, such literary efforts are chronologically

identified and then placed concerning the present state of art.

In their comprehensive study of the detection of malware

dynamic mobile methods, Yan et al. [7] summarised various

basis and performance assessment metrics for the detection of

mobile malware and presented their findings. In addition, the

authors conducted a study and comparison of the previously

available Mobile malware detection system on the analytical

techniques and the assessment results they developed. Finally,

the authors identified unresolved problems in the area and

potential study paths for the future.

Odusami et al. [8] attempted to uncover loopholes and offer

insight into viable countermeasures against unknown Android

malware using mobile malware detection methods. Their

research discovered that practices that depend on machine

learning to identify harmful applications were more trusted

and generated better detection accuracy when compared to

sign-based approaches.

Kouliaridis [9] conducted a comprehensive assessment of

the literature on MMDS and classified each piece of research

according to a specific categorization system. To be more

precise, the latter categorizes each piece of work according to

its target platform, feature selection approach, and detection

methods, either signature-based or anomaly-based.

A thorough review of Android malware detection methods

that use machine learning techniques was provided by Liu et

al. [10]. The authors conducted in-depth analyses and

presented summaries of several essential issues, including

sample collection, data pre-processing, feature selection,

machine learning models, algorithms, and detection

performance. Finally, they discussed the limitations of

machine learning methods and provided insights into possible

future paths.

Gibert et al. [11] reviewed well-known machine learning

methods for the detection of malware, focusing on deep

learning techniques. The authors discussed the research

difficulties, limitations of legacy machine learning methods,

current trends, and advances in the area, emphasizing deep

learning schemes.

Shabtai et al. [12] developed a system to identify malicious

activity by analyzing network data. It is accomplished by

recording user-specific network traffic patterns for each

evaluated program and detecting variations from these patterns

that may be reported as potentially harmful. They used the

C4.5 method to assess their model, and they achieved an

accuracy of up to 94 percent.

To identify Android malware, Canfora et al. [13] proposed

an algorithm that analyses opcode normal histograms; this is

done by monitoring the frequency with which each grouping

of opcodes appears on the Android operating system. To be

more specific, their detection algorithm uses a vector of

characteristics derived from eight Dalvik opcodes to identify

targets. These opcodes are often utilized to change the control

flow of an application.

Jang et al. [14] developed Andro-AutoPsy, an antivirus

system that detects and removes malware using Android

malware similarity matching. The authors obtained malware

information from antivirus mobile threat alerts, malware

repositories, and community websites by searching for and

collecting malware information from these sources to train the

suggested model. The researchers chose five distinct footprints

for the characteristics: digital certificate's serial number, API

call sequence, permissions required to initiate the call, the

intents, and system instructions. Andro-Autopsy, according to

the authors, can detect zero-day malware. Tests were

conducted on Andro-Autopsy against approximately 1K

malware applications obtained from the VirusShare [15] and

Contagio [16], as well as against more than 109K benign

samples gathered from Google Play [17] and the Android

Market [18] and the VirusShare [15] mobile datasets.

Yerima [18] created a community classification model that

takes the use of critical Android and Java API calls extracted

from the source code and application permissions collected

from the manifest file to create a community classification

model. All of the tests were conducted using McAfee's internal

(private) dataset. There were several different classifiers

employed during the evaluation phase.

Coronado [19] created an algorithm-based method for

detecting mobile malware. Static analysis was used to detect

the malicious applications' privileges and objectives using a

corpus of 1531 malware programs from the Drebin dataset [20]

and 765 innocuous apps. The Random Forest and Random

Committee algorithms were used, with the former reaching up

to 97.5 percent accuracy and the latter getting up to 97.5

percent.

To detect malignant patterns, Milosevic and colleagues [21]

developed an extraction method that was focused on obtaining

non-trivial and beneficial ways that might be utilized to

identify malignant patterns. The M0Droid corpus [22] was

considered during the experiments. C4.5, Random Forest,

Naive Bayes, Support Vector Machine (SVM), JRip, and

Logistic Regression were the classifiers employed in the

evaluation procedure [23]. Their results produce 10% better

compared to other models.

A framework for improving deep neural networks against

adversarial malware was proposed by Li et al. [24]. Authors

propose a defensive design that comprises many components

to improve the correctness of deep neural networks against

malware attacks.

According to Athiwaratkun et al. [25], iterative neural

network designs were used to capture better long-term

associations in API call traces to increase performance. They

tested it with language models such as the Long Short-Term

Memory (LSTM) and the Gated Repetitive Unit (GRU). The

authors recommend a two-step procedure. The first step is to

build the features associated with a certain API call tracing

using the LSTM or GRU. In the second stage, these features

762

are classified using Logistic Regression with a single fully

connected layer or SoftMax. The authors also suggested

replacing the present convolutional neural network with a

character-level convolutional neural network.

Gopi and Naik [26] proposed a Hierarchical Convolutional

Neural Network (HCNN) [27] to cope with the hierarchical

structure of portable executables, calling it a "more efficient

solution." Instead of viewing malware as a stream of

instructions, their research grouped the instructions together in

the same function to retain the hierarchical structure of a

computer program. As a result, assembly language

instructions were divided into operations, each of which was

represented by a collection of mnemonics, which were then

concatenated to make a single set of instructions. As a result,

the hierarchical CNN [28] gathered features from the data at

both the mnemonic and functional levels.

3. LONG SHORT-TERM NETWORK

The LSTM was selected as the foundation model for this

study. It is excellent at storing more extended information

periods and is demonstrably more correct than other models

which are based on sequences that are previously evaluated in

the literature. The LSTM had also been used in NLP, namely

for parsing of sentences and document categorization. A

similarity may be drawn between the hierarchy of words to

sentences and paragraphs to texts and the order of fundamental

blocks to short, middle, and long-term sequences in

programming. When remembering word probabilities beyond

the phrase level, the normal RNN has limited capacity. Still,

by recalling bursts of short-term sequential information over a

more extended period, the LSTM significantly improves its

power compared to the regular RNN. This improves the

LSTM's ability to anticipate the words that will follow in

phrases and paragraphs, but not in whole texts. The method of

dealing with malware data is described in Figure 1.

Figure 1. Cell structure in LSTM

The cell figure of the LSTM model is depicted in Figure 2.

First and foremost, we will determine what information we

will discard from the cell's current state. The "forget gate

layer," also known as the sigmoid layer (gu), is used to make

this decision. It examines the values of "iu-1" and "yu" and

produces a number between 0 and 1 for every number in cell

state Du-1, as shown in the following example. A 1 indicates

that something should be kept fully, whereas 0 means that

something should be removed entirely. With weight (xh)

applied to information [iu-1, yu] and a y-intercept (cg), as

indicated in Eq. (1), the forget gate layer matches the sigmoid

layer() of input in the example that attempts to guess the

succeed word based on all before ones, as shown in Eq. (1). A

cell state that includes the gender of the current subject may

be included in such a problem for the proper pronouns to be

utilized. When we come into a new trial, we would want to

forget about the gender of the previous subject in question.

gu= σ (Xh. [iu-1,yu] + cg) (1)

The next step is to find what new data will be stored in the

present state of the cell. This has two components. The gate

layer(it) is the first sigmoid layer and is responsible for finding

values to update. The tenth layer then creates a vector of new

values (t) added to the state of the system. In the next step, we

will combine these two to create a new status version. As

shown in Eq. (2), the gate layer (it) is the output of the sigmoid

layer (σ); where the input is the weight (wi) applied to the [ht-

1, xt] and the y-intercept (bi). Also, the new candidate values

Ĉt are the output of the tanh layer (tanh); where input is the

weight (WC) applied to the input [ht-1, xt] and the y-intercept

(bc). To use the language model as an example, we want to

replace the old subject with the new one and add the new

subject's gender to the cell state. A transition from the previous

cell state Ct-1 to the new cell state Ct is now required. The

previous stages determine our actions, and we must follow

through.

ju=σ(Xj. [iu-1, yu] + cj) (2)

Du= tanh (XD. [iu-1, yu] +cD) (3)

Multiply the previous state by gu, while keeping in mind the

items we chose to ignore before the procedure. Then we add

ju*Du. We would drop the old subject's gender information in

the language model and add the new information. As shown in

Eq. (4), the new cell state (du) is based upon the sum of

forgetting gate output from the last cell state (du-1) and input

gate output from the new candidate vector (Du).

Du= gu*Du-1+ ju*Du (4)

The final step is determining the output to be produced. The

output will be based on the current state of our cell, but this

will be a simplified version of the state. We apply a sigmoid

layer that determines which parts of the cell state we will

extract and which parts we will not. After that, we pass the cell

state through tanh and multiply it by the output of the sigmoid

gate to output only the designated parts. As shown in Eq. (5),

the output (pu) is the output of the sigmoid layer; where input

is the weight (xp) applied to the input [iu-1, yu'] and the y-

intercept (cp). As shown in Equation. As shown in Figure 6,

this final output is based on the product of the sigmoid layer

output (pu) and the tanh layer output.

Pu= σ(Xp.[iu-1,yu] + cp) (5)

iu= Pu*tanh (Du) (6)

4. PROPOSED WORK

In this study, we propose to employ deep neural networks

for malware classification and analysis via the use of API calls.

The major focus of this research is on the LSTM network

structure, which extracts the properties of Android APKs and

creates a classification that can be used to identify possible

763

Android malware without the requirement for the application

source code to be utilized. Here Figure 1 explains the proposed

architecture of the android malware detection model. Initially,

it takes the input data from Durbin data and assigns it to the

neurons as weights, it trains with the malware as well as non-

malware samples. It checks if it is the end of the input

sequence stop training and ends the training or else continues

till the end of the dataset. The training is done by comparing

malware and non-malware conditions if it is expected one gets

trained or else it leaves.

Figure 2. Flow chart of the proposed model

Algorithm LSTM Malware detection ()

1. Initialization

a. ct = [0, 0, 0]

b. ht = [0, 0, 0]

2. for input in Dataset:

3. ct, ht = LSTM Malware (ct, ht, input)

4. Def LSTM Malware (prev_ct, prev_ht, input)

a. Combine = prev_ht + input

b. ft = forget_layer (combine)

c. candiate = candiate_layer (combine)

d. it = input_layer (combine)

e. ct = prev_ct * ft +candiate * it

f. ot = output_layer (combine)

g. ht = ot * tanh(ct)

h. return ht, ct

First, the prior concealed state and the current input are

concatenated to create the current input. We'll refer to it as a

combination. The combined layer is given the information

from the forget layer. This layer eliminates information that

isn't relevant. The combined command is used to build a

candidate layer. The candidate contains a list of potential

values that might be added to the cell state. The result of the

combination is also supplied into the input layer. This layer

determines whatever data from the candidate should be

included in the new cell state. It is a decision layer. The cell

state is determined utilizing the vectors obtained from the

forget layer, the candidate layer, and the input layer, as well as

the previous cell state once they have been computed. The last

step is to calculate the output. Seventh, we may find the new

hidden state by multiplying the output by the new cell state.

5. EXPERIMENTAL RESULTS

We experiment with the model using 8GB RAM windows-

10 OS and Google colab interface, and python-3 as a

programming language with Keras and TensorFlow packages.

And Drebin-215 dataset is used for experimenting with

existing and proposed models.

A. Dataset:

Drebin-215 dataset is used for experimenting with existing

and proposed models. The dataset includes 215 features from

15,036 app samples, with 9476 of them being benign and 5560

being malware samples from the Drebin project [4].

B. Results and discussion

Figure 3. Accuracy

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)

Here Figure 3 represents the accuracy of the classification

of malevolent and benevolent samples using proposed LSTM

and existing models. And the graph compares the existing

ANN model and the proposed LSTM model. ANN model fails

to perform classification of harmful and harmless code.

Because malicious code is a series of actions performed and

ANN fails to memorize the code sequences. But the LSTM

model contains a memory unit that can give improved

accuracy when the quantity of epochs rises. At the same time,

ANN fails to provide enhanced accuracy while the number of

ages is enlarged. CNN is not apt for text data processing,

producing less than 50% accuracy. GRU facing gradient

descent problem delivers less accuracy.

764

Figure 4. Precession

The greater the number of FPs introduced into the mix, the

uglier that precision will seem.

Precision = TP / (TP + FP)

Here Figure 4 represents the classification of malicious

samples and benign samples precession. And the graph

compares the existing ANN, CNN, GRU models and proposed

LSTM model. The precession of ANN model is between 0.4

and 0.6 because malicious code is a series of actions, ANN

fails to memorize code sequences. But the LSTM model

contains a memory unit it can give better precession while the

number of epochs increases. CNN is not apt for text data

processing, producing precession less 0.2. GRU facing

gradient descendant problem produces less precession.

Figure 5. Recall

The recall is calculated as the quantity of accurate optimistic

findings separated by the total amount of appropriate samples.

Recall = TP / (TP + FN)

Here Figure 5 represents recall for the classification of

malicious data. On X-axis of the graph represented the number

of epochs and Y-axis shows the recall. Here the graph shows

the existing CNN, ANN GRU models, and the proposed

LSTM model. GRU model suffering from the gradient

exponent problem it is underperformed, ANN and CNN give

recall between 0.5 to 0.9. due to the limitation of handling text

data these two models are not performing better compared to

the proposed LSTM model.

Figure 6. RMSE

In statistics, the standard deviation of the mistakes that

occur when a prediction is made on a dataset is the RMSE.

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑗 − 𝑦̌𝑗)

2

𝑁

𝑗=1

This is the same as MSE, except that the basis of the number

is considered when evaluating the model's accuracy. Here

Figure 6 represents the RMSE of proposed LSTM and existing

CNN, ANN, GRU models. Existing models ANN, RMSE is

consistent between 0.3 to 0.5 while increasing the number of

epochs because ANN is not good in handling text data. GRU

error value between 0.4 to 0.6 and CNN error rate is very high

it is between 0.8 to 0.9. Whereas LSTM produces a low RMSE

value.

Figure 7. AUC

The Area Under the Curve (AUC) measures a classifier's

ability to differentiate between classes, and it is used as a

summary of the Receiver Operating Characteristics (ROC)

curve. The more the AUC, the better the user sees the model's

ability to differentiate between the positive and negative

classifications.

Here Figure 7 represents AUC for the classification of

Android malware, the graph compares the LSTM, ANN, CNN,

and GRU models.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

765

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁

AUC is a better indicator of classifier performance than

accuracy because it is unaffected by the size of the test or the

assessment data. The proposed model’s AUC is near 1.0

because LSTM is better at handling text data. Whereas

existing models fail in handling text data and classification of

malware data.

Figure 8. ROC

The relationship between TPR and FPR at various

categorization levels is depicted by a ROC curve. As the

classification threshold is lowered, more items are categorized

as positive, resulting in a higher number of False Positives and

True Positives in the system.

Here Figure 8 represents the ROC of the proposed LSTM

and existing ANN, CNN, and GRU models. ROC of LSTM is

good while an increasing number of epochs. But existing

models’ ROC is varying between 0.5 to 0.2. because

ineffective of existing models in the classification of text data.

6. CONCLUSIONS

The unusual growth in Android malware over the last

couple of years necessitates developing a more effective way

to classify Android malware. This study proposes a deep

neural network-based LSTM model for classifying Android

malware. LSTM works well with text data and extracts

effective features from the data for the classification of

malware data. Whereas existing models are not effective in

extracting text data. Our research examines the different

existing systems that are presently utilized to identify malware

and other malware activities and made comparisons with

existing models ANN, CNN, and GRU models. The proposed

LSTM model enhances the efficiency of the malware

classification model by achieving an accuracy of more than

98% whereas existing models are not able to achieve 90%

accuracy.

REFERENCE

[1] Mobile Threat Report 2020.

https://www.mcafee.com/content/dam/consumer/en-

us/docs/2020-Mobile-Threat-Report.pdf, accessed on

Mar. 10 2021.

[2] Kouliaridis, V., Potha, N., Kambourakis, G. (2021).

Improving android malware detection through

dimensionality reduction techniques. Machine Learning

for Networking, pp. 57-72.

http://dx.doi.org/10.1007/978-3-030-70866-5_4

[3] Bacci, A., Bartoli, A., Martinelli, F., Medvet, E.,

Mercaldo, F., Visaggio, C. (2018). Impact of code

obfuscation on android malware detection based on static

and dynamic analysis. 4th International Conference on

Information Systems Security and Privacy, pp. 379-385.

http://dx.doi.org/10.5220/0006642503790385

[4] Kouliaridis, V., Kambourakis, G., Geneiatakis, D., Potha,

N. (2020). Two anatomists are better than one-dual-level

android malware detection. Symmetry, 12(7): 1128.

http://dx.doi.org/10.3390/sym12071128

[5] Petsas, T., Voyatzis, G., Athanasopoulos, E.,

Polychronakis, M., Ioannidis, S. (2014). Rage against the

virtual machine. In Proceedings of the Seventh

EuropeanWorkshop on System Security—EuroSec '14.

New York, USA.

[6] Roy, S., DeLoach, J., Li, Y., Herndon, N., Caragea, D.,

Ou, X., Ranganath, V., Li, H., Guevara, N. (2015).

Experimental Study with Real-World Data for Android

App Security Analysis Using Machine Learning.

Proceedings of the 31st Annual Computer Security

Applications Conference, ACSAC 2015, Los Angeles,

CA, USA, pp. 81-90.

[7] Yan, P., Yan, Z. (2017). A survey on dynamic mobile

malware detection. Softw. Qual. J., 26: 891–919.

https://doi.org/10.1007/s11219-017-9368-4

[8] Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo, O.,

Damasevicius, R., Maskeliunas, R. (2018). Android

malware detection: A Survey. In Communications in

Computer and Information Science. Springer

International Publishing: New York, NY, USA.

[9] Kouliaridis, V., Barmpatsalou, K., Kambourakis, G.,

Chen, S. (2020). A survey on mobile malware detection

techniques. IEICE Trans. Inf. Syst., E103-D(2):204-211.

http://dx.doi.org/10.1587/transinf.2019INI0003

[10] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.

(2020). A review of android malware detection

approaches based on machine learning. IEEE Access, 8:

124579-124607.

https://doi.org/10.1109/ACCESS.2020.3006143

[11] Gibert, D., Mateu, C., Planes, J. (2020). The rise of

machine learning for detecting and classifying malware:

Research developments, trends, and challenges. J. Netw.

Comput. Appl., 153: 102526.

https://doi.org/10.1016/j.jnca.2019.102526

[12] Shabtai, A., Tenenboim-Checking, L., Mimran, D.,

Rokach, L., Shapira, B., Elovici, Y. (2014). Mobile

malware detection through analysis of deviations in

application network behavior. Comput. Secure., 43: 1-18.

https://doi.org/10.1016/j.cose.2014.02.009

[13] Canfora, G., Mercaldo, F., Visaggio, C.A. (2015).

Mobile Malware Detection using Op-code Frequency

Histograms. In Proceedings of the 12th International

Conference on Security and Cryptography,

SCITEPRESS—Science and Technology Publications,

Colmar, France.

http://dx.doi.org/10.5220/0005537800270038

[14] Jang, J., Kang, H., Woo, J., Mohaisen, A., Kim, H.K.

(2015). Andro-AutoPsy: Anti-malware system based on

766

similarity matching of malware and malware creator-

centric information. Digit. Investig., 14: 17-35.

http://dx.doi.org/10.1016/j.diin.2015.06.002

[15] Virusshare. https://virusshare.com/, accessed on Sept. 10

2020.

[16] Contagio. http://contagiominidump.blogspot.com/,

accessed on Sept. 10 2020.

[17] Google Play. https://play.google.com/, accessed on Sept.

10 2020.

[18] Yerima, S.Y., Sezer, S., Muttik, I. (2015). High accuracy

android malware detection using ensemble learning. IET

Inf. Secure., 9: 313-320. http://dx.doi.org/10.1049/iet-

ifs.2014.0099

[19] Coronado-De-Alba, L.D., Rodríguez-Mota, A.,

Escamilla-Ambrosio, P.J. (2021). Feature selection and

ensemble of classifiers for Android malware detection.

In Proceedings of the 2016 8th IEEE Latin-American

Conference on Communications (LATINCOM),

Medellin, Colombia, pp. 1–6.

[20] Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H.,

Rieck, K. (2014). Drebin: Efficient and Explainable

Detection of Android Malware in Your Pocket.

Proceedings of the 21th Annual Network and Distributed

System Security Symposium (NDSS), San Diego, CA,

USA, 12: 1128.

http://dx.doi.org/10.14722/ndss.2014.23247

[21] Milosevic, N., Dehghantanha, A., Choo, K.K.R. (2017).

Machine learning aided Android malware classification.

Comput. Electr. Eng., 61: 266-274.

https://doi.org/10.1016/j.compeleceng.2017.02.013

[22] Damshenas, M., Dehghantanha, A., Choo, K.K.,

Mahmud, R. (2015). M0Droid: An Android Behavioral-

Based Malware Detection Model. J. Inf. Priv. Secure.,

11(3): 141-157.

http://dx.doi.org/10.1080/15536548.2015.1073510

[23] Idrees, F., Rajarajan, M., Conti, M., Chen, T.M.,

Rahulamathavan, Y. (2017). PIndroid: A novel Android

malware detection system using ensemble learning

methods. Comput. Secure., 68: 36-46.

https://doi.org/10.1016/j.cose.2017.03.011

[24] Li, D., Li, Q., Ye, Y., Xu, S. (2021). A framework for

enhancing deep neural networks against malicious

malware. IEEE Transactions on Network Science and

Engineering, 8(1): 736-750.

https://doi.org/10.1109/TNSE.2021.3051354

[25] Athiwaratkun, B. Stokes, J.W. (2017). Malware

classification with lstm and gru language models and a

character-level CNN. 2017 IEEE International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pp. 2482-2486.

[26] Gopi, A.P., Naik, K.J. (2021). A Model for Analysis of

IoT based Aquarium Water Quality Data using CNN

Model. In 2021 International Conference on Decision

Aid Sciences and Application (DASA), pp. 976-980.

[27] Gibert, D.C. Mateu, J. (2019). Planes A hierarchical

convolutional neural network for malware classification.

The International Joint Conference on Neural Networks

2019, IEEE, pp. 1-8.

[28] Narayana, V.L., Gopi, A. (2021). Secure communication

in Internet of things based on packet analysis. In Machine

Intelligence and Soft Computing. Springer, Singapore.

767

