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In this paper, we apply to a class of partial differential equation the finite element
method when the problem is involving the Riemann-Liouville fractional derivative for
time and space variables on a bounded domain with bounded conditions. The studied
equation is obtained from the standard time diffusion equation by replacing the first
order time derivative by a for 0<a<1 and for the second standard order space derivative
by gfor 1<4<2 respectively. The existence of the unique solution is proved by the Lax-
Milgram Lemma. We present here three schemes to approximate numerically the time
derivative and use the finite element method for the space derivative using the
Hadamard finite part integral and the Diethlem's first degree compound quadrature
formula, the second approach is based on the link between Riemann-Liouville and
Caputo fractional derivative, when the third method was based on the approximation of
the Riemann-Liouville by the Grunwald-Letnikov fractional derivative. For the
approximation of the space fractional derivative, the finite element method is introduced
for all the three approaches. Finally, to check the effectiveness of the three methods, a
numerical example was given.

1. INTRODUCTION

We are interesting here by the existence of the unique
solution of the Riemann-Liouville fractional derivative of the

partial differential equations of the form.

RED&u(x, t) = BEDEu(x, ) + f (x, 1),

(x,t) € 0 = [0,1] X [0,T]

under the initial and border conditions:

u(x,0) = up(x),x € Q:=[0,1]

u(0,t) =u(1,t) =0,t €1:=1[0,T]

approximation to resolve the space fractional dispersion-
advection equation involving Riemann-Liouville fractional
derivative.

Zeng et al. [19] proposed two finite difference element
methods to approximate the time-fractional sub diffusion
equation with the Caputo fractional derivative. Li and Xu [25]
proposed a finite difference spectral approximation method for
(1) the time-fractional derivative for diffusion equations. Zheng et

al. [26] proposed a note on the finite element method for the
space-fractional derivative for diffusion equation. Zheng et al.
[21] proposed a novel high order for space-time spectral
method to the time-fractional derivative for Fokker-Planck

(2) equation.
However, the references of the numerical and analysis
methods for space-time fractional derivative for partial
3) differential equations are less limited then numerical and
analysis methods for the partial differential equations with
only fractional derivative. Shen et al. [18] presented implicit

where, 0<a<1 and 1<p<2, T>0, REDZ#u(x, t) and RﬁDfu(x, t)
denote the left Riemann-Liouville fractional derivative of
order o and P respectively, f: Q2 X [ - R and uy: Q - R are
given functions.

Fractional partial differential equations have many
applications in various fields, for example electro-magnetic,
viscoelastic mechanics, fractal media, mathematical biology,
and chemistry and so on. Analytical solution of these problems
has been studies using Fourier and Laplace transforms,
Green's functions [1-7].

Some different numerical solution methods are proposed to
resolve the space and time fractional partial differential
equations [8-23].

Meerschaert and Tadjeran [24] give a finite difference
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and explicit difference approximation for the space-time
Riesz-Caputo fractional derivative for diffusion-advection
equation.

Hejazi et al. [27] presented a finite volume method to
resolve the time-space on two sides’ fractional derivative for
dispersion-advection equation.

In this paper, we study the existence of the unique solution
of a partial differential equation class involving fractional
derivative theoretically and numerically by the finite element
method with three different time discretization methods:
Hadamard-Diethlem quadrature formula, Riemann-Liouville
and Caputo link and Grunwald-Letnikov approximation. A
numerical example is given finally to verify the consistence of
the theoretical and numerical results as conclusion.


https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090503&domain=pdf

2. PRELIMINARIES

Here are some fractional integrals and fractional derivatives
order definitions.

Definition 2.1 For any positive integernand s € Jn — 1,n[,
the fractional integration is defined by

1 t
IEv(t) = @f (t— 1) tv(r)dz, forall t € [0, T]
0

where, I'(z) = f0+°° x?~le *dxis Euler’s gamma function and

n is the integer part of s.

Definition 2.2 For any positive integer n and s € Jn — 1, n[,
the left fractional derivative is defined by:

a" ‘ n-s—1 d
s)ﬁfo (t=1) v(7)dr

§D{v(t) = Tn—s)

and the right fractional derivative is defined by

="

iDiv(t) = T s)de

f (t—)" S w(r)dr

forall t € [0,T].

Definition 2.3 For any positive integer n and s € Jn — 1, n|,
the Caputo fractional derivative is defined by

Dv(t) = 5 dtf (t— )" * y(r)dr

forallt € [0, T].

Definition 2.4 For any positive integer n and s € Jn — 1, n[,
the Grunwald-Letnikov fractional derivative of a function u is

defined by
SLDSu(t) = Jim —— Z Siu(tn_r)

-0 AtS

s (=DFr(s+1)
where, &, = [(s+1-k)T(k+1)’

We introduce now some notations and definitions some
functional spaces equipped with their norms, semi-norms and
inner products, which are used hereafter.

Let A be a domain which may stand for I, 2 and 0. L?(A)
is the space of measurable function whose square is Lebesgue
integral in A, his inner product and norm are defined by:

1
(W, v)p = f wvdA, llullon = ()2
A

for all u, v € L?(A).

We define some functional spaces with their norms:

dw
HY(A) = {w e 2, L er (A)},

1180

Hg(A) = {w € L2(A), wlga},
K

d*w
H™(A) = {w € LZ(A),W € L?(A),Vk < m},

where, the inner product and the corresponding norm of
HX(A) is respectively define by:

du dw
(uw)l—(uw)+(

1/2
o) liwlly = w2

We use the standard norm of L?(A) with the norm

1/2
dwz/
x

Let H™(A) and HJ*(A) be the usual Sobolev spaces
W™2(A) with usual norms denoted by ||. ||,4:

il = (i

k=0

Iwlly = (Iwf?

dk

2\ 1/2
W )
0

dxk

Let C5°(A) be the smooth functions space with compact
support in A.

We also need to give some definition of some Sobolev
spaces: For a non-negative real number s for the Sobolev space
X with the norm ||. || &, let:

H*(1,X) = {v; llv(., Ollx € H(D}
equipped with the norm

Ivllisax = MlvC, Ollxlls,-

In particular, when X is H (Q)or H§ (1), ¢ = 0 the norm
of the space HS (1, X) will be denoted by ||. |l s.0-

In the rest of this paper, while no confusion would arise
about the domain symbols Q, | or O is omitted from the
notation.

Let Q = (a, b) which may stand for | or 12, we define the
spaces:

Definition 2.5 For any real s> 0, define the space 'H§(Q) as
the closure of the C5°(Q) with respect to the norm ||. || 15 (0)"

that is:
‘H(Q)

=

= {1Vl 150y <

with the norm

1

— 2 2 2
0l 100y = (101130 + 191 50))
and the semi-norm

— ||RL
|v] lysig) = || ng”o,g'
Definition 2.6 For any real s>0, define the space "H§(Q) as
the closure of the C5°(Q) with respect to the norm ||. || rysq),

that is:



THS(Q) = {v; IVl 7450y < OO}

with the norm

1

ol risiy = (I3 + 1015y )
and the semi-norm
[v| THS(Q) = I1*%D* 17”0,9'
In the above notation “/” and “r” are used to indicate the
left and right fractional spaces and its corresponding norm and

semi-norm.

Definition 2.7 In the usual Sobolev space Hj(Q), we also
define the semi-norm

1
(RLD;U, RéDS U)Q 2
Vl50) =

cos(ms)
for all v € H§ (Q).

Lemma?2.1 Fors>0,s +#n — % the spaces 'H*(Q), "H*(Q)

and H§(Q) are equal in the sense their semi-norms are all
equivalent to Ivlj,g(g).

S

Lemma 2.2 For 0<s<2, s#1/,w € H? (@), we have:

S S
RLpsy, = RLp2RLpz,
z 4 z""

N

Lemma 2.3 For 0<s<2, s#£1, w,v € H? (Q), we have:

N N

("Diw(@),v() = (RLnfw(z>, "p: v(z)) :
Q

(R’;Dsw(z),v(z))g = (RIED%W(Z),RLDEU(Z)) .
Q

3. EXISTENCE AND UNIQUENESS OF THE

SOLUTION

We define the space
B*?(0) = H*(I, X(@)NL* (I, H§ ()

with the norm

1
2

llgse = (101 su2ca) + 10120 g can )

where, 0 = Q x [.
The weak formulation of our problem (1)-(3) is:

ap
for £ € L2(1), find u € B2'2(0), such that:
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A, v) = F(v) “4)
for all v € B¥#(0), where A(.,.) is the bilinear form given
by:

A(u,v) = (RsDfu, v) 20y + (RéDfu, v)
a a B B

= (Rf,thu, RﬁD%v) + (RﬁDju, RED? v>

LZ(O) LZ(O)

L2(0)’

and the functional F(.) is given by:
Fw) =(f, V)Lz(o)-

Theorem 3.1 For 0<a<land f € L?(0), the problem (1)-(3)
has a unique solution. Furthermore, we have the following
stability result:

[[2el| ap < C||f||L2(0)'
BZ'2(0)

)

Proof: The existence of the unique solution is done by the
well-known Lax-Milgram Lemma. It consists to prove the
ceercivity and continuity of the bilinear for A4 and the
continuity of the linear functional F which is easy to prove.

ap
1. The cearcivity: Using above Lemmas, Vv € B22(0), we
have:

a

a B
A, v) = (RSDt2 v,

a
RiD2 v) RtD? v)
L2(0)

B
+ RLDE
0 xv'

ap
2. The continuity: Vv € B2’2(0), we have:

|L2 )

L2(0)

a
RLp2
tDZv

B
RLy2
oDiv

a
|A(u,v)| < |[R6D2u

L2(0)

B
+ ||RtD2y
0~x

L2(0)

< lull « lvll «
H2 H

Z(I;LZ(Q))

||v||Hg(I;L2(m)

lvll ap
0) B22

(I;LZ (Q))

+
||u||H§(I;LZm))

< lull
B

2 (0)

By the Lax-Milgram Lemma, the problem (1)-(3) has a

ap
unique solution in Bzz(0).
To prove the stability, we take v=u in (4) and using the
ceercivity result we get:

lull «pg < Clifll20)-
B22(0)

The proof is complete.



4. FINITE ELEMENT METHOD

4.1 Nodal base functions and their fractional derivatives
properties

Let ©Q=[0,1] be a finite domain. Let Q, be a uniform
partition of ©, which is given by:

O=xg<x; < <xp_1 <xp =1

where, m is a positive integer. h = i = x; — x;_,and each
Q; =[x, —x;] fori=12,... m

We also define the space Sy as the set of piecewise-linear
polynomial define on Q.

Sy = {v; vlg, € P (), {v} € c()},

where, P, (2;) is the space of linear polynomial define on Q.

The nodal base functions ¢;, i = 0,1, ..., m of S, are given
as
X —X
( h l' x € [xi—l' xi]'
.= X'+1 - X
¢ : ) x € [x;, X1,
0, elsewhere
and
X1 - X
s X € |xg, X411,
¢0 - { h [ 0 1]
0, elsewhere,
X — X -1
¢m = { hm 4 x € [xTarm—l]i
0, elsewhere.

Lemma 4.1 For i=1, 2,..., m-1, we have:

1, j—1]=1,
(¢>i(x),¢>,-(x)) = {4, j=1j=012,..,m
0, otherwise.

Lemma 4.2 Fori=1, 2,..., m-1and 0 < A < 1, we have:

0 Fprepi(x)
(x - xi—l)l_al
=p] e =x- )" =200 =)', X S xS Xy,
(c =)' =200 — ) 4 (x — x0T
Xit1 <x< b,

as<x<Xx_q,
Xi-1 < x < x;,

1
where, y = e

Lemma 4.3 For i=1, 2,..., m-1, we have:

Xi
[ moigseax = ep,

Xi—1

Xi+1 2
J RLD/ld)}(x)dx_Kp()
Xi
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where,

( Ci-j» JSi-2,
2—-1 C__
bl = Kf voogsicL
’ 1, j=1i
0, jzi+1
and
Cij+1 j=si—-1,
2—A _ L.
PP =l B8 =t
1, j=i+1,
0, j=i+2
pl=2
where, k = oD and
= - —-2)*"* 430 - 1) =32+ (i + 1)

4.2 The General Time Discretization Scheme (GTDS)

We can rewrite the system (1)-(3) as:

K6DE[u®) — uol + Au(®) = f(©) (6)
where, A = on.

Consider that the fractional Riemann-Liouville derivative
can be written in the form of a finite-part integral:

u(r)

RLpau(t) = I’(—a)_]; = nia dt

where, this integral can be evaluated as a Hadamard finite part
integral.

Let us considert; = j/n,j =0, ...,
then we have:

n a partition of [0,1],

RLD& [u — uo](tj) = F(]:a)f gw)w i %dw
0
where, g(w) = u(tj - tjw) —u(0).

We use now the Diethelm's first degree compound
quadrature formula with equidistant nodes 0,1/j,2/j,...,1 to
obtain the following approximation of the fractional derivative:

t %

—r a2 (7

| gy dw = e () + &

where, the remainder term R;(g) satisfy:

IR (@l < CF2supoererllg" @l

and the weights a,; (for j = 1) are given by:

-1, fork =0,
ja 2k — (k- DY — (k + 1)1‘“,

Ay = —— fork =1,2,..,j —
k] a(l a) (a 1)k— _ (k 1)1 a + kl a
fork =j.

So (7) can be reducing to:



REDEF[u — uo](_tj)
j

At~
=F§?EZF%“@‘“) ®

—w(] +m—=Ri(9)

r(-a)”’

where,

1, fork =0,
=2k 4+ (k — 1 “+(k+1)1 a
Brj = for k=12,..,j —
—(a— Dk %+ (k—1)17* - kl“",
fork =j.

for t=t;, (8) is given for j=0, ..., n as

J
At™¢
ﬁ?jag;%h@fﬁﬁ—umﬂ+Aﬂm o

-

t
= () —me(g)-

Noting u/ the approximation of u(t;) and f(¢;) = f;, so
we have:

Jj
> By W = u®) 4 paw) = pf (10)
k=0

where, p = At*T (2 — ).
The weak formulation of the problem (1)-(3) can also
given by:

dv
(REDfu,v) + (’%D,?u,av) =(f,v),0<A<1. (11)

So the semi-discretization is:

. . 0v
j RLD/1 j _)
(W, v)+p ( u "I

Zﬁm W v +p(fv) (4

+Z%wm

To get the full discretization, we set u/ = ¥™ u£¢s(x),
and choose every test function vto be ¢;,i = 1,...,m —1in
(12), we get:

ius (bor b) + pz ul ("5} ¢ 20 =)
s=0
=p(f;, ¢:) — Z Brj Z W (s, 1)
k=0 s=0

j-1

£ By (0
k=0

fori=1,..,m—1.

Applying Lemma 4.1 and Lemma 4.3, we obtain:

Sr-10]

- —gZ Bty + 4l +uddy) - (13)
k=0 o1

+ P(fj; ¢i) + Z Brj W®, o)
k=0

(ul 1+4u +ul+1)+r

where, r = %.

4.3 Caputo's Method (CM)

We need the following lemma in order to give the second
scheme.

Lemma 4.4 For 0 < a < 1, we have:

u(x,0)t™
RéDf‘u(x, t) = CDEIU(X, t) + m

This lemma gives the link between the Riemann-Liouville
fractional derivative and the Caputo fractional derivative.
So the problem (1)-(3) can be written as:

cpa _RLpB — _ U (™ 14
ODt u(xl t) ODxu(xi t) - f(xl t) F(l _ a)' ( )
The time-fractional derivative is estimated [25, 28]:
) D&u(x, t,)
ne
A u(x, tyg) — ulx, ty_p—1) (15)
“T(1=a) k
r(—a) & At
where, b, = (k + 1)17% — k17¢,
The weak form of problem (1)-(3) is given by:
dv ~%(uo, v)
(§Du, v) + (RLDlu a_) (f,v )—7( "a) (16)

forall v € H3(Q) where 0 < A < 1.

Denoting u™the approximation solution of u(x,t,) and
fn(x) = f(x,t,). Using (15), we can write the weak form (16)
at t,, as:

av
W™ v) +p (RSD;?u“. ﬂ)

1

S

M i

Wi (un_k' V) (by—1 a7
1

- 1)n_a)(u0' U) + p(fn' U)

—~
1l

+

where, p = F(Z —a)At* and wy, = by_1 — by.

Let u™ = ¥7Loui'd;(x), choosing v to be ¢;(x) for i =
1,...,m — 1 and applying Lemma 4.1 and Lemma 4.3, we get
the full discretization of the problem:



(ul cHAaulr+ul )+ Z(p(l) pl.(jZ))u}l
j=0

(18)
Zwkm L+ ul) + ()

+(bn 1+ (@ = D) ®, ¢).
4.4 The Grunwald-Letnikov Method (GLM)

The Grunwald-Letnikov fractional derivative can be

approximated the Riemman-Liouville fractional derivative [29,

30], which is giving by the following formula:

n
REDEU()]mgy = B ) 5 u(tn )
k=0
(@ _  (D*r(a+1)
Where 6 F(a+1 r(k+1)

Consider the following semi discretization of the problem
(13):

n
v
At Z 8wk, v) + (RSD,?u", a) = (fn,v). (19)

k=0

—5%, then we have:

) Z AR

+At%(f,, v) + s(“)(u v)

Lete™ =

(U™, v) + At® (RLD’1

To get the full discretization, we set u; =

and we choose v to be ¢;(x) fori =1,...,m
have

jeo U #;(x)

— 1, then we

S ist,00 3 (0t 2)

j=0
n-1 m

- z £®

u (¢ ¢1)
k=1 j=0
+ At (f, ) + 0 WO, py).

Applying Lemma 4.1 and Lemma 4.3, we obtain:

e2y)

(ul 1 + 4u + ul+1) + n Z(p(l) pl] ))u
j=0
n—-1 (22)
= Z e (ulk + 4ul T 4wk
k=1
+AL(fr, 1) + 07 (W, )

At%x
where, r; =

5. NUMERICAL EXAMPLES

In order to verify the efficiency of the three numerical
methods, we present the next example. The L, norm is used to

investigate the error. All the numerical result are evaluated at
T=1.

REDEu(x, ©) — REDMu(x,t) = f(x,t),  (x,0) € [0,1]?

subject to the initial and boundary conditions:

u(x,0) =0
u(0,t) =u(l,t) =0,

x € [0,1],
t €[0,T],

t'% 3 6t 2-2
where, f(x,t) = T +F(3_a)x .

The exact solution is u(x,t)=té.

Table 1 shows exclusively the error between the exact and
numerical solution using the GTDS and CM, and the Table 2
for the GLM, for a fixed value of « = 0.5 and a fixed step time
At =1/100, and different value of A. For the Table 3 and
Table 4, we fixed 2 = 0.75and 21 = 1/1000 and the result
are gotten for a different value of a.

Table 1. The error of GTDS and CM (107) for «=0.5 and
At=1/100

h 2=0.25 2=05 2=0.75 2=0.95

1/8  0.08686 0.04526 0.0196 0.03116
1/16  0.01895 0.01029 0.4755 0.7853
1/32  0.4429 0.247 0.117  0.1971
1/64  0.1076 6.083  0.2904  4.9937
1/128  2.659 1.513 7.241 1.235

Table 2. The error of GLM (x10°) for «=0.5 and At=1/100

h 2=05 1=0.5 1=0.75 4=0.95
1/8 0977 0496 0.1814 0.2822
1/16  0.3067 0.1571 4.691  4.947
1/32  0.1783 9457 4.077 95091
1/64  0.153 8373 4418 2417

1/128  0.147 8.15 4529  2.789

Table 3. The error of GTDS and CM (x108) for A=0.75 and
h=1/10000

At a=0.25 a=05 a=0.75 =0.95
1/20  1.11759 1.18435 1.21105 1.16581
1/40 111757 1.18456  1.214 1.16724
1/80 111756 1.18462 1.21177 1.16782
1/160 1.11754 1.18468 1.21179 1.16805
1/320 111761 1.18467 1.1182 1.16815

Table 4. The error of GLM (x<10®) for 4=0.75 and h=1/10000

At a=0.25 =05 a=0.75 a=0.95
1/20  0.1507 0.2257 0.1886  5.046
1/40 7.57 0.1136 9.511 2.521
1/80  3.794 5.703 4.79 1.264

1/160 1.9 2.86 2.409 63.52
1/320 0.9865 0.01404 0.01037 0.2398

6. CONCLUSION

In this paper, we studied the finite element method for
solving a class of Riemann-Liouville space-time fractional
partial differential equations. In the first step we approximated
the time fractional derivative using the Hadamard finite part
integral and the Diethlem's first degree compound quadrature



formula; the second approach was based on the link between
Riemann-Liouville and Caputo fractional derivative, when the
third method was based on the approximation of the Riemann-
Liouville by the Grunwald-Letnikov fractional derivative. For
the approximation of the space fractional derivative the finite
element method was introduced for all the three approaches.
Finally to check the effectiveness of the three methods a
numerical example was given.
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