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This research aims to model and optimise the most applicable supply chain system, 

which is a single-vendor single-buyer system with fuzzy buyer demand. An 

optimisation model of the supply chain system under consideration is built by 

formulating the objective function, which is minimising the joint total cost between a 

buyer and a vendor. The model is developed on the basis of a simulation system, and 

optimisation is carried out by utilising a Genetic Algorithm that has been embedded in 

the simulation system. This technique is called optimisation–simulation closed loop. 

The vendor actual condition, which deals with uncertain demands from the main buyer 

and other small buyers, is considered. To analyse timely supply chain events, a 

simulation system is developed. A new optimisation model for the single-vendor single-

buyer supply chain system with fuzzy demand is developed on the basis of the 

simulation system. The use of optimisation–simulation closed loop is also a new 

finding. In this study, the optimisation model of the supply chain under consideration is 

developed by taking into account a specific condition in which the vendor receives 

demands from the main buyer and other small buyers. Naturally, buyer demand is 

uncertain and has been modelled using a fuzzy set. The use of optimisation–simulation 

closed loop enables the supply chain to make the optimum decision when at the steady 

state condition.  
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1. INTRODUCTION

To ensure the efficiency and effectiveness of supply chain 

systems, attempts have been made to compile key performance 

indicators focusing on areas such as optimum supply chain 

configuration, inventory control, production quantity and 

flexibility increase. All of these objectives lead to the ultimate 

goal of the supply chain, that is, ensuring products are always 

available when needed at the lowest possible cost. 

Due to their simplicity, most supply chain systems are 

beginning to lead to the single-vendor single-buyer supply 

chain system. The simpler the configuration, the simpler the 

cost structure and the lower the distribution cost. Furthermore, 

it allows a buyer to have a long-term relationship with a 

supplier, and the supplier gains experience to become more 

flexible than before. As in other supply chain systems, 

coordination between supply chain and uncertainty are the 

factors to consider in supply chain optimization [1]. 

Fu and Chien [2] investigated accurate forecasting to 

support supply chain resilience. To forecast demand, they 

developed a data-driven analytic framework that integrates 

machine learning technologies and a temporal aggregation 

mechanism. Belle et al. [3] studied the role of information 

sharing in accurate forecasting to support supply chain agility. 

According to Abolghasemi et al. [4], promotion can cause 

forecasting volatility, and the demand by promotion should be 

separated from the normal demand to accurately forecast it. 

They used statistics combined with machine learning 

technique for the demand forecasting. 

Fuzzy logic (FL) is another technique that is widely used to 

model customer demand uncertainty. In FL, ambiguity is 

represented by a fuzzy curve. FL does not use clear or crisp 

logic to represent data domain membership. Data membership 

in a domain is determined strictly in crisp logic, which is false 

(0) or true (1). Crisp logic is not always appropriate for

representing a condition in some systems. In a demand system,

for example, if a clear rule says that ‘IF the demand quantity

is >= 80, THEN the demand status is HIGH,’ then the status

of a demand value of 80 units is HIGH. The status of a demand

value at 79 units, by contrast, must not be HIGH. It is an unfair

status because the effort to fulfil 80 or 79 units of demand is

the same, and both demands can be classified to the same class.

FL employs a membership value ranging from 0 to 1, rather

than 0 or 1. As a result, the status of a demand at 80 units is

HIGH with a degree of correctness of 100%, and that at 79

units is also HIGH with a degree of correctness of less than

100%. This outcome is logical.

Fuzzy curves have been used by several researchers to 

model and predict dynamic demand in supply chain systems. 

Sadeghi et al. [5] used a trapezoidal fuzzy set to represent 

fuzzy demand in a vendor managed inventory (VMI) system 

to optimise inventory. They used the centroid defuzzification 
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method to predict the demand value. Malik and Kim [6] used 

a different fuzzy set, a triangular fuzzy number, to model fuzzy 

demand in a supply chain. 

Coordination between the vendor and buyer is one of the 

factors for successful supply chain management in the single-

vendor, single-buyer supply chain system [7]. A traditional 

management approach in such a system typically employs a 

push backward or reactive approach, in which the buyer 

optimises its decision and the result is pushed backward to the 

vendor. The vendor reacts to optimise its decision by referring 

to the optimum buyer decision. Such partial optimisation 

prevents the supply chain system from reaching its global 

optimum. When conducting optimisation, procurement from 

the buyer and production quantity in the vendor must be 

considered together to achieve global optimum conditions [8]. 

The integrated procurement and production quantity is known 

as joint economic lot size in supply chain optimisation, and it 

must be optimised concurrently to minimise joint total cost 

(JTC) between the vendor and buyer. 

JTC is typically calculated by adding   the total costs of the 

vendor and buyer. Several studies have looked into the JTC of 

the single-vendor single-buyer supply chain under various 

conditions. Wee and Widyadana [9] developed JTC by 

considering discrete delivery orders, random machine 

availability time that causes production delays and stock outs 

as lost sales. The optimum solution was obtained by deriving 

JTC. Lee and Kim [10] looked into JTC that resulted in total 

profit. They investigated deteriorating items and defective 

products during the manufacturing process. Braglia et al. [11] 

discussed safety stock management within the VMI context 

with consignment agreement. In addition to JTC, they also 

considered service level, which is usually just the logical result 

of JTC minimisation, in the optimisation. 

Uncertainty has now become a common factor in supply 

chains, and supply chain researchers are paying close attention 

to it. Castellano et al. [12] investigated a study that considered 

uncertainty in demand and supply when optimising JTC. They 

found that an intermediate warehouse exists between the 

vendor and buyer, and queuing theory was used to model the 

system. Another technique that is usually used to model 

uncertainty is statistical distribution, which has been 

implemented in single-vendor multi-buyer supply chain 

coordination [13]. 

Most studies on supply chain JTC optimisation use a 

classical derivation approach. When JTC cannot be optimised 

through JTC derivation, the optimisation is performed in an 

iterative step known as an algorithm. In addition to the 

algorithm, intelligent optimisation techniques are used. Sue-

Ann et al. [14] used an evolutionary algorithm to optimise 

common parameter values in a two-tier supply chain system. 

Nia et al. [15] used a hybridised Genetic Algorithm (GA) with 

an imperialist competitive algorithm to optimise a green VMI 

system under shortage conditions. Tarhini et al. [16] discussed 

the use of GA to optimise a supply chain system with buyer-

to-buyer transshipments. The use of intelligent optimisation 

techniques in supply chain optimisation has received major 

attention from researchers, as the complexity of supply chain 

systems continues to rise. 

Our study focuses on the optimisation of the single-vendor 

single-buyer supply chain system. Batik, a popular product in 

Indonesia, is the product of the investigated system. To deliver 

the product from the vendor to the buyer, the supply chain 

system employs a third-party logistic (TPL) system. In the 

supply chain system under consideration, several small buyers 

and one main buyer exist, and the vendor has a contract with 

the main buyer to supply the product as needed. Uncertainty 

demand from customers is modelled using FL in the main 

buyer, and unfulfilled demand is considered lost sales. Buyer 

decision variables are the reorder point and order quantity, 

which are vendor demands. To obtain a realistic product flow 

from time to time and because optimisation must be performed 

simultaneously in the vendor and buyer, an optimisation–

simulation closed loop is used as the optimisation tool. 

 

 

2. RELATED WORKS ON SINGLE-VENDOR SINGLE-

BUYER SUPPLY CHAIN SYSTEM 

 

Previous studies on the single-vendor single-buyer supply 

chain system are reviewed in this section to distinguish this 

study from others. The review focuses on the supply chain 

system characteristics and the optimisation methods used. 

Ben-Daya and Hariga [17] investigated JTC minimisation 

with deterministic demand and lead time varying linearly with 

lot size. Following JTC formulation, a heuristic algorithm is 

proposed to determine the optimum lot size for the vendor and 

buyer, including the reorder point for the buyer. Three 

scenarios are presented to demonstrate that the proposed 

heuristic algorithm outperforms local optimisation for the 

vendor and buyer.  

Benkherouf and Omar [18] presented a method for 

minimising JTC by determining the best buyer replenishment 

and vendor production schedule. Time-varying demand was 

modelled linearly subject to time, and JTC was minimised by 

substituting several equations into the objective function. 

Jaggi and Arneja [19] created a model for unstable lead time 

and setup cost with different vendor and buyer objectives. The 

vendor goal was to reduce setup costs, whereas the buyer goal 

was to reduce lead time. To validate the developed model, 

stochastic demand during lead time was modelled using a 

statistical approach, and case studies with complete and partial 

demands during lead-time information were presented. 

Taleizadeh et al. [20] investigated JTC minimisation with 

stochastic demand and fuzzy lead time. Stochastic demand 

was represented by a statistical distribution, whereas fuzzy 

lead time was represented by membership value-based fuzzy 

simulation. They performed optimisation by using a 

continuous review inventory model with order quantity and 

reorder point as decision variables. Rad et al. [21] discussed 

the topic of joint profit maximisation. They pointed out that 

buyer demand is sensitive to selling price; therefore, selling 

price is one of the decision variables considered, along with 

order quantity and number of shipments. The optimisation tool 

was a simple iterative procedure. Vijayashree and 

Uthayakumar [22] conducted research on ordering cost 

reduction based on lead time. They considered two types of 

ordering cost: linear and logarithmic. To reduce the JTC of the 

supply chain system, solution procedures or algorithms were 

also proposed. 

Jauhari [23] studied about JTC minimisation by considering 

safety factor, delivery lot size, delivery frequency, production 

rate and process quality. Imperfect production system, which 

affects vendor production quantity, was also considered by 

incorporated quality improvement factor in the analysis. 

Stochastic demand was considered, but only mean demand 

value was used in the proposed model. Trial and error 

simulation were implemented for seeking the decision variable 

value. Sekar and Uthayakumar [24] explored the imperfect 
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production process. They considered multiple production runs 

with production setup, number of deliveries and lot size as 

decision variables. A classical derivation was performed to 

optimise the proposed JTC. 

In this study, a single-vendor single-buyer supply chain 

system, which uses a TPL system to deliver products, is 

considered. Given that such a system calculates shipping cost 

on the basis of shipment weight, the buyer ordering cost is 

subject to its order quantity. The buyer uncertainty demand is 

modelled using a trapezoidal fuzzy number. The vendor 

responds to the buyer demand in several production batches, 

and given that the vendor has a consignment with the buyer, 

stock out results in a penalty cost. An optimisation–simulation 

closed loop system is implemented to optimise the supply 

chain system under consideration. In this loop system, a GA is 

used as the optimisation algorithm. The significant differences 

between this study and similar works are shown in Table 1. 

 

Table 1. Differences between the current study and similar works 

 

Author(s) 
Stochastic 

Demand Model 

Intelligent 

Optimisation 

Simulation 

Feedback 

Multiple 

Production Lot 

Continuous Review 

Inventory 

Variable 

Ordering Cost 

[17]     √  

[18] √      

[19] √    √  

[20] √    √  

[21] √   √   

[22] √    √  

[23]     √  

[24] √   √   

[16] √ √   √  

This study √ √ √ √ √ √ 

 

 

3. PROPOSED MODELS FOR THE INVESTIGATED 

SUPPLY CHAIN SYSTEM 
 

This section explains the notations that represent the 

parameters and decision variables of the investigated supply 

chain system. It also defines fuzzy modelling for buyer 

demand, JTC modelling and the mechanism of the proposed 

optimisation–simulation closed loop. 

 

3.1 Notations 

 

General notations: 

b: index for buyer 

v: index for vendor 

t: time index 

h: inventory holding cost per unit per year (IDR/year) 

H: total holding cost per unit per year (IDR/year) 

𝐼:̅ average inventory (units) 

L: total lost sales cost (IDR) 

I: inventory level (units) 

 

Buyer notations: 

ir: inventory level when receiving an order (units) 

Ir: inventory level after receiving an order (units) 

O: total ordering cost (IDR/order) 

lt: ordering lead time (days) 

Q: order quantity (units) 

CT: inventory cycle time (days) 

r: reorder point (units) 

w: weight of shipped product per unit (kg) 

S: shipment cost per kilogram charged by TPL (IDR/kg) 

D: annual demand (units) 

d: demand (units) 

Dl: demand during lead time (units) 

𝑓𝑑̃: fuzzy demand (units) 

𝑑1: the lowest demand that has ever occurred (units) 

𝑑2 : lower limit of demand interval that frequently occurs 

(units) 

𝑑3 : upper limit of demand interval that frequently occurs 

(units) 

𝑑4: the highest demand that has ever occurred (units) 

𝜇: fuzzy membership value of a demand 

𝜋: lost sales cost per unit (IDR/unit) 

 

Vendor notations: 

TS: total setup cost (IDR) 

St: setup cost per production batch (IDR/setup) 

m: number of production lots 

PCT: production cycle 

𝑓𝐷̃: fuzzy demand from other buyers (units) 

𝜋1: lost sales cost (IDR/unit) 

𝜋2: penalty cost for unfulfilled order (IDR/unit) 

LS: production batch size (units) 

Ir: total production lot size (Ir = LS x m) 

ip: inventory level after fulfilling an order from a buyer (units) 

TC: total cost (IDR) 

l: lost sales cost in a production cycle (IDR/unit) 

y: penalty cost in a production cycle (IDR/unit) 

LP: total lost sales and penalty cost (IDR) 

 

GA notations: 

p_size: GA population size 

G: GA’s number of generations 

pc: GA crossover probability 

pm: GA mutation probability 

sp: number of super chromosomes in a population 

 

Figure 1 illustrates the supply chain system under 

consideration. 

Based on Figure 1, after receiving the order quantity from 

the main buyer, the vendor uses it as a reference in 

determining optimum production quantity. Once the products 

are finished, they are delivered to the buyer via a TPL system. 

The TPL system determines the shipment cost on the basis of 

the shipment weight, and the shipment cost is considered the 

buyer ordering cost. 
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Figure 1. Diagram of supply chain system under 

consideration 

 

In traditional supply chain management, one of the 

decision making is inventory optimisation [25, 26], therefore, 

the buyer optimises the reorder point and order quantity by 

considering demand during lead time, inventory holding cost, 

ordering cost and lost sales cost. The order quantity is the 

vendor demand, and the vendor optimises the number of 

production batches by considering inventory holding cost, 

setup cost, lost sales cost and penalty cost due to consignment. 

In this study, the reorder point, order quantity and number of 

production batches are optimised at a time whilst considering 

all of the supply chain system parameters. 

 

3.2 Buyer fuzzy demand model 

 

Naturally, customer demand received by the main buyer is 

uncertain, and it follows one of the following three patterns: 

frequently occurring, close-to-minimum and close-to-

maximum. Such patterns are vague; therefore, the demand is 

modelled with trapezoidal fuzzy values to account for this 

vagueness. Figure 2 depicts the use of a trapezoidal fuzzy set 

to model the buyer demand. The trapezoidal fuzzy set is 

proposed because it represents a typical demand behaviour 

with frequent, minimum and maximum value. Company 

marketing managers can assist in determining d1, d2, d3 and 

d4 values on the basis of historical demand data. Since the 

managers already have demand management experiences, 

even though d1, d2, d3 and d4 values are subjectively 

determined, the managers’ common sense will reduce the 

variation of the d1, d2, d3 and d4 values. 

 

 
 

Figure 2. Trapezoidal fuzzy set to represent the buyer fuzzy 

demand 

 

The historical demand data is technically organised into 

intervals. In this study, frequently occurring intervals are 

defined as those containing more than sixty percent of the 

data whereas close-to-minimum and close-to-maximum 

intervals each cover twenty percent of the data. The demand 

value can be estimated using the defuzzification method. One 

of the defuzzification methods that is commonly used by 

researchers is centroid method, as formulated in Eq. (1) [27]. 

See the general notation section to find the definition of each 

variable. 

 

𝑓𝑑𝑏̃ =
∫ 𝜇𝑏 × 𝑑𝑏

𝑑4

𝑑1

∫ 𝜇𝑏
𝑑4

𝑑1

 (1) 

 

The centroid method is able to produce fair result since it 

estimates the result based on the centre point of the used 

fuzzy sets. The output of the fuzzy demand model, as a result 

of the defuzzification method, is used as a reference to 

simulate demand during lead time. 

 

3.3 Main buyer total cost model 

 

The main buyer total cost is calculated annually, assuming 

a year equals 360 days. Generally, the main buyer total cost 

consists of ordering cost, inventory holding cost and lost 

sales cost. Each of the total cost component will be explained 

based on the inventory graph that illustrated in Figure 3. The 

x-axis represents the inventory level (I) while the y-axis 

represents the time (t). 

 

 
 

Figure 3. Inventory graph of the main buyer 

 

Figure 3 shows that CT1 is shorter than CT2, implying that 

the demand rate in CT1 is lower than that in CT2. When I 

reaches r, the main buyer places a fixed-quantity order (Q) 

with the vendor. Stock outs are regarded as lost sales in the 

investigated supply chain system, and the lost sales formula 

is expressed by Eq. (4). As a result, in the inventory graph, 

the ir value when the main buyer receives the order will never 

be less than 0 units because stock in a period does not have 

to endure shortages in the past. 

 

3.3.1 Total ordering cost 

The total ordering cost is determined by the total shipment 

cost charged by the TPL. In this study, the shipment cost is 

per kg of shipment weight. The cost per shipment can be 

calculated by rounding up the total shipment weight and 

multiplying it by the cost per kg. The total shipment cost can 

then be calculated by multiplying the total cost per shipment 

by the shipment frequency, as presented in Eq. (2). 

 

𝑂 =
𝑓𝑑𝑏̃

𝑄
× (𝑆 × ⌈𝑄 × 𝑤⌉) (2) 
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3.3.2 Total inventory holding cost 

Total inventory holding cost can be formulated as follows: 

 

𝐻𝑏 = 𝐼̅ × ℎ𝑏 

𝐼 ̅ = 𝑖𝑟 +
1

2
(𝑄) 

𝐼 ̅ = 𝑖𝑟 +
1

2
(𝐸(𝐼𝑟) − 𝐸(𝑖𝑟)) 

𝑖𝑟 = 𝑚𝑎𝑥(0; 𝑟 − 𝐷𝑙) 

𝐼 ̅ = {

𝑄

2
, 𝑟 ≤ 𝐷𝑙

𝑄

2
+ 𝑟 − 𝐷𝑙, 𝑟 > 𝐷𝑙

 

(3) 

 

3.3.3 Total lost sales cost 

Given that lost sales can occur in any CT, the total lost 

sales cost is calculated by multiplying the lost sales cost per 

unit by the estimated lost sales quantity multiplied by the 

number of CTs. Eq. (4) depicts the formula. 

 

𝐿𝑏 = 𝜋 ×
𝑓𝑑𝑏̃

𝑄
× 𝑚𝑎𝑥(0; 𝐷𝑙 − 𝑟) (4) 

 

3.3.4 Main buyer total cost 

The main buyer total cost is the sum of total ordering cost, 

total inventory holding cost and total lost sales cost, as shown 

in Eq. (5). 

 

𝑇𝐶𝑏 = 𝑂 + 𝐻𝑏 + 𝐿𝑏

=  
𝑓𝑑𝑏̃

𝑄
× (𝑆 × ⌈𝑄 × 𝑤⌉) +  𝐼 ̅ × ℎ𝑏

+  𝜋 ×
𝑓𝑑𝑏̃

𝑄
× 𝑚𝑎𝑥(0; 𝐷𝑙 − 𝑟) 

(5) 

 

3.4 Vendor total cost model 

 

The vendor total cost is calculated annually. The initial 

inventory is assumed to be zero, and production can begin 

immediately. The vendor also deals with uncertain demands 

from other small buyers during the production process. This 

condition distinguishes the proposed model from the 

theoretical economic production quantity (EPQ), which 

assumes constant demand from the same buyer throughout 

production. As a result, inventory levels are uneven during 

the manufacturing process. Uncertain demands from small 

buyers are also modelled using fuzzy trapezoidal fuzzy 

numbers. 

 

 
 

Figure 4. Vendor inventory graph 

 

In this model, if the vendor production quantity is 

insufficient to fulfil the order from the main buyer, then it is 

considered a lost sale, and the vendor is penalised by the main 

buyer. When the main buyer demand is received and the 

production activity to meet that demand is completed, the 

product is shipped to the main buyer immediately, and the 

inventory level is drastically reduced. This condition also 

distinguishes the proposed model from the theoretical EPQ 

model, which assumes that inventory levels after production 

decrease linearly due to constant demand from the same 

buyers. In this study, production in a period does not have to 

endure the shortage in the past. As a result, the ip level in the 

vendor will never be lower than 0. The vendor inventory 

graph is illustrated in Figure 4. 

 

3.4.1 Total setup cost 

Total setup cost is the cost per production setup multiplied 

by the number of production batches and multiplied by the 

number of days per year, as shown in Eq. (6). 

 

𝑇𝑆 = 𝑆𝑡 × 𝑚 × 360 (6) 

 

3.4.2 Total inventory holding cost 

The incorporation of the annual buyer demand in the 

vendor inventory holding cost model is one of the integration 

points between the vendor and buyer. The average inventory 

during PCT can be calculated using the inventory geometry 

displayed in Figure 4. The inventory holding cost is 

calculated by multiplying the inventory holding cost per unit 

per period by the average inventory during PCT, as presented 

in Eq. (7). 

 

𝑃𝐶𝑇 =
𝑄

𝐷
× 360 

𝐻𝑣 = ℎ𝑣 × (𝑖𝑝 +
1

𝑃𝐶𝑇
(∑ ((𝑚 × 𝐿𝑆) − 𝑓𝐷̃)

𝑡

𝑃𝐶𝑇
𝑡=1 )). 

𝑖𝑝 = max(0; 𝐼𝑟 − 𝑑𝑣) 

(7) 

 

3.4.3 Total lost sales and penalty cost 

Sales are lost and penalties are incurred when the vendor 

production quantity is insufficient to meet the buyer demand. 

In this study, lost sales and penalty costs are per unit; thus, 

both costs can be added together and multiplied by the lost 

sales unit to calculate the total lost sales and penalty costs. 

Eq. (8) depicts a formula for calculating total lost sales and 

penalty costs. 

 

𝐿𝑣 = (𝑙 + 𝑦) ×
𝑑𝑣

𝐼𝑟
× 𝑚𝑎𝑥(0; 𝑑𝑣 − (𝑚 × 𝐼𝑟)). (8) 

 

3.4.4 Vendor total cost 

The vendor total cost is the sum of total setup cost, total 

inventory holding cost, total lost sales and penalty cost, as 

presented in Eq. (9). 

 

𝑇𝐶𝑣 = 𝑇𝑆 + 𝐻𝑣 + 𝐿𝑣 =  𝑆𝑡 × 𝑚 × 360 + ℎ𝑣 ×

(𝑖𝑝 +
1

𝑃𝐶𝑇
(∑ ((𝑚 × 𝐿𝑆) − 𝑓𝐷̃)

𝑡

𝑃𝐶𝑇
𝑡=1 )) + (𝑙 + 𝑦) ×

𝑑𝑣

𝐼𝑟
× 𝑚𝑎𝑥(0; 𝑑𝑣 − (𝑚 × 𝐼𝑟)). 

(9) 

 

3.5 JTC 

 

The supply chain system will not be able to achieve the 

global optimum solution if the total cost of the buyer and 

vendor is minimised separately. As a result, the total cost 

must be joined and used as the objective function in the 
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optimisation process. Eq. (10) depicts the buyer and vendor 

JTC. 

 

𝐽𝑇𝐶 =  𝑇𝐶𝑏 + 𝑇𝐶𝑣 = 𝑂 + 𝐻𝑏 + 𝐿𝑏 +  𝑇𝑆 + 𝐻𝑣 +

𝐿𝑣 ==
𝑓𝑑𝑏̃

𝑄
× (𝑆 × ⌈𝑄 × 𝑤⌉) +  𝐼 ̅ × ℎ𝑏 +  𝜋 ×

𝑓𝑑𝑏̃

𝑄
×

𝑚𝑎𝑥(0; 𝐷𝑙 − 𝑟) + 𝑆𝑡 × 𝑚 × 360 + ℎ𝑣 × (𝑖𝑝 +

1

𝑃𝐶𝑇
(∑ ((𝑚 × 𝐿𝑆) − 𝑓𝐷̃)

𝑡

𝑃𝐶𝑇
𝑡=1 )) + (𝑙 + 𝑦) ×

𝑑𝑣

𝐼𝑟
×

𝑚𝑎𝑥(0; 𝑑𝑣 − (𝑚 × 𝐼𝑟)). 

(10) 

 

The optimisation objective function for JTC is 

minimisation with three decision variables, namely, Q, r and 

Ir (which is the function of LS and m). In JTC, r is affected 

by Q and Dl. Given that Q is a function of r, a circular 

reference exists between Q and r. Previous researchers 

typically solved this problem by using an initial Q value or 

developing a heuristic approach. No proof shows that the 

solution discovered is the best in either technique. In this 

study, JTC is optimised using an optimisation–simulation 

closed loop. A GA is proposed in the optimisation part, and 

the simulation is performed to obtain time series inventory 

analysis between the vendor and buyer. 

The simulation initially generates 𝑓𝑑𝑏 ,̃ 𝐷𝐿  data by 

considering Q, m and r generated by GA. It then analyses the 

resulted 𝐼𝑏 and 𝑆𝑥𝑏 . Figure 5 shows the mechanism of the 

optimisation–simulation closed loop. 

 

 
 

Figure 5. Optimisation–simulation closed loop mechanism 

to optimise the investigated supply chain system 

 

The simulation system generates the parameter values (Fd 

and DL) to be fed into the GA. Then, GA optimises the 

decision variables (Q, r, m), which are fed back to the 

simulation system to calculate JTC on the basis of yearly 

simulation. The optimised variables change the parameter 

values for the next iteration. Such a process is iterated for a 

number of generations. This optimisation–simulation closed 

loop optimises the decision variables and validates the result 

simultaneously through a simulation process. This 

optimisation procedure causes the used GA to work with a 

fitness function whose values for dynamic variables are 

determined by simulation. It distinguishes the used GA from 

conventional GA that operate with a static fitness function. 

 

 

4. GA MODELLING 

 

This section discusses how the chromosome is formed in 

GA, including the compatible crossover and mutation 

operations on the chromosome. 

4.1 Chromosome encoding and decoding 

 

In GA, solutions to be found must be encoded in the form 

of chromosomes to enable GA to explore the solution domain 

by manipulating the chromosomes. The expected values for 

the decision variables in this study are integers, so binary 

encoding is used. For each decision variable, eight bits are 

provided to obtain precise values. Figure 6 depicts the binary-

encoded chromosome, and Eq. (11) shows the formula for 

decoding the chromosome. 

 

 
 

Figure 6. Binary-encoded chromosome to represent the 

solution 

 

𝑄 = 𝑀𝑖𝑛𝑉𝑄 + 𝐼𝑛𝑡 (
𝐷𝑉𝑄

255
× (𝑀𝑎𝑥𝑉𝑄 − 𝑀𝑖𝑛𝑉𝑄)) 

𝑟 = 𝑀𝑖𝑛𝑉𝑟 + 𝐼𝑛𝑡 (
𝐷𝑉𝑟

255
× (𝑀𝑎𝑥𝑉𝑟 − 𝑀𝑖𝑛𝑉𝑟)) 

𝑚 = 𝑀𝑖𝑛𝑉𝑚 + 𝐼𝑛𝑡 (
𝐷𝑉𝑚

255
× (𝑀𝑎𝑥𝑉𝑚 − 𝑀𝑖𝑛𝑉𝑚)). 

(11) 

 

4.2 Chromosome operation 

 

Crossover is a binary operation that requires an even 

number of chromosomes. The number of chromosomes for 

crossover is controlled using crossover probability with 

random selection via random number generation. For a 

detailed description of the chromosome selection process for 

the crossover operation, see [28]. In our study, two crossover 

cut-points are used, as illustrated in Figure 7. 

 

 
 

Figure 7. Two cut-point crossover mechanism 

 

4.3 Mutation operation 

 

One of the major issues discussed in GA is the local 

optimum trap caused by low chromosome diversity in a 

generation. When the chromosome diversity is low, the 

crossover operation is no longer effective in exploring the 

solution domain. The mutation operation, which is a unary 

operation, plays a major role in exploring the solution domain. 

The main cause of low chromosome diversity is super 

chromosome dominance. When the gap between the super 

chromosome and the other chromosomes is large, the super 

chromosome is likely duplicated in the next generation, and 

the chromosome diversity decreases from generation to 

generation. To avoid this condition, the mutation rate in our 
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study is determined dynamically on the basis of chromosome 

diversity. The formula for calculating the mutation rate is 

presented in Eq. (12). 

 

𝑝𝑚 =
𝑠𝑝

𝑝_𝑠𝑖𝑧𝑒
 (12) 

 

According to Eq. (12), when the population size is 30 and 

3 super chromosomes are selected, the mutation rate is set to 

0.1, which is relatively low. In another case, if 15 super 

chromosomes are chosen, then the mutation rate is set to 0.50, 

which is relatively high. The mutation process is carried out 

by generating a random number for every bit in every 

chromosome and if the generated random number is less than 

the pm, then the related but will be mutated. Given the high 

mutation rate, GA can have various chromosomes. Figure 8 

shows how flip mutation is used in this study. For a detailed 

description of the chromosome selection process for the 

mutation operation, see Gen and Cheng (1998) [28]. 

 

 
 

Figure 8. Flip mutation mechanism 

 

 

5. CASE STUDY AND DISCUSSION ON RESULT 

 

The case study took place at a batik retailer in Yogyakarta, 

Indonesia, as the buyer and the vendor are located in another 

city. The parameter values in the buyer were d1=105, d2=112, 

d3=115, d4=120, hb=25000, π=25000, lt=5 (days), Dl=0 to 7 

units following a uniform distribution and S=50000. The 

parameter values in the vendor were St=100000, hv=10000, 

π1=10000, π2=15000 and LS= 5. 

To ensure that the steady state condition was achieved, the 

simulation was run for 10 years (3,600 days) with the 

following GA parameter values: p_size=50; G=1000, pc=0.5; 

pm is dynamic as previously explained. The optimum supply 

chain condition after optimisation was Q=106 units, r=23 

units and m = 3 with TCb=IDR 2.793.347,00, TCv=IDR 

181.485.000,00 and JTC=IDR 184.278.347,00. Table 2 

compares the results of push backward optimisation and the 

proposed joint optimisation. 

 

Table 2. Comparison of push backward optimisation and 

the proposed joint optimisation 

 
Opt. 

type 
Q r m TCb TCv JTC 

Push 

back 315 18 4 4.456.111 145.882.500 150.338.611 

Joint 316 20 3 4.545.208 141.650.000 146.195.208 

 

The quality of the GA searching process can be assessed 

on the basis of the GA ability to maintain chromosome 

diversity in each generation. It can be tracked using the GA 

searching process graph, as illustrated in Figure 9. According 

to the graph, the average fitness value is never the same as 

the best fitness value of the chromosome. That is, GA can 

maintain chromosome diversity in each generation. 

Moreover, the proposed GA is not trapped in a local optimum 

solution and can provide a global optimum solution. 

To validate the proposed model, it can be evaluated from 

the inventory movement patterns of the vendor and buyer and 

compared with the theoretical inventory pattern. Figures 10 

and 11 present the inventory movement pattern of the vendor 

and buyer, respectively. As illustrated, the pattern is similar 

to the theoretical pattern. 

 

 
 

Figure 9. GA searching process graph 

 

 
 

Figure 10. Inventory movement pattern of the vendor for 

one cycle 

 

 
 

Figure 11. Inventory movement pattern of the buyer for one 

cycle 

 

Our study proposes the use of a continuous inventory 

review model for the buyer. According to the literature 

review, the majority of previous researchers used the same 

model, which monitors the inventory level on a regular basis. 
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With this model, the supply chain system can achieve the 

lowest possible JTC. 

This research has four major contributions: (1) the 

situation in which the vendor receives uncertain demands 

from other buyers during the production time, (2) the 

condition of the buyer inventory that drops immediately after 

shipping the products to the main buyer, (3) shipping cost that 

is a function of shipment weight and (4) the use of 

optimisation–simulation closed loop as the optimisation tool. 

Previous similar studies typically used estimated parameter 

values that did not accurately represent timely supply chain 

events. 

 

 

6. CONCLUSION AND SUGGESTION 

 

A JTC model for the single-vendor single-buyer supply 

chain system has been developed by considering fuzzy 

demand from the main buyer and other small buyers, 

including the specific condition of the vendor inventory, 

which is drastically reduced after product delivery to the 

main buyer. Furthermore, the investigated supply chain 

system employs the TPL service for product delivery, with 

the shipment cost determined by shipment weight. All of 

these conditions distinguish the proposed JTC model from 

other similar models. Furthermore, the GA in the proposed 

optimisation–simulation closed loop performs well and can 

provide a global optimum solution. 

According to the real supply chain system, which can have 

multiple product types, the model must be expanded by 

considering multiple product types and uncertainties in 

production lead time. The optimisation algorithm can also be 

changed to other intelligent optimisation algorithms, such as 

Bayesian optimisation, as it works on the basis of several data 

sampling and pattern result evaluation. Doing so can make 

the optimisation process faster than other evolution 

algorithms. 
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