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MHD effect using micropolar fluid between rough conical bearings is analyzed in this 

paper. The Reynolds equation is derived in the form of magnetic field using the Eringen 

principle with Christensen theory. The stochastic modified Reynolds equation for two 

types of one-dimensional structure, the radial roughness pattern and azimuthal 

roughness patterns is derived for micropolar fluid. In terms of dimensionless pressure, 

load carrying capacity and time, the numerical results are presented. The importance of 

roughness, MHD and micropolar fluid is greater than that of the classical Newtonian case. 

From the analysis, the impact of micropolar fluid and electrically conducting fluid 

increases the load carrying capacity further decreases the time relative to the Newtonian 

instance. On the whole, the squeezing film characteristics of conical bearings is improved 

for higher values of coupling number and Hartmann number. 
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1. INTRODUCTION

The non Newtonian micropolar fluids contain suspension of 

particles with individual motion. The theory of micropolar 

fluids introduced by Eringen's [1, 2] deals with the class of 

fluids which exhibits certain microscopic effects induced from 

the local structure and micromotion of the fluid elements. The 

interesting behaviour of the fluid is that it can support the 

stress moment and body moment and it can influence the spin 

inertia. Owing to their uses in a variety of processes that exist 

in industries such as polymer fluid extrusion, liquid crystal 

solidification, cooling, and suspension solution, the study of 

micropolar fluids has been given considerable importance. 

Ramanaiah and Dubey [3] examined the slider profile which 

is lubricated by an incompressible micropolar fluid which 

provides the maximum load capacity than that of the 

Newtonian instance (when the coupling number tends to zero 

the results reduce to Newtonian instance). For porous spherical 

bearing, the feature of a micropolar lubricant is evaluated. The 

load efficiency reduces as the porosity parameter rises. The 

time decreases than that of a non-porous bearing but increases 

as viscosity for the micropolar fluid rises was studied by 

Zaheeruddin and Isa [4].  

Roughness plays a significant role in understanding how a 

real object interacts with its environment. Rough surfaces start 

wearing faster than smooth surfaces and have higher friction 

coefficients. In many of the lubrication theories, bearing 

surfaces are treated as smooth which is not possible in practice. 

The roughness of the surface is important in practice for 

product quality productivity in production and cost. It is 

understood that when the viscosity is considered in lubricating 

regimes, the surface roughness and also the material processed 

might play a significant role in this tribological phenomena.  

In addition, the influence of roughness extends to different 

engineering disciplines such as noise and vibration control, 

dimensional tolerance, abrasive method, bio engineering, etc. 

Another field where roughness of the surface plays a major 

role is contact resistance. Several researches have examined 

the lubrication nature of both Newtonian and non-Newtonian 

fluids. To investigate the influence of surface roughness, 

Christensen stochastic theory [5] is used. Rajani et al. [6] 

examined the impact of micropolar fluid as the lubrication 

with magneto hydrodynamic (MHD) in rough conical bearings. 

It is noted that the Hartmann number increases the pressure for 

both the roughness pattern. Rao et al. [7] has examined the 

influence of viscous dependence and roughness using 

micropolar fluid in conical bearings. It is found that viscous 

dependency lengthened the load carrying capacity for both 

roughness patterns than that of classical iso-viscous 

Newtonian lubricant case. Micropolar between two elliptical 

plates with MHD was studied by Halambi and Hanumagowda 

[8]. It was observed that these effects are more prominent for 

larger values of Hartmann number. Lin [9] studied that 

electrically conducting fluid effects using micropolar fluid 

provide a higher load carrying capacity for parallel rectangular 

plates than that of non-conducting case. Couple stress fluid in 

conical bearings with MHD is investigated by Hanumagowda 

et al. [10]. They noted that the Hartmann number increases the 

pressure. Viscosity variation influence on porous conical 

bearings in rabinowitsch fluid was studied by Rao and Kumar 

Rahul [11]. It is observed that the influence of the variation of 

viscosity and the rabinowitsch fluid decreases pressure load 

carrying and time. The non-Newtonian micropolar fluid 

impact has a higher load carrying capacity in conical bearings 

is investigated by Lin et al. [12]. Sangeetha and Govindarajan 

[13] analyzed the effects of viscosity variation and couple

stress fluids for circular stepped plates. It is observed that the

combined influence of couple stress and magnetic effects are

significant. The results indicated that viscosity variation with

couple stress was better than Newtonian fluids and the

performance squeeze film characteristic enhanced. So far, the

influence of roughness and MHD using micropolar fluid
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between the conical bearings has not been studied. It is noticed 

that the empirical findings indicate that all of these effects 

have a major impact on the efficiency of the bearings. Since 

this work has not been carried out yet effort has been made to 

study the impact of roughness between conical bearings with 

MHD using micropolar fluid.  

 

 

2. MATHEMATICAL FORMULATION  

 

Figure 1 indicates the configuration of rough conical 

bearings in the existence of a transverse magnetic field. In this 

figure the thickness of fluid film between the plates is h. The 

magnetic field oB  is applied along the z-direction. In the film 

area, micropolar fluid is taken into consideration as the 

lubricant. where u and v are the velocity components in r and 

z direction, 1v  is the micro-rotational velocity and   

represents the electrical conductivity of the fluid. The 

parameter   is the viscosity parameter of the base fluid as in 

the case of the Newtonian fluids,  is the spin viscosity and 

  is the viscosity coefficient for micropolar fluid. 

 

 
 

Figure 1. Configuration of the problem 

 

The micropolar fluid equations are governed by 
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The relevant boundary conditions for the velocity and micro 

rotational velocity components are  

 

(i) At the upper surface sinz h =  

 

10, 0u v= = ,
( )2 sind h

v
dt


=  (4) 

(ii) At the lower surface sinz h = −  

 

10, 0u v= = , 0v =  (5) 

 

These are the usual no-slip condition on velocity 

components for micropolar fluid. where the film height is h in 

the direction of the cone axis, the cone angle is 2  and radius 

units a. The inner cone moves toward the housing with a 

squeezing velocity, 
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Eliminating 1v  from Eq. (2). and (3) gives 
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To derive expression for u, integrate Eq. (6) and apply 

relevant velocity boundary conditions Eqns. (4)-(5) which 

gives, 
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The Reynolds equation for conical bearings derived by 

integrating the Eq. (1) and using the respective boundary 

conditions Eqns. (4)-(5)  
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For mathematical modeling of surface roughness, the 

stochastic film thickness H  which consist of two parts 

represented as ( ) ( , , )sH h t h r  = +  is considered. 

The probability density function given by ( )sf h , where h(t) 

represents nominal smooth part of the film thickness, 
s

h

denote the random part resulting from the surface roughness 

asperities measured from the nominal level and 


 is an index 

describing the definite roughness arrangements.  

Using Christensen [5]  
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where,  =
3

c
 is the standard deviation . 

The expectancy operator is denoted as ( )E   and defined by 
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According to the stochastic theory of Christensen, two types 

of one-dimensional surface roughness patterns are analyzed 

respectively radial roughness pattern and azimuthal roughness 

pattern. We obtain the stochastic modified Reynolds equation 

on taking the average of Eq. (8) with respect to ( )sf h . 
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Radial Roughness Pattern 

According to the stochastic theory of Christensen, two types 

of one-dimensional surface roughness patterns are analyzed, 

respectively, radial roughness pattern and azimuthal 

roughness pattern. The roughness structure has the form of 

long, narrow ridges and valleys running in the r-direction (i.e., 

they are straight ridges and valley passing through z = 0, r = 0 

to form star pattern), in the case the film thickness takes the 

form: ( ) ( , )
s

H h t h  = + . 

The stochastic modified Reynolds equation becomes  
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Azimuthal Roughness Pattern 

The structure for the one-dimensional azimuthal roughness 

pattern on the bearing surface has the roughness structure in 

the form of narrow ridges and valley running in   -direction 

(i.e., they are circular ridges and valley on the flat plates that 

are concentric on 0, 0z r= = ). In this case the film thickness 

takes the form ( ) ( , )
s

H h t h r = + . 
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Eq. (12) and (13) together can be expressed as 
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The pressure boundary conditions are: 
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Introducing the non-dimensionless variables and 

parameters 

 

( )
( )1 2*

2 * *

1 2 3

24
, , , ,

G G
F H N L M

M k k G


−
=  

 

( ) ( )

( ) ( )

* * * * * * * *

1 1 2 2 2

1 * * * * * *

1 2 2 2

0.5 sin cosh 0.5 sin sinh 0.5 sin

sinh 0.5 sin sinh 0.5 sin

k H k H k k H
G

k H k k H

   

  

 
 =
 −
 

 

 

( ) ( )

( ) ( )

* * * * * * * *

2 2 1 1 1

2 * * * * * *

2 1 1 1

0.5 sin cosh 0.5 sin sinh 0.5 sin

sinh 0.5 sin sinh 0.5 sin

k H k H k k H
G

k H k k H

   

  

 
 =
 −
 

 

 

( ) ( )

( ) ( )

* * * * *

3 2 2 1

* * * * *

1 1 2

sinh 0.5 sin cosh 0.5 sin

sinh 0.5 sin cosh 0.5 sin

G k H k H

k H k H

  

  

=

−
 

 

( )2 2 *2

1*

1 1 2 *2

1

1

2
o

M N k
H

N k
 

− −
= = , 

 

( )2 2 *2

2*

2 2 2 *2

2

1

2
o

M N k
H

N k
 

− −
= = , 

 

* *2 *

1 1 2*

1 1

4

2
ok k H

  + −
= = , 

* *2 *

1 1 2*

2 2

4
,

2
ok k H

  − −
= =  

 

( )2 2 2 2

*

1 1 2

1
,o

N M N L
H

L
 

+ −
= =  

2 2
*

2 2 2o

N M
H

L
 = =  

 

1212



 

* ,s

o

H h
H

H

+
=

1
2

,
2

N


 

 
=  

+ 

( )
1

2

4
,

o

L
H




=   

 
1

2

,o oM B H




 
=  

 

2
,

o

h
H

H
=  

o

c
C

H
= and *

cosec

r
r

a 
=  

 

Solution of Eq. (14) using boundary conditions 
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gives the non-dimensional pressure equation as  
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The load carrying capacity equation considering the 

roughness effect is obtained as 
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The non-dimensional rough load carrying capacity equation 

is given by  
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The dimensionless time equation is given by  
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3. RESULT AND DISCUSSION 
 

The analysis of the roughness with MHD using micropolar 

fluid between conical bearings is evaluated with regard to the 

Hartmann parameter M and roughness parameter C. The 

viscosity of the base fluid as in the case of the Newtonian fluid 

is represented as  . The spin viscosity is   and the 

viscosity coefficient for micropolar fluids is  . These 

viscosity parameters are grouped in the form of two 

parameters, the non-Newtonian coupling parameter N, the 

fluid-gap interacting parameter L. 

Figure 2 describes variation on pressure 
*p  with distance 

in 
*r  direction for different values of N with L = 0.9, M = 1,

* 0.6, , 0
3

H C


= = =  when N = 0, L = 0 and M = 0 the 

dimensionless Reynolds equation reduces to Newtonian and 

non-electrically conducting case of Hamrock [14] which is 

given by *3F H= . It is noted that compared to the Newtonian 

the non-Newtonian micropolar fluids produces greater 

squeeze film pressure.  

 
 

Figure 2. Variation with r* for different values of N on 

dimensionless pressure 
*p  with H* = 0.6, 

3


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Figure 3. Variation with 
*r  for different values of M  on 

dimensionless pressure 
*p  with L= 0.9, H* = 0.5, 

2


 = , N 

=0.6, C = 0.4 

 

 
 

Figure 4. Variation with r* for different values of M  on 

dimensionless pressure p* with L= 0.9, H* = 1.2, 
2


 = , N 

=0.9 
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Figure 5. Variation with 
*r  for different values of L on 

dimensionless pressure with M = 1, H* = 0.4, 
2


 = , N = 0.6, 

C = 0.2 

 

 
 

Figure 6. Variation with height *H  for different values of 

N  on load carrying capacity 
*w  with L = 0.9, 

6


 = , N = 

0.9, C = 0.4, M = 2 

 

 
 

Figure 7. Variation with height *H  for different values of L 

on load carrying capacity 
*w  with 

2


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Figure 8. Variation with height *H  for different values of 

  on load carrying capacity 
*w  with L = 0.8, N = 0.7, C = 

0.2, M = 1 

 
 

Figure 9. Variation with fh  for different values of N on time 

*T  with L = 0.7, 
6


 = , C = 0.2, M = 2 

 

 
 

Figure 10. Variation with fh  for different values of M 

on time *T with 
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Figure 3 describes variation on pressure 
*p  with distance 

in 
*r  direction for different values of M with N = 0.6, ,

2


 =  

H* = 0.5, C = 0.4, L =0.9. It is noted that the pressure is more 

prominent in the presence of a transverse magnetic field. This 

is because, in the case of radial roughness pattern, the 

roughness patterns are in the form of long narrow ridges and 

valleys running in the  - direction which blocks the flow of 

the lubricant, while in the case of azimuthal roughness pattern, 

the roughness patters are in the form of long narrow ridges and 

valley running in the r -direction by which the lubricant can 

escape easily. 

Figure 4 describes variation on pressure 
*p  with distance 

in 
*r  direction for different values of M with N 0.9,=  

*, 1.2, 2,L 0.9
2

H M


 = = = =  for 0 , 0, 0N L M  =  

and C=0. When M=0 the equation reduces to non- Newtonian 

and non- electrically conducting case of Prakash and Shina [15] 

which is given by
*

*3 2 * *212 6 coth
2

NH
F H L H NLH

L

 
= + −  

 
. 

It is observed that compared to the non-magnetic case the 

magnetic case is more pronounced for pressure. 

Figure 5 describes variation of pressure with 
*r  for 

different values of L on dimensionless pressure with M = 2,
* 0.4H = ,

2


 = , 0.6N = , C 0.1= . The pressure decreases 

for increasing values of fluid gap interaction parameter L. 

Figure 6 describes variation with height 
*H  on load 

carrying capacity 
*w  for different parameter values of 

coupling number N. The load carrying capacity 
*w  increases 

for increasing value of coupling number N.  

Figure 7 describes variation on load carrying capacity 𝑤∗ as 

a function of 𝐻∗ for different values of L with , 1
2

M


 = =  

N 0.7,C 0.2= = . It shows that the for 0N = , 0L = , C 0=  

and 0M  the equation reduces to Newtonian and electrically 

conducting case obtained by Lin [16] which is given by. 

( )* *

3

12 24 tanh 0.5MH MH
F

M

−
= . The results of non-

Newtonian case is enhanced when compared with the 

electrically conductive Newtonian case. 

Further it is noticed that the effect of azimuthal roughness 

is to increase the load carrying capacity for all values of the 

fluid-gap interacting parameter L whereas radial roughness 

causes a decrease in load as compared to the smooth case. Thus, 

the surface roughness effects are strongly dependent on 

surface texture. One type of texture may have just an opposite 

influence as compared to another. The effect caused by 

azimuthal roughness can be treated as the one produced in the 

opposite direction of radial roughness. 

Figure 8 describes variation on load carrying capacity 
*w  

as a function of 𝐻∗ for varying values of   with M = 1, L = 

0.8, C = 0.2, N = 0.7 The dimensionless load carrying capacity 
*w  increases with the increasing value of  . 

Figure 9 displays that the variation of fh  with time T* for 

various values of N with , 2,L 0.8, 0.3
6

M C


 = = = =  

The time increases(decreases) with the increasing value of N 

for the azimuthal(radial) roughness pattern.  

The variation of 
fh  with time T* for varying values of M 

with 
2


 =  is shown in given Figure 10. It is noted that 

existence of roughness and applied magnetic field increases 

the squeezing time compared to the smooth surface. 

 

 

4. CONCLUSION 

 
In this paper, the impact of roughness with MHD between 

the conical bearings using micropolar fluid is analyzed. The 

conclusions are obtained according to the numerical 

computations. 

• The existence of micropolar fluid with MHD 

enhances the dimensionless pressure and the dimensionless 

load carrying capacity relative to the Newtonian case. Also, 

the roughness must be accounted for while designing this type 

of bearing system, even if a suitable magnetic effect is taken 

into consideration. 

• When ( ),   0N L and M =  the equation reduces to 

Newtonian and non- electrically conducting case. 

• As the roughness parameter ( )0C =  the result 

reduced to a smooth surface case for both roughness patterns 

for one-dimensional conical bearings. 

• The impact of non-Newtonian micropolar fluid leads 

to an increase in the load carrying capacity and time, further it 

provides better performance for conical bearings operating 

with magnetic parameter values. As the magnetic parameter 

increases, the squeeze film time also increases. The applied 

magnetic field strongly opposes the fluid flow in the film 

region which results accumulation of fluid in the fluid region. 

• An increase in the values of Hartmann number M 

makes the lubricant to acquire more magnetization which in 

turn interacts with microrotional properties of the micropolar 

fluid leading to an increased load bearing capacity.  
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NOMENCLATURE 

 

Bo
 

Strength of applied magnetic field 

M Hartmann number =

1
2

0 0B h




  
  
   

 

h 

H* 

Film thickness 

Non-dimensional film thickness 

u, v 

v1 and v2 

Velocity components in r and z direction 

Components of micro rotational velocity 

 

Greek symbols 

 
  Electrical conductivity 
  Spin viscosity 
  Newtonian viscosity 
  Viscosity coefficient of micropolar fluid 

L 

C 

N 

Fluid-gap interacting parameter 

Roughness parameter 

Non-Newtonian coupling parameter 

 

Subscripts 

 

p* Non-dimensional pressure 

w* Non-dimensional load carrying capacity 

T* Non-dimensional time 
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