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A fully automatic plug seedling device is designed, its structure and working principle are 

introduced, and a plug seedling hole identification method based on CNN is proposed to 

address the issue of adjacent holes in order to increase the automation and intelligence of 

the vegetable transplanting machine. The issue of low recognition accuracy of plug seedlings 

is brought on by intertwined stems and leaves. This study first grows tomato seedlings in an 

artificial greenhouse and then utilizes an SLR camera to take pictures of those plants. The 

photos are then subjected to the appropriate preprocessing, such as separating the complete 

hole plate image into several hole images in accordance with the hole plate standards to 

facilitate recognition. The CNN model is then finished being trained after receiving the 

processed image. Relu, which has a better ability for classification, is chosen as the 

activation function of the convolutional layer after the network is enlarged on the basis of 

LeNet-5CNN. In addition, the over-fitting issue of the model is resolved using data 

augmentation technology, resulting in a recognition accuracy of the test set of the model that 

is as high as 0.985. The automatic vegetable transplanting machine can greatly increase the 

automation and intelligence level of the plug seedling recognition model based on CNN, 

which has high recognition accuracy and generalization ability. This model also solves the 

main technical problems of the plug seedling device and improves the machine's ability to 

transplant. 
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1. INTRODUCTION

The world's largest producer of vegetables is China. The 

primary planting technique used in vegetable production is 

plug seedling transplantation. More and more mechanized 

transplanting is employed as planting volume and labor costs 

rise. The majority of transplanting devices are semi-automatic 

devices that require manual seedling feeding and cannot 

effectively address the issues of high labor intensity, poor 

transplanting efficiency, or poor transplanting precision. 

Vegetable seedlings are automatically removed from the hole 

tray by the automatic transplanting machine, which then plants 

them in larger pots or fields. Due to its benefits of having a 

high transplanting efficiency and low labor intensity, it has 

drawn the attention of relevant institutions for research. 

However, there will be holes, weak seedlings, and residual 

seedlings in the plug tray due to factors including seed 

germination rate and seedling habitat. It will still be 

transplanted normally if the automatic transplanting device is 

unable to detect the holes. It will significantly reduce the 

automatic transplanting machine's ability to transplant, 

increasing the likelihood of missed planting. It is therefore 

possible to increase the automation and intelligence level of 

the automatic transplanting machine, which is the key to 

improving automatic transplanting, by identifying and judging 

whether each hole in the hole plate is suitable for transplanting 

and filling pot seedlings of the same age into the holes that are 

not suitable for transplanting, creating a successful method for 

machine transplantation. 

Research on plug seedling identification has been done by 

academics and organizations associated to it both domestically 

and overseas. An automatic transplanting device supported by 

machine vision was created by Tai et al. [1]. The segmentation 

threshold was established by sampling based on the image's 

gray information to assess whether the hole is empty. A 

seedbed transplanting robot with a vision system was created 

by Ryu et al. [2] and employs a predefined value for image 

segmentation to locate holes to speed up transplanting. The 

Futura fully automatic transplanting device from Ferrari, Italy, 

scans the plug seedling using photoelectric technology to 

assess whether there are enough seedlings. A detecting system 

using a background suppression diffuse reflection 

photoelectric sensor was created by Wu et al. and Jin [3, 4]. In 

order to determine whether there are enough seedlings, the 

sensor can alter the height and detecting distance at which it 

looks for the stems of the first row of plug seedlings. A plug 

seedling form parameter measurement system based on line 

structured light vision was created by Feng et al. [5]. The plug 

seedling image was processed using 2G-R-B, and the leaf and 

background were determined after a dynamic threshold for 

segmentation of the leaf and background was obtained using 

the maximum between-class variance approach. A machine 

vision system was created by Jiang et al. [6] to monitor the 

growth of plug seedlings in the pot-moving robot. A watershed 

method based on morphology was created to segment the edge 

of the leaf while avoiding the influence of nearby holes. To 

determine whether a seedling is ready for transplantation, it is 

necessary to measure its girth and leaf area. In order to 
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determine if there were seedlings in the holes, Wang et al. [7] 

grayscaled the Arabidopsis plug seedling image, obtained a 

binary image using the Otsu threshold segmentation method, 

and then counted the image pixels of the seedlings in the holes. 

Two categories of detection methods are used in the research 

mentioned above. One is the use of photoelectric sensors, 

although this technology can only identify the absence of 

seedling data. a smaller extent. The second approach uses 

image processing. The aforementioned image processing 

techniques base their calculation of the quantity of leaf pixels 

in the hole on picture segmentation [8]. However, following 

image segmentation the seedlings will be lost due to the effects 

of light, shooting angle, and plug seedling matrix. It is better 

to identify early plug seedlings because some stems, leaves, 

and the coherence information between stems and leaves are 

easily influenced by adjacent holes. 

In the middle and early stages of vegetable plug seedling 

cultivation, the plug seedlings are typically replanted. The 

plug seedlings will overlap in the center or middle early stage 

because they grow more quickly. Therefore, a more accurate 

method of plug seedling identification is needed. As one of the 

most efficient learning techniques in the field of machine 

learning, CNN [9] (convolutional neural network) has gained 

popularity in recent years. Its learned features have translation 

invariant qualities and can learn objects. It performs better in 

the field of picture recognition because of the spatial hierarchy. 

Research into CNN's use in agriculture has also been 

conducted by an increasing number of academics. Wang et al. 

[10] employed CNN to the identification of corn weeds, Ma et 

al. [11] used CNN to identify greenhouse cucumber illnesses, 

CNN was used to classify and identify banana leaf diseases by 

Amara et al. [12] and Brahimi et al. [13] for the identification 

of tomato illnesses.  

This paper first introduces the structure and operating 

principle of the plug seedling device based on machine vision, 

then goes into detail about the image acquisition and data set 

preprocessing process, and finally inputs the preprocessed 

plug seedling image into CNN, using the model's powerful 

feature extraction ability, to solve the problem of mutual 

interference of adjacent hole seedlings, determine whether the 

hole is a hole, and provide a guide for impromptu experiments. 

 

 

2. DEVICE STRUCTURE AND WORKING PRINCIPLE  

 

Figure 1 depicts the structure of the plug seedling device. A 

control box, a vision system, a conveyor belt, and a 

photoelectric switch for a manipulator are the essential 

components. The device's overall control is realized via the 

control box. The vision system for plug seedlings is made up 

of an industrial camera and an industrial computer. The 

manipulator is fixed to the linear module, the linear module is 

driven by the servo motor to realize actions such as grasping 

and replenishing the seedlings, and the seedling tray is realized 

by the photoelectric switch. The identification and the 

transport of the seedling tray are completed by the conveyor 

belt and stepping motor, respectively. 

The No. 1 transmission belt seedling tray's potted seedlings 

appropriate for transplant are removed by the seedling device 

and placed on the No. 2 transmission belt seedling tray. When 

filling seedling trays, the operator inserts the trays on conveyor 

belts No. 1 and No. 2, and the two conveyor belts operate 

independently to move the trays to the right beneath the 

camera. After correctly identifying and judging a plug seedling, 

the visual system notifies the controller with a recognition 

message. data, after which the seedling tray is transported to 

the manipulator's base by the conveyor belt. Under the 

controller's control, the manipulator moves to the No. 2 

conveyor belt seedling tray first, removing the substrate from 

the holes that are unsuitable for transplanting. The manipulator 

then moves to the middle of the two conveyor belts, discarding 

the substrate, before moving to the No. 1 conveyor belt. Take 

the pot seedlings that are ready for transplanting off the 

seedling tray, then quickly run to the No. 2 conveyor belt and 

place the pot seedlings there. To carry out the seedling 

replenishment operation, the seedling device's conveyor belt, 

linear module, and manipulator cooperate and move back and 

forth under the controller's control. The controller issues an 

audible and visual alarm to remind the operator to remove or 

supply fresh seedling trays in time when the seedling tray on 

the second conveyor belt is full or when there is no pot 

seedling appropriate for transplanting on the seedling tray on 

the No. 1 conveyor belt. 

 

 
 

Figure 1. Structure diagram of seedling supplement device 

 

 

3. IMAGE ACQUISITION AND DATASET 

PREPROCESSING 

 

3.1 Image acquisition 

 

Tomato seedling photos were trained on in this study. 

Tomato seedlings were grown in four trays in a makeshift 

greenhouse. The greenhouse was maintained at a constant 

25°C during the day and 15°C at night. The tray has a 12 by 6-

hole design. A Canon 550D single-lens reflex camera with 18 

million pixels is used for the image collection. A rack with a 

50 cm height is used to position the camera exactly over the 

seedling tray. On October 8, 2018, seeds were seeded, and on 

October 19, image collection got underway. By altering the 

artificial greenhouse's light intensity during the image 

collection process, the light changes that occurred while the 

plug seedling device was operating indoors were replicated. 

During the 10- to 28-day seedling cultivation phase, a total of 

581 photos of tomato seedlings were captured from various 

angles. Figure 2 shows a picture of tomato seedlings at their 

11–25 day seedling stage. For only three days, the tomato 

seedlings in the 11-day seedling stage had been uncovered. 

The image shows that at this point, the length of the tomato 

seedlings' two leaves is roughly equal to the width of the hole, 

and while some seedlings have spread to neighboring holes, 

they are essentially distributed inside their own hole region. In 

the 25-day image of the seedling raising period, the 

overlapping of adjacent holes is serious, but the outline of the 

holes is basically clear, and whether the holes are empty can 

still be judged through the information of the stems and leaves 

of the seedlings. 
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Figure 2. Tomato seedling image 

 

3.2 Image preprocessing and dataset construction 

 

The original image of the gathered tomato seedlings is 3264 

x 1840 pixels in size. The scale of the CNN model will be very 

large if the original image is directly recognized because it is 

relatively large; if the resolution is decreased, a lot of feature 

information will be lost and the recognition accuracy will 

decrease. Since the goal of the model recognition in this paper 

is to determine whether the hole is empty, the method of 

dividing the large hole plate image into small single hole 

images is adopted in order to decrease the difficulty of 

recognition and improve recognition accuracy, so that the 

network model only needs to identify the hole. The plug 

seedling recognition is converted into a binary classification 

problem whether the hole picture is empty or not, and the small 

image still has a high resolution, saving the majority of the 

stem and leaf information of the seedlings, which may assure 

the accuracy of the recognition. 

Figure 3 depicts the creation of the data collection and the 

picture preparation procedure. The non-seedling plate portion 

of the original image is first removed, and then, in accordance 

with the requirements of the seedling plate, it is divided into 

72 separate images, each measuring 12 by 6, along the edge of 

the hole. The split image is a file in the JPEG format, and the 

image corresponds to a hole. The size is 128128 pixels, the 

depth is 3, and the value is in a tensor of floating point values 

between 0 and 1, after the RGB format conversion, size 

correction, conversion of floating point numbers, and 01 

normalization procedure. The plug seedling device performs 

the aforementioned picture preprocessing operation. The 

industrial computer's automatic processing can be achieved by 

position calibration since the hole plate stops directly under 

the camera, fixing its position. 

Each tomato seedling image has a hole-to-no-hole ratio of 

roughly 1:5. The number of holes and non-hole photos in the 

training set and test set are equal, and 4000 images from the 

preprocessed images of tomato seedlings were chosen as the 

training set and 1000 images were used as the test set in order 

to confirm that this study is a balanced binary classification. 

 

 
 

Figure 3. Image preprocessing flow and data set construction process 

 

 

4. CNN PLUG SEEDLING RECOGNITION MODEL 

 

When a plug seedling is discovered, segmentation 

techniques like color can be used to realize hole identification 

since, if the plug seedling is small, its stems and leaves are 

primarily distributed in its own hole area. The red arrow in 

Figure 3 illustrates how the plug seedling expands outward 

after reaching a particular stage of growth, at which point the 

stems and leaves of nearby holes will overlap. The research 

reveals that the split hole image comprises the seedlings' stems 

in addition to their leaves, and that the holes may be located 

by identifying the traits of the stems and leaves. However, 

because the stalk is so thin and nearly the same color as the 

substrate, it is challenging to extract characteristics using color 

segmentation and other methods. In order to achieve hole 

recognition through its potent feature extraction capability, a 

CNN recognition model is constructed in this study. 

 

4.1 Principle of CNN 

 

The input layer, convolutional layer, pooling layer, fully 

connected layer, and output layer make up the majority of a 

CNN. A collection of training images are entered into the input 

layer. The essential component of CNN is the convolutional 

layer, which typically consists of numerous 33 or 55 

convolution kernels. You can think of the convolution kernel 

as a feature extractor. Only local features of the image may be 

extracted by the convolution kernel because of its limited size. 

The convolutional layer may, however, extract numerous local 

features from the image by increasing the number of 

convolution kernels. After feature extraction, the 

convolutional layer can then be used for identification 

anywhere else in the image. The convolutional layer closest to 

the input layer learns the smaller local features, while the 

subsequent convolutional layer learns the bigger image 

features based on the features of the previous convolutional 

layer. CNN typically consists of numerous convolutional 

layers. The pooling layer's primary job is to downscale the 

number of model parameters while maintaining the model 

recognition impact. The output layer contains a classifier that 

outputs the model's final recognition result, and the fully 

connected layer extracts the overall image features from the 
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convolutional layer [14]. 

In order to accomplish certain tasks through training, CNN 

needs the right network parameters after determining the 

network design. Loss function and an optimizer are used to 

implement network parameter training. Figure 4 depicts the 

connection between the network design, loss function, and 

optimizer. The loss function determines the loss value by 

calculating the difference between the network recognition 

result and the real value. The network parameters are updated 

by the optimizer using the loss value and training data. The 

loss function is also referred to as the objective function 

because the optimizer's ultimate objective is to minimize the 

loss value. 

 

4.2 Construction of identity model 

 

One of the oldest models, the CNN model LeNet-5 [15], 

was initially employed for handwritten digit recognition. This 

study expands the LeNet-5 network and creates a CNNplug 

seedling recognition model. Figure 5 depicts the model 

structure, while Table 1 displays the model parameters. The 

model consists of four convolutional blocks, with a 

convolutional layer, an activation layer, and a pooling layer in 

each block. The stride of the convolution operation is set to 1, 

and the convolution layer employs a 33 convolution kernel. A 

feature map is created from the input data after convolution. 

There are 32, 64, 128 and 128 feature maps, respectively. The 

graph keeps growing, but as the convolution operation 

continues, its size steadily shrinks. With maximum pooling 

downsampling, a 22 window, and a stride of 2, the pooling 

layer shrinks the feature map to half its original size. The 

convolutional block's multidimensional tensor is converted 

into a one-dimensional tensor via the flattening layer. The 512 

neuron-node fully connected layer incorporates the feature 

maps found by the convolutional layer. An activation function 

layer is also included in this layer. The final classification 

outcome is produced from the output layer, which is also a 

fully connected layer and contains just one neuron node. 

 

4.3 Recognition model optimization 

 

CNN requires optimization, loss, activation, and other 

functions. There are numerous different types of each function. 

The right function must be chosen based on the application in 

order to get the best performance out of the model. 

 

4.3.1 Activation function 

The model can do nonlinear modeling thanks to the 

activation function. In this study, sigmoid functions, 

exponential linear units, and rectified linear units (Relu, Relu, 

and Elu, respectively) are used [16, 17]. 

Relu is one of the activation functions that is now employed 

the most, and the expression is shown in formula (1). Since 

only some neurons are active when the input is negative, the 

network's capacity is decreased and computational efficiency 

is increased. This is evident from the statement that when the 

input is a negative number, its output is 0, and the 

corresponding neurons will not be activated. 
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Formula (2) illustrates the activation function Elu's 

expression. This function is an improvement over the Relu 

function. It is effective for input changes and noise because 

Elu and Relu are equal in the interval of x>0 and its output is 

not zero in the interval of x0. It has a higher level of resilience, 

and because the mean value of its output is closer to 0, it 

converges more quickly. 
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where α is a constant and can be set to 0.01. This article uses 

Relu and Elu as the activation function of the convolutional 

layer, and compares their effects. 

The Sigmoid function is expressed as the following formula 

(3). The Sigmoid function, which is frequently used for binary 

classification, can transfer the input value to the range of 0 to 

1. However, this function's drawbacks include the need for 

extensive calculation and the ease with which the 

backpropagation gradient can vanish. This paper's plug 

seedling recognition is a binary classification problem, which 

is consistent with the function's use features. This function is 

only utilized in the final layer of the model in this paper to 

avoid its drawbacks. 

 

( ) 1/ (1 )xS x e−= +  (3) 

 

4.3.2 Reduce overfitting 

Overfitting is a common problem in deep learning networks. 

It means that the model’s ability to identify and judge 

unknown data is average and its generalization ability is poor. 

This paper uses data set enhancement and regularization to 

reduce the problem of model overfitting [18]. 

Dataset augmentation is to generate more data from existing 

data, which is a common practice to reduce model overfitting. 

There are many ways of data enhancement. This article mainly 

uses four methods: random image rotation, random scaling, 

horizontal and vertical movement, and horizontal flip. 

There are many different methods for regularization. This 

article adopts L2 [19] regularization and Dropout [20] 

regularization. The L2regularization expression is shown in 

formula (4) 

 

2

0
2

C C w
n


= +   (4) 

 

where, C is the loss function with regularization term; C0 is the 

original loss function; 
𝜆

2𝑛
∑𝑤2is the regularization term; λ is 

the proportional adjustment coefficient, which is used to adjust 

the proportion between C0 and regularization; n is the number 

of training data; w is the network weight. 

It can be seen from formula (4) that L2regularization is to 

increase the mean value of the sum of weight squares on the 

basis of the loss function, and its purpose is to allow the 

network to learn smaller weights, so L2regularization is also 

called network parameter weight attenuation. 

Dropoutregularization is a simple method to reduce 

overfitting and improve the generalization ability of the model. 

Its core idea is to randomly drop some neural units, also known 

as dropout regularization. The realization process can be 

expressed as formulas (5) and (6). 

 
1 1 1

1 1ˆ ( )

l l l l

i i i i

l l

i i

z w x b

y f z

+ + +

+ +

= +

=
 (5) 

1570



 

Formula (5) is the neuron without adding 

Dropoutregularization:𝑧𝑖
𝑙+1 is the input weighted sum of the 

neuron; 𝑥𝑖
𝑙 is the input of the neuron (output of the previous 

stage neuron); 𝑤𝑖
𝑙+1  is the weight of the neuron; 𝑏𝑖

𝑙+1  is the 

bias; f is the activation function. 

 

1 1 1

1 1

( )

( * )

ˆ ( )

l

i

l l l l l

i i i i i

l l

i i

r Bernoulli p

z w r x b

y f z

+ + +

+ +

=

= +

=

 (6) 

 

Formula (6) is the neuron with Dropoutregularization: 𝑟𝑖
𝑙  is 

the 0, 1 vector randomly generated by Bernoulli function with 

a probability of p; p is the preset discard probability. It can be 

seen that when r=0, the neuron only has the bias, which will 

be discarded in the next step of operation. 

 

4.3.3 Loss function 

The plug seedling identification is a binary classification 

problem. Thus, cross entropy loss [21] is selected: 

 

1
( , ) [ log ( ) (1 ) log(1 ( )]l l l l

jk j j j j j

x j

C w b y f z y f z
n

= − + − −
 

(7) 

 

where, 𝑤𝑗𝑘
𝑙 is the weight between the j-th and k-th neurons on 

the l-th layer; 𝑏𝑗
𝑙 is the bias of the j-th neuron on the l-th layer; 

x is the input of the neuron; yj is the expected output of the j-

th neuron; 𝑧𝑗
𝑙is the weighted sum of the j-th neuron, which is 

expressed the same as formula (5); f is the activation function. 

The partial derivatives of the loss function parameters are 

shown in formula (8) and formula (9). It can be seen that the 

partial derivative value is not affected by the derivative of the 

activation function f, so the introduction of the cross-entropy 

loss function can avoid the slow network learning rate caused 

by the activation function question. 
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Figure 4. Network architecture, loss function, optimizer relation 

 

 
 

Figure 5. CNN plug seedlings recognition model 

 

Table 1. Parameters of CNN plug seedlings recognition model 

 
Layer No. Type Kernel number  Activation function Size and Number of Feature map Step 

1 input layer    3@128×128  

2 Convolution layer 1 32 3×3 Relu 32@126×126 1 

3 pooling layer 1  2×2  32@63×63 2 

4 Convolution layer 2 64 3×3 Relu 64@61×61 1 

5 pooling layer 2  2×2  64@30×30 2 

6 Convolution layer 3 128 3×3 Relu 128@28×28 1 

7 pooling layer 3  2×2  128@14×14 2 

8 Convolution layer 4 128 3×3 Relu 128@12×12 1 

9 pooling layer 4  2×2  128@6×6 2 

10 tiling layer    1@4608  

11 fully connected layer  1×1 Relu 1@512 1 

12 output layer  1×1 Sigmoid 1@1 1 
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5. MODEL TRAINING AND RESULTS ANALYSIS 

 

5.1 Model training 

 

5.1.1 Training platform  

A Dell Vostro 3470-R1328R desktop computer with a Core 

8th generation i5 processor, 8G memory, GeForce GTX 760M 

graphics card, and Windows 10 operating system serves as the 

environment for model training. Python 3.5 is the 

programming language used in the experiment's Anaconda 

programming environment, which makes use of the 

TensorFlow deep learning framework. 

 

5.1.2 Training parameter setting 

The learning rate is set to 0.0001, the L2 regularization 

coefficient is set to 0.001, and the Dropout regularization 

probability is set to 0.5. The model optimizer employs the 

RMSProp (Root Mean Square Prop) technique. The batch 

technique is used to train the models. A hundred images are 

used to train each batch. There are a total of 60 training batches, 

each of which is regarded as one iteration. The model's 

parameters are modified after each iteration, and the network 

model is then applied. Test the model on the test set, and note 

the model's recognition accuracy on the training and test sets 

as well as the loss function's loss value. 

 

5.2 Analysis of model training results 

 

In order to test the plug seedling recognition accuracy of the 

models in this paper using different methods, the models using 

different activation functions, regularization and data 

enhancement were trained respectively, and the training 

results were analyzed. 

 

5.2.1 Training result evaluation index 

The model recognition effect is evaluated by the model 

recognition accuracy rate, calculated as formula (10):  

 

0A
P

A
=  (10) 

 

where, P is the recognition accuracy; A0 is the number of hole 

images correctly recognized; A is the total number of 

recognized hole images. 

 

5.2.2 Relu training results analysis 

Relu is used as the activation function in the model's 

convolutional layer, and the output layer makes use of the 

binary classification-appropriate Sigmoid activation function. 

The model's test accuracy hits 0.952, and its ultimate training 

accuracy is 0.998. As can be observed, the binary 

categorization of plug seedling hole photos is a good fit for the 

model developed in this research. Classification recognition is 

supported by a compact model with only 9.5MB of parameter 

memory usage. Figure 6(a) shows that the training accuracy of 

the model continues to increase but the test accuracy starts to 

decrease as the model training iteration reaches the tenth 

iteration. The model appears to be overfitting at this point, and 

when the training iteration reaches the 40th iteration, the 

model starts to converge. It is clear that the model's rate of 

convergence is comparatively slow when Relu is used as the 

activation function. Figure 6(b) demonstrates that the accuracy 

rate curve and the model training loss curve have essentially 

the same trends. The training loss value decreases until it 

reaches its final value of 0.0056, and the verification loss also 

decreases until it reaches its final value of 0.2212, which has 

an increasing trend.4.2.3 Elu training results analysis. 

  
(a) Accuracy curve (b) Loss curve 

 

Figure 6. Relu activation function model accuracy and loss curve 
 

  
(a) Accuracy curve (b) Loss curve 

 

Figure 7. Elu activation function model accuracy and loss curve 
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The Elu activation function is used in the model's 

convolutional layer. Figure 7 shows that, while appearing to 

be overfit at the 10th training iteration, the model has 

converged by the 15th training iteration, which is consistent 

with the function's quick convergence speed. The model's final 

test accuracy is 0.938, training loss is 0, and test loss is 0.383. 

The model's final training accuracy is 1.0. Its ability to identify 

and categorize plug seedlings is marginally inferior to the Relu 

function. This paper chooses Relu and Elu as the activation 

functions of the convolutional layer, respectively, and 

conducts model regularization training and enhanced data set 

training in order to further investigate the impact of various 

activation functions on the recognition and classification 

capability of the model. These are the pertinent experiments: 

 

5.2.3 Regularization training results analysis 

L2 regularization, Dropout regularization, Relu as the 

activation function of the convolutional layer, and Sigmoid as 

the activation function of the output layer are all used in the 

model, as seen in Figure 8. The training period's increasing 

trends for model test accuracy and loss value curves are 

essentially the same throughout, as can be seen in the figure, 

but after 20 training iterations, this upward trend starts to 

diverge from the training accuracy. The model's final test and 

training accuracy are both 0.993, along with the test and 

training loss of 0.0242 and 0.1236, respectively. The model's 

performance has increased in some ways. Elu is used as the 

activation function of the convolutional layer in Figure 9, 

Sigmoid is used as the activation function of the output layer, 

and the model uses L2regularization and 

Dropoutregularization. The upward trend of model test 

accuracy starts to lag behind the training accuracy once there 

are six training iterations. The two figures make it impossible 

to conclude that regularization can only partially address the 

model's overfitting issue. 

 

  
(a) Accuracy curve (b) Loss curve 

 

Figure 8. Relu as an activation function for convolutional layers, Regularization model accuracy and loss curve 

 

 
 

(a) Accuracy curve (b) Loss curve 

 

Figure 9. Elu as an activation function for convolutional layers, Regularization model accuracy and loss curve 

 

5.2.4 Enhanced dataset training results analysis 

The model is trained with the enhanced data set. The hole 

images are randomly rotated, translated, and scaled at small 

angles to make the data set more representative. An example 

of the enhanced data set image is shown in Figure 10. The first 

row is the hole with seedlings, and the second line is the empty 

hole. 

The training parameters were changed to train 200 photos 

per iteration because to the rise in the number of upgraded 

datasets. As seen in Figure 11, when the activation function of 

the convolutional layer adopts Relu, the overfitting problem of 

the model is solved and the final training accuracy of the 

model is 0.993, the test accuracy is 0.985, the training loss is 

0.0099, and the test loss is 0.0233. Additionally, the change 

trend of the model training, test accuracy, and loss value 

curves are consistent in the entire training area. The model's 

performance has been considerably enhanced, and it can now 

accurately identify plug seedling holes in plugs. The accuracy 

rate curve and the loss value curve when training and verifying, 

respectively, have a significant difference when Elu is chosen 
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as the activation function of the convolutional layer, as shown 

in Figure 12. Overfitting is still a problem, and the model's 

training accuracy is ultimately low. It is 0.9716, and the test 

accuracy is 0.9561, which is significantly less effective than 

Relu's classification effect as the convolutional layer's 

activation function. The two figures also show how rapidly the 

accuracy value can be increased and the loss value can be 

decreased when the Relu activation function is applied. Relu 

is therefore employed in this research as the convolutional 

layer's activation function. 

 

 
 

Figure 10. Examples of Random Image Enhancement 

 

 

 

(a) Accuracy curve (b) Loss curve 

 

Figure 11. Elu as an activation function for convolutional layers, Data enhancement model accuracy and loss curve 

 

  
(a) Accuracy curve (b) Loss curve 

 

Figure 12. Elu as an activation function for convolutional layers, Data enhancement model accuracy and loss curve 

 

 

6. CONCLUSIONS 

 

In this study, a plug seedling device is designed, CNN is 

applied to the device's seedling recognition, and a plug 

seedling recognition model is created using the LeNet-5CNN 

model. The gathered plug seedling images are divided into 

individual hole images through image preprocessing, and large 

plug seedling image recognition is simplified into small hole 

image binary classification recognition. This significantly 

reduces the size of the recognition model and enhances the 

model's recognition accuracy. Relu is chosen as the activation 

function of the convolutional layer, Sigmoid is chosen as the 

activation function of the output layer, and the binary cross-

entropy loss function is used to optimize the model. The 

method of data set enhancement is used to further improve the 

generalization ability of the model in order to solve the 

overfitting issue, and the result is that the recognition accuracy 

of the optimized model on the test set reaches 0.985. The issue 

of mutual interference between nearby hole seedlings is 

resolved by the CNNplug seedling recognition model 

developed in this paper. The model can fully suit the criteria 

of plug seedling devices due to its high identification accuracy 

and great generalizability, and intellect serves as a helpful 

guide. 

This experiment does still have some flaws, though. For 

instance, the size of the data collection affects the model's 

dependability, and the paper's data set is rather tiny. To further 

raise the model's rate of recognition, more images will be 

added to the training set and the model will be modified in the 

following phase of the project. 
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