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 Early detection of lung cancer increases the response rate to treatment. Therefore, the 

accuracy of diagnostic methods is of great importance. Reading the patient's medical 

images by radiologists can cause a severe time cost besides subjective result. In this 

context, Artificial Intelligence (AI) methods create an innovative field to reduce the 

workforce of radiologists and obtain objective results. AI methods play a vital role in 

improving the analysis of the dataset, extracting meaningful features, clustering, and 

classification. In our study, the data set contains healthy images besides CT images of 

malignant and benign tumors with lung cancer; AlexNet is trained using DenseNet 201, 

GoogleNet, MobileNetV2, and ResNet50 architectures. In addition, a hybrid model has 

been developed to classify lung CT images. The developed model constitutively used 

GoogleNet, MobileNetV2, and ResNet50 architectures. The feature maps obtained in 

these three architectures were combined and classified into different classifiers. Among 

the classifiers used in the study, the highest accuracy rate was achieved in the Ensemble 

Subspace KNN classifier. The accuracy value obtained in this classifier is 98.3%.  
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1. INTRODUCTION 

 

Cancer usually consists of a multistage process that 

progresses from a lesion to a malignant tumor. It is caused by 

the transformation of normal cells into tumor cells. These 

changes include physical carcinogens such as ultraviolet and 

ionizing radiation as well as a person's genetic factors; the 

result of interactions between chemical carcinogens such as 

asbestos, tobacco smoke components, alcohol, aflatoxin (a 

food pollutant), and arsenic (a drinking water pollutant), and 

biological carcinogens such as infections from certain viruses, 

bacteria or parasites [1]. According to data published by the 

World Health Organization, lung cancer is the second most 

common. This type of cancer is the leading cause of cancer-

related death worldwide, the course of the disease is closely 

related to the stage at the time of diagnosis [1, 2]. 

In addition, in most cases, the diagnosis is made in advanced 

stages, when treatment is no longer possible [3]. Therefore, it 

is necessary to develop new diagnostic methods that increase 

the accuracy of early diagnosis to catch lung cancer in the early 

stages when successful treatments are possible, to improve 

overall survival, and reduce the side effects of health care costs 

due to systemic treatments [4]. One of the essential pre-

diagnosis procedures of lung cancer is the examination of 

computed tomography (CT) images. Pre-diagnosis resulting 

from X-ray or Computed Tomography (CT) scanning is time-

consuming and tiring for the radiologist. In addition, this 

scanning process requires very high concentration and skill. 

Less experienced radiologists have highly variable detection 

rates, which increases the speed of false positive detection, 

mainly where interpretation is highly dependent on prior 

experience [5]. 

In light of this information, Accurate and automated 

detection of lung cancer can help speed up early detection 

leading to better treatment and higher survival rates. In 

addition, this innovation can greatly assist radiologists and 

provide significant time savings. Especially recently, 

researchers have increased their work on deep learning models 

that promise to increase the speed and accuracy of detecting 

lung cancer. 

Computers are trained to process lung cancer CT scans to 

examine the hallmarks of malignant, benign, and healthy 

images. In this study, our dataset, which includes healthy 

photos as well as pictures of malignant and benign tumors with 

lung cancer, was trained on AlexNet, DenseNet 201, 

GoogleNet, MobileNetV2, and ResNet50 architectures. A 

hybrid model was created and classified on GoogleNet, 

MobileNetV2, and ResNet50. These three models are 

determined within these architectures. In the experimental 

results, the proposed model was the best performing technique 

in the Ensemble Subspace KNN model type with a success rate 

of 98.3%. 

The remainder of this work is organized as follows: Chapter 

2 presents a literature review of relevant studies in this area. 

Chapter 3 describes the obtained dataset, the preprocessing 

steps applied to this dataset, and the relevant theoretical 

frameworks. Chapter 4 describes the proposed approach and 

comparatively analyzes the experimental results of the 

proposed approach on the given data set. Chapter 5 concludes 

the study.
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2. RELATED WORK 

 

Correct diagnosis and prognosis are essential in the 

selection and planning of treatment in diseases. However, with 

the rapid progress of medical imaging technology, whole slide 

imaging (WSI) in pathology is on its way to becoming a 

routine procedure for the clinic. Recently, artificial 

intelligence has shown high performance in studies such as 

deep learning, tumor site identification, prognosis prediction, 

metastasis detection, and lung tissue image analysis. 

To facilitate the rapid detection of lung cancer, a 

considerable amount of studies are found when the literature 

is scanned. Wang and coworkers [6] proposed a new CNN-

based model to classify malignant or non-malignant. Full-slide 

imaging (WSI) is typically a megapixel in the proposed model, 

so much smaller image patches extracted from WSI are often 

used as input. This 2018 study used each 300 × 300 pixel 

image patch from lung adenocarcinoma (ADC) WSIs. A 

success rate of 89.8% was achieved in the proposed model. In 

another study, Šarić et al. [7] proposed a fully automated 

method for lung cancer detection in whole slide images of lung 

tissue samples. This method performs classification at the 

image patch level using a convolutional neural network (CNN). 

Two CNN architectures (VGG and ResNet) are trained, and 

their performances are compared. In another study by Sajja et 

al. [8], a deep neural network was designed based on a pre-

trained CNN, GoogleNet. The proposed network's densely 

connected architecture is distributed with 60% of all neurons 

deployed in dropout layers to reduce computational cost and 

avoid overfitting in network learning. The performance of the 

proposed network was validated through a simulation on a 

preprocessed CT scan image dataset and then compared with 

the dataset and pre-trained AlexNet, GoogleNet, and 

ResNet50. A study by Fang [9], proposed a fast, accurate, 

stable lung cancer detection system based on new deep 

learning techniques. A transfer learning approach created a 

convolutional neural network (CNN) structure similar to 

GoogLeNet. It used Median Density Projection (MIP) to 

incorporate the multi-image features of three-dimensional 

computed tomography (CT) scans. MIPS enabled the 

proposed system to learn the characteristics of malignant and 

benign lung nodules integrated during training and achieve 

high accuracy when tested in validation sets. In Mohite's study 

[10], the Transfer Learning architecture of MobileNet, VGG16, 

VGG19, DenseNet-201, and ResNet-101 are extensively 

compared in the classification of the dataset consisting of 1100 

lung CT scans. Among them, DenseNet-201 showed the best 

performance. Jayaraj and Sathiamoorthy [11] developed a 

computer-aided model comprised of a series of processes for 

detecting lung cancer on CT images. After the input image is 

preprocessed, the segmentation of the images will be 

performed with the watershed segmentation algorithm, which 

produces the output as a segmented image in binary format. 

Next, a collection of key features of the fragmented images 

was obtained. Then, a collection of the main characteristics of 

the fragmented images was produced. Then, the classification 

of images was performed using the random forest (RF) 

classifier model, which outputs as 'normal' or 'abnormal' 

classified images, achieving a maximum accuracy of 89,90. 

On the other hand, Zhang et al. [12] introduced a modified 

version of ResNet. They applied it to segment the gross target 

volume on computed tomography images of non-small cell 

lung cancer patients. Then, normalization was applied to 

reduce the differences between the pictures, and data 

augmentation techniques were used to enrich the training set's 

data further. Two different residual convolution blocks are 

used to efficiently extract deep features of tomography images, 

combining elements from all levels of ResNet into a single 

output. This simple design created a combination of deep 

semantic and shallow appearance features to produce pixel-

dense results. Compared to the U-Net, this model was 

significantly more accurate based on the overlap and receiver 

operating characteristic curves. Xie et al. [13] developed a new 

(Fuse-TSD) lung nodule classification algorithm that uses 

outcome-oriented tissue, shape, and deep model-learned 

information to distinguish between malignant and benign lung 

nodules. The gray-level co-occurrence matrix (GLCM) based 

texture descriptor uses a Fourier shape descriptor to 

characterize the heterogeneity of nodules and a deep 

convolutional neural network (DCNN) to automatically learn 

the slice-by-slice feature representation of the nodules on it. It 

trains an AdaBoosted back propagation neural network 

(BPNN) using each feature type and combines the decisions 

made by the three classifiers to distinguish nodules. We 

evaluated this algorithm against three approaches in the LIDC-

IDRI dataset. In terms of accuracy, it reached a maximum of 

89.53%. In the study of Tekade and Rajeswari [14], the lung 

patients were divided into sections using Computed 

Tomography (CT) scan images and U-Net architecture to 

detect and classify lung nodules and determine the malignancy 

level of these nodules. The study proposes a 3D multipath 

VGG-like network evaluated on 3D cubes extracted from 

datasets. Predictions from U-Net and 3D multipath VGG-like 

networks are combined for final results. Using this architecture, 

lung nodules are classified, and successful results can be 

detected at the level of malignancy. 

 

 

3. MATERIALS AND METHOD 

 

3.1 Dataset and preprocessing 

 

 
 

Figure 1. Dataset containing healthy, benign and malignant 

images 

 

The dataset is taken from Kaggle, an online platform [15] 

that allows users to find and publish datasets. Our dataset (IQ-

OTH/NCCD) lung cancer dataset; was gathered in Iraq-

Oncology Training Hospital/National Cancer Diseases Center 

for three months in 2019. The IQ-OTH/NCCD file, which has 

cancer images at different stages besides healthy subjects, was 
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marked by oncologists and radiologists in the centers. The 

dataset contains 1190 images representing CT scan slices of 

110 cases. An example part is shown in Figure 1. These cases 

are divided into three classes normal, benign, and malignant. 

Forty of them are malignant; It was obtained from 15 mild and 

55 standard cases and classified into a classification [16]. 

Experiments were carried out on the MATLAB platform, a 

multi-model numerical computing tool and software for 

training in CNN architectures. All investigations are tested on 

Intel Core i7 Windows 10 operating system 8 GB RAM 

computer. 

 

3.2 Methodology 

 

In this section, firstly, the central theme of our study is 

briefly explained, and then basic information about the CNN 

models used in the study is given. First, the dataset was trained 

with AlexNet, DenseNet201, GoogleNet, MobileNetV2, and 

ResNet50 architectures. It was aimed to increase the success 

rate in these architectures, where good performance results 

were obtained, and a hybrid model was created with the three 

selected architectures, GoogleNet, MobileNetV2, and 

ResNet50. The created hybrid model was run with six 

classification models in the MATLAB platform, and the most 

successful 6 model types were determined. The block diagram 

of the proposed model is given in Figure 2. 

 

Table 1. Metrics used in analysis of confusion matrix 

 
Derivations 

Sensitivity TPR = TP / (TP + FN) 

Specificity SPC = TN / (FP + TN) 

Precision PPV = TP / (TP + FP) 

Negative Predictive Value NPV = TN / (TN + FN) 

False Positive Rate FPR = FP / (FP + TN) 

False Discovery Rate FDR = FP / (FP + TP) 

False Negative Rate FNR = FN / (FN + TP) 

Accuracy ACC = (TP + TN) / (P + N) 

F1 Score F1 = 2TP / (2TP + FP + FN) 

Matthews Correlation 

Coefficient 

TP*TN - FP*FN / sqrt((TP+FP) * 

(TP+FN) * (TN+FP) * (TN+FN)) 

 

As performance metrics, Sensitivity, specificity, and 

positive and negative predictive values (PPV and NPV) are 

calculated with false positive rate, false discovery rate, false 

negative rate, Accuracy, Precision, F1 Score, and Matthews 

Correlation Coefficient. In Table 1, the calculation methods of 

the metrics are given with their formulas. 

 

3.3 Baseline CNN architectures 

 

Different CNN architectures were preferred in the study. 

These architectures are accepted in the literature. 

AlexNet: One of the deep learning models, AlexNet, was 

developed to classify objects in images and won the ImageNet 

classification competition in 2012. The input layer is fed with 

an image size of 227 by 227. The 227 MB model consists of 

five convolutional, maximum pooling, three fully connected, 

1000-way softmax, and output layers for 25 layers. The entire 

structure of the model contains 61 million trainable parameters. 

AlexNet can be installed in Matlab or Python using custom 

toolboxes [17]. 

DenseNet201: The DenseNet-201 model, on the other hand, 

was designed to reduce the number of parameters and to have 

more efficient and shorter connections between layers. The 

model was evaluated in four competitive object recognition 

benchmarking tasks (CIFAR-10, CIFAR-100, SVHN, and 

ImageNet). The 77 MB model consists of 201 deep layers. The 

input layer is fed with an image size of 224 by 224. The entire 

structure of the model includes 20 million trainable parameters 

[18]. 

GoogleNet: The model was proposed in the 2014 ImageNet 

classification competition. It comprises 144 layers, 22 deep 

and 27 MB in size. The input layer is fed with an image size 

of 224 by 224. All convolutions use the ReLU enable function. 

The entire structure of the model includes 7 million trainable 

parameters [19]. 

MobileNetV2: A convolution module is added for less 

memory usage in the model measured using ImageNet 

classification, COCO object detection, and VOC image 

segmentation. The model consists of 53 deep layers with a size 

of 13 MB, while the input layer is fed with an image size of 

224 x 224. The entire structure of the model includes 3.5 

million trainable parameters [20]. 

ResNet50: Introduced by Facebook AI Research (FAIR), 

the deep network model that now implements learning. 

Although it provides significantly high accuracy, it requires 

significant processing time due to the considerable depth of 

the network. The input layer is fed with an image size of 224 

by 224. ResNet50 is 96 MB in size, consists of 50 primary and 

177 layers, and contains 25.6 million trainable parameters [21]. 

 

 
 

Figure 2. Suggested model 
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4. EXPERIMENTAL RESULTS 

 

Table 2. Used architectures and accuracy rates 

 
Deep learning neural network Accuracy 

AlexNet 0.8995 

DenseNet 201 0.9132 

GoogleNet 0.9087 

MobileNetV2 0.9269 

ResNet 50 0.9269 

 

Table 3. Machine learning techniques that work best 

 
Model type Accuracy 

Medium Tree 86.1% 

Linear Discriminant (LD) 97.0% 

Kernel Naive Bayes (NB) 87.1% 

Support Vector Machines (SVM) Quadratic 97.9% 

K Nearest Neighbours (KNN) Fine 98.2% 

Ensemble Subspace KNN 98.3% 

 

We used MATLAB, a multi-paradigm numerical 

computing tool, and software. The dataset we use consists of 

computed tomography data, which includes images of 3 

different classes of lung cancer malignant tumors, non-cancer 

cells, benign tumors, and healthy lungs, obtained from the 

open access site Kaggle, which hosts online datasets. In our 

study, AlexNet, DenseNet 201, GoogleNet, MobileNetV2, 

and ResNet50 architectures were the first to run on our dataset. 

The experimental results of the respective architectures are 

shown in Table 2. A new hybrid model was proposed with 

three architectures selected among these architectures for the 

classification process. 

This study proposed an innovative hybrid model based on 

GoogleNet, MobileNetV2, and ResNet50 architectures. In the 

study, the data set is divided into 80% training and 20% testing 

to test the fundamental architectures and the proposed model. 

Then, feature extraction was performed separately with the 

three selected architectures in the proposed model, and the 

resulting features were combined after training the proposed 

model with the obtained features. Our hybrid model was run 

in all six machine learning models in the classification training 

section in Matlab. The techniques that gave the best results 

among the six models are listed in Table 3. Among these 

model types, Ensemble Subspace KNN achieved 98.3% 

success and became the best performing technique. 

Some methods and calculations were made to determine the 

performance of this model type with various measures. The 

confusion matrix is the most common way to analyze the 

results of a machine learning model in a classification. As seen 

in Figure 3, as a result of the Ensemble Subspace KNN 

Confusion Matrix analysis, three classes were evaluated 

separately, and high-performance results were obtained. The 

probabilities that the model used in solving the complexity 

matrix predicted correctly (True Positive (TP), True Negative 

(TN)) and the probability that it predicted incorrectly, False 

Positive (FP), False Negative (FN), were calculated separately 

for each classification. These calculated values were 

calculated with various metrics showing the classification 

success rate. The results are given in detail in Table 4. 

In our study, when the Sensitivity and specificity, PPV, and 

NPV values were analyzed for the three training classes of the 

dataset, the high result showed the accuracy of the statistics; 

FPR, PNR, and FDR values are close to zero, which shows the 

success of the study. 

When we look at our classification model's accuracy, 

precision, and F1 Score parameters and the results for all 

classes, we can say that it makes a successful estimation with 

results close to 1 and 1. Matthews Correlation Coefficient has 

a minimum value of 0.91 for all education classes. These 

values are relative to 1, indicating that the model does an 

excellent job predicting. 

 

 

 
 

Figure 3. (A) Ensemble subspace KNN, (B) K nearest neighbors (KNN) fine, (C) Support vector machines (SVM) quadratic, (D) 

Kernel naive bayes (NB), (E) Linear discriminant (LD), (F) Medium tree confusion matrix 
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Table 4. (A) Benign, (B) Malicious, (C) Analysis results of healthy images 

 
Measure Value Measure Value Measure Value 

Sensitivity 0.9083 Sensitivity 1 Sensitivity 0.9808 

Specificity 0.9918 Specificity 1 Specificity 0.9838 

Precision 0.9316 Precision 1 Precision 0.9737 

Negative Predictive Value 0.9888 Negative Predictive Value 1 Negative Predictive Value 0.9882 

False Positive Rate 0.0082 False Positive Rate 0 False Positive Rate 0.0162 

False Discovery Rate 0.0684 False Discovery Rate 0 False Discovery Rate 0.0263 

False Negative Rate 0.0917 False Negative Rate 0 False Negative Rate 0.0192 

Accuracy 0.9827 Accuracy 1 Accuracy 0.9827 

F1 Score 0.9198 F1 Score 1 F1 Score 0.9772 

Matthews Correlation Coefficient 0.9102 Matthews Correlation Coefficient 1 Matthews Correlation Coefficient 0.9633 

A B C 

 

 
 

Figure 4. ROC curves of (A) Benign, (B) Malicious, (C) Healthy image classes 

 

Finally, the AUC curves obtained in the proposed hybrid 

model are given in Figure 4. ROC curve is a graph that 

summarizes the performance of all parameters that may occur 

after classification, such as Ensemble Subspace KNN. Also, 

the area under the curve (AUC) measures how much a 

variable's quality differs between two classes. 

 

 

5. DISCUSSION 

 

Lung cancer is one of the leading causes of cancer deaths 

worldwide [22, 23]. This type of cancer causes more deaths in 

men based on gender. According to a study conducted in 2018, 

there were 1.2 million men and 576,100 women, totaling 1.8 

million deaths. This result means 1 in 5 of all cancer deaths 

[24]. The relatively high death rate is mainly due to the 

diagnosis of advanced cancer, in which most patients have an 

inadequate response to medical therapy [25]. In short, delayed 

diagnosis is a major contributor to poor outcomes and remains 

a major challenge [26]. To overcome this problem, the lung 

cancer screening guideline in the United States was changed 

in 2013. Recommended low-dose computed tomography 

(LDCT) scan for people 55 to 80 years old who smoke 30 

packs a year or adults who quit less than 15 years ago [27]. 

Different attempts have been made to identify other screening 

methods for the diagnosis of lung cancer. Chest radiography 

or sputum sample has been observed to be less efficient than 

LDCT. In addition, the importance of CT images has emerged 

[28, 29]. The integration of the concept of artificial 

intelligence in all areas of life with the developing technology 

and these situations have revealed various methods to facilitate 

the work of radiologists in this field [30]. 

This study has been prepared to solve the above-mentioned 

problems. A hybrid image processing method has been 

proposed to extract different features from the images of the 

lung cancer dataset (IQ-OTH/NCCD) and to obtain successful 

results. With these extracted features, various supervised deep-

learning architectures were used to detect and classify the 

existing cancerous mass. While the accuracy obtained using 

only deep learning architectures is 92%, by converting the 

model to hybrid; it performed very successfully in the 

"Ensemble Subspace KNN" classification with an accuracy of 

98.3%. 

 

Table 5. Literature review 

 
Reference Year Model/Method Accuracy 

[6] 2018 Inception (V3) %89.8 

[7] 2019 VGG16 %83.3 

[9] 2018 GoogLeNet %81 

[10] 2021 DenseNet-201 %92.94 

[11] 2019 Random Forest (RF) %89.90 

[13] 2018 Fuse-TSD %89.53 

[14] 2018 U-Net %95.60 

 

In Table 5, the models and accuracy rates of the studies 

mentioned in the section are given. Considering this 

information, the performance of the model we developed 

among the pre-trained models gave a more successful result. 

With this successful result, our model can act as a savior in the 

medical world where there is no or insufficient manpower in 

this field. Even if there is qualified manpower, it not only saves 

a lot of time but also has a supportive feature with the objective 

results it offers. 

To mention some of the limitations of the study, cases such 

as data being open to the public and obtained from a single 

center are the shortcomings of our study. However, it is among 

our goals that this system will be supported by patient images 

collected from more centers in the future, and experts from 

more regions will be included in the study.
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6. CONCLUSION  

 

Since very early diagnosis increases the response rate to 

treatment for lung cancer patients, the accuracy of diagnostic 

methods is also essential in this context. Reading cancerous 

images by radiologists can cause severe losses in time and 

subjective results. Therefore, artificial neural networks are an 

open field for innovations in this field to reduce the radiology 

workforce and obtain objective results. Synthetic intelligence 

methods play a vital role in improving the analysis of the 

dataset, extracting meaningful features, clustering, and 

classification. 

This study developed a new hybrid model to classify lung 

CT images. The developed model was more successful than 

the pre-trained models in the literature. The accuracy value 

obtained in the proposed model is 98.3%. This value shows 

that the developed model can be used to diagnose lung cancer. 

Even more, successful results can be obtained by expanding 

the classes in the data set and increasing the data. 
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