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The incidence of malicious threats to computer systems has increased with the increasing 

use of Android devices and high-speed Internet. Malware visualization mechanism can 

analyze a computer whenever a software or system crash occurs because of malicious 

activity. This paper presents a new malware classification approach to recognize such 

Android device malware families by capturing suspicious processes in the form of different 

size color images. Important local and global characteristics of color images are extracted 

through a combined local and global feature descriptor (structure based local and statistical 

based global combined texture analysis) to reduce the training complexity of neural 

networks. A multihead ensemble of neural networks is proposed to increase network 

classification performance by merging prediction results from weak learners (convolutional 

neural network + gated recurrent unit) and using them as learning input to a multi-layer 

perceptron meta learner. Two public datasets of Android device malware are used to 

evaluate the classification and detection performance of the proposed approach. A baseline 

is established to compare the classification performance of the proposed approach with those 

of state-of-the-art and previous malware detection approaches. The proposed multihead 

ensemble improved the malware classification performance, with up to 97.8%, accuracy 

with the R2-D2 dataset and 94.1% accuracy with the MalNet dataset. The overall results 

show that a multihead ensemble with multi-step feature extraction is a practical approach to 

classify and detect Android malware. 
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1. INTRODUCTION

Digital Internet and information technology has progressed 

swiftly and plays an essential role in daily life and social 

activities. Alternatively, malicious software has also evolved 

with such advancements while posing new threats to digital 

devices. The traditional and state-of-the-art detection 

approaches are purely based on signature-based methods. 

Such methods depend on binary sequences generated by 

malicious activities to identify potential malware [1, 2]. 

Antimalware programs usually scan and match signatures of 

malware with other computer files. In general, malware 

detection using signature matching is effective by generating 

few false-positive (FP) outcomes. A signature-based malware 

detection strategy requires a short amount of time to extract 

potential malware and add its signatures to antimalware 

software. As a result, a computer system can be exposed to 

malware threats during extraction [3]. Heuristic algorithms 

that identify malicious activity have been designed to preserve 

the characteristics of suspicious programs. An unauthorized 

packer used to secure malware identify will be flagged as 

suspicious software aiming to obscure or manipulate original 

software signatures. Although heuristic approaches can 

identify emerging malware families, they may generate a 

significant number of false-positive outcomes. Different 

strategies have been proposed to overcome these limitations. 

These strategies can be classified into five categories, namely, 

static, dynamic, and hybrid, image analysis including memory 

forensics of malicious activities [4]. Static approaches are fast 

and clearly distinguishable from other types of malware 

detection strategies. These approaches generally examine code 

sequencing, byte structures, bytecode, executable commands, 

and other key characteristics of suspected applications from 

portable executables [5]. Such characteristics of a suspected 

application, often referred as “signatures,” are algorithms or 

distinctive hashes used to differentiate one malware from 

another as well in malware families. As a result, no actual 

malware execution or resource consumption is involved 

throughout the detection process, resulting in the fast detection 

of malicious applications. However, static approaches have a 

few drawbacks, such as binary encryption and code 

obfuscation, which can easily outsmart static malware 

detection strategies [6]. Therefore, an alternative strategy may 

be employed to detect obfuscated and encrypted malware with 

a high true-positive ratio. Therefore, an alternative strategy 

may be employed to detect obfuscated and encrypted malware 

with a high true-positive ratio. Dynamic methods can virtually 

identify dynamic malware activities under a simulated 
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environment. Nonetheless, dynamic methods are 

computationally expensive and time consuming. For instance, 

dynamic observations involve several strategies, such as 

method calls, method workflow tracing, method parameter 

analysis, and dynamic visualization of software command 

executions. Various analyzer tools, such as Anubis, TT 

analyzer, and CW Sandbox, are also available online for 

dynamic analysis and are widely studied. Although dynamic 

methods can identify obfuscated and encrypted malware with 

few false-positive outcomes, they entail more computations 

than traditional static analyses [7]. A machine or deep learning 

model captures and trains visual characteristics of malware 

binaries in the form of local and global features. Scale-

invariant feature transform and speeded-up robust features 

provide the local textural properties of malware binaries. Some 

researchers have used combined strategies on global and local 

features to optimize malware detection and classification [8, 

9]. Local binary patterns (LBPs) are resilient in capturing 

grayscale contrast to record fluctuations caused by unknown 

malware, whereas gray level co-occurrence matrix descriptors 

employ a degree of correlation among adjacent pixels to 

estimate separation distance and discrimination. Predictive 

outcomes of malware classification are effective, but new 

malware and their subgroups limit the prediction of unknown 

malware families. Apart from static, dynamic, and predictive 

hybrid approaches, memory forensics has attracted attention in 

recent years to overcome the limitations of previous 

approaches. For instance, instead of the static or dynamic 

analyses of malware binaries, a volatile memory dump can be 

generated from malicious processes. A memory dump 

contains all vital information regarding the structure and 

execution of malware commands. As a result, abundant 

discriminating information can be captured to classify 

malware and benign samples. Memory forensics works in two 

simple steps. First, the physical memory is converted into 

memory dump binaries. Second, malicious behavior and 

anomalies are analyzed in the form of visual images using 

textual descriptors. Smart approaches based on machine and 

deep learning models have been applied to classify actual 

malware families [6]. Key issues which must be solved in 

machine learning and malware detection areas are as follows. 

First, convolutional neural networks can extract features from 

large datasets of high-dimensional images and videos. 

However, the training process of these networks is complex, 

time consuming, and resource consuming because of high 

dimensional input. As a result, the need for these networks 

must be removed, especially in Internet-of-Things (IoT)-based 

solutions where the computing resources are less compared 

with CNN computational complexity [10, 11]. Second, there 

is no guarantee that the classifier can generalize to new or 

unknown data. Third, malware samples with obfuscation or 

encryption are difficult to identify using traditional malware 

detection methods such as static, dynamic, hybrid, and image 

analysis. The main contributions of this paper are listed as 

follows: 

(1) A multihead neural ensemble that employs color image 

representation to store the malicious behavior of Android 

device malware executables is proposed to replace 

traditional malware signatures, which can be obfuscated 

and encrypted to escape detection. 

(2) The training complexity of neural networks is reduced by 

combining deep and handcrafted malware feature 

extraction. Structure-based local and statistically-based 

global combined texture analysis is used to extract the 

handcrafted characteristics from the image.  

(3) A multihead neural ensemble is proposed to increase 

network classification performance. The multi-head base 

networks (CNN+GRU base learners) embed into an 

extensive network (multilayer perceptron (MLP) meta 

learner), which learns from combined predictions from 

each input base network. 

(4) The generalizability of proposed multihead ensemble is 

tested by adding a verification set through k fold cross 

validation. 

(5) Multihead neural ensembles, CNN models and machine 

learning approaches are tested against the proposed 

multihead ensembles in order to verify the aforesaid 

contributions. 

This study is structured as follows. The literature review is 

given in Section 2, the proposed malware classification 

approach is explained in Section 3, results and discussions are 

presented in Section 4, and the conclusion is provided in 

Section 5. 

 

 

2. LITERATURE REVIEW 

 

Malware detection studies used various methods to identify 

different categories and families of malicious software. 

Malware classification based on image processing is more 

effective than traditional methods. Image-based malware 

detection first applies image conversion to transform malware 

binaries into grayscale or color format. Then, the image 

features are extracted to train predictive models and detect 

malware and benign samples. Some advantages and 

disadvantages of image processing-based malware detection 

approaches are as follows. 

Natraj et al. [12] were the first to apply computer vision to 

detect malware categories and their families. First, they 

transformed malware samples into grayscale visual images 

and designed a dataset of 9339 malicious samples into 25 

malware families. A GIST descriptor was applied on the 

malware dataset to extract LBPs from grayscale images. 

Empirical evaluation showed that the predictive models 

achieved an accuracy of 97% on their dataset. Kalash et al. 

[13] further experimented and evaluated the dataset of Natraj 

et al. on the optimized CNN predative model. They randomly 

selected 10% test samples for different malware families and 

improved the malware detection accuracy by 98.52%. Han et 

al. [14] proposed a new strategy in order to transform malware 

binaries into grayscale images. Instead of using traditional 

transformation, a graph theory based on information entropy 

was used to find associations and malicious characteristics of 

malware samples. The empirical evaluation of 1000 malware 

samples and their families achieved 97.9% accuracy on 

supplied dataset. Few studies successfully applied feature 

reduction techniques to improve classification accuracy. 

Machine learning algorithms can produce equivalent results, 

but they are restricted by data and feasibility. Researchers have 

taken use of neural network models for various predictive 

applications. Ullah et al. [15] studied IoT-oriented industrial 

malware. The raw binaries of IoT malware were converted to 

colored images and trained using a CNN model to detect and 

classify malware samples. The empirical evaluation of IoT-

oriented industrial malware achieved an accuracy of 97.46% 

on multiple malware families. Vasan et al. [16] further used a 

fine-tuned CNN model to optimize classification accuracy. 

The empirical evaluation found that fine-tuned CNNs can 
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improve accuracy between 98% to 99% for packed and 

unpacked malware families. Latest malware studies 

investigated the concept of memory forensics to identify 

potential malicious software. Many malwares can remove 

their traces after successful execution of malicious codes. As 

a result, traditional malware detection strategies fail to detect 

such malware in a specified time. However, malware traces 

remain in volatile memory until the end process execution. Dai 

et al. [17] used volatile memory data from memory dumps 

generated from malicious codes to detect such malware and 

their families. They generated grayscale visual images of each 

malware and resized images based on bi-cubic interpolation. 

The empirical evaluation of their own dataset produces a 

malware detection accuracy of 96.7%. Bozkir et al. [18] 

further exploited memory forensics for malware detection by 

generating colored images instead of grayscale. They prepared 

a public dataset of 4294 malware and benign samples based on 

memory dumps. Feature descriptors GIST and HOG were used 

to extract textual features from malware images, and 

dimensionality reduction was applied on extracted features by 

using uniform manifold approximation and projection. The 

overall malware detection accuracy improved by 96.39%, 

whereas the detection time also improved by 3.56 s. 

 

 

3. ARCHITECTURE OF ANDROID DEVICE 

MALWARE CLASSIFICATION FRAMEWORK 

 

 
 

Figure 1. Architecture of Android device malware classification framework 
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The proposed malware classification consists of three main 

parts: (a) Android device malware data acquisition with image 

visualization (b) manual feature extraction (c) generalized 

multihead neural ensemble. Figure 1 displays the workflow of 

the suggested malware detection approach. The suggested 

method employs a multihead neural network ensemble along 

a manual feature extraction strategy for malware classification. 

At first step, malware files are pre-processed and visualized as 

images. At second step, structure based local and statistical 

based global combined texture analysis is performed by using 

conventional image descriptors, such as LBP and GLCM. At 

end, the multihead neural network ensemble utilizes the 

manual features as input for malware classification. 

Comprehensive details on each step are provided below. 

 

3.1 Data pre-processing 

 

Each apk file containing malware is unpacked so that it can 

be examined. Apk file also contains the Dalvik executable 

(DEX). The byte code is deduced from the apk file in three 

stages. The apk file is first decompressed to determine the 

class.DEX file. The class. DEX file is then transformed into a 

Java.class file by using the dex2jar tool. Finally, the JD-GUI 

decompiler is utilized to obtain the byte code from the Java. 

Class file, as shown in Figure 2. 

The DEX (bytecode) of each Android app must be gathered 

prior to developing a feature representation of the applications 

and labels. A 1D array of 8-bit unsigned integers was created 

using the DEX file. Each item value in array ranges between 0 

to 255, and it represents black and white pixels. One 

dimensional array is converted into a two-dimensional feature 

extraction format, data is encoded into RGB pixels, and 

pictures are scaled to the appropriate size; these are the three 

steps that are performed on every binary file. The 1D byte 

array is transformed into a 2D array by using conventional 

sequential charting techniques [10]. Nonetheless, the image's 

height can change based on the amount of information being 

displayed. To generate 256×256 and 200×200 pictures, we 

employ the Pillow library and a standard Lanczos filtration 

technique. 

 

 
 

Figure 2. Android malware color image visualization  

 

3.2 Malware sample acquisition 

 

3.2.1 R2-D2 IoT device dataset [19] 

It comprises RGB color images translated from the DEX 

files retrieved by decompressing approximately 2 million 

benign and malicious Android applications. Leopard Mobile 

Inc.'s original back-end detection system was used to gather 

these apps between January 2017 and August 2017. The 

infected programs belong to different malware types, 

including Trojans and Ad-Ware as well as Clickers and SMS 

Spyware. The Android color image dataset enables to save 

important information about Android apps with 16777216 

colors per image compared with 8-bit grayscale images. The 

size of all images is reduced to 299 × 299. Mini-batch learning 

is facilitated by resizing pictures to 299 × 299, which allows 

computer vision models to be trained faster while meeting the 

computational limits. The image sizes are approximately 10–

50 KB. 

RGB Image Representation: Android APK is first 

decompressed to acquire the classes.dex file. This file’s 

bytecode and the RGB color coding are recorded in 

hexadecimal. Hexadecimal from the DEX files are converted 

to RGB color coding, such that three-digit numbers are 

separated in left to right order. As a result, each of these 

integers is transformed into a decimal form and assigned to a 

specific code (R, G, or B). For example, 646778 is split into 

64, 67, and 78, which are then converted into their decimal 

forms and assigned as (R:100, G:103; B:120). Finally, RGB 

images of Android devices are obtained and fed into CNNs for 

the malware detection of Android devices. Figure 3 shows the 

chunks of malware images from the R2-D2 IoT device dataset. 

 

 
 

Figure 3. R2-D2 Android device dataset 

 

3.2.2 MalNet IoT device dataset [20] 

MalNet has provided 8633 IoT device malware samples of 

19 families. The sample distribution of each training malware 

dataset family is given: Addisplay (1022), 

Addisplay++Adware (59), Adload (67), Adsware (530), 

adware++adware (501), adware++grayware++virus (167), 

adware++virus (55), Backdoor (121), banker++trojan (221), 

Adwareare (46), clicker (53), 'click (22), clicker++trojan (573), 

clickfraud++riskware (74), exploit (1116), fakeangry (42), 

fakeapp (85), fakeapp++trojan (51), and fakeinst++trojan 

(143), respectively. 

 

Color Image Representation: Embedding semantic 

features is a complex process. Semantics can be extremely 

helpful in analyzing the bytecode of an application. For 

instance, a randomly selected byte could represent an ascii 

character, an opcode, or a portion of a pointer address. 

Through the use of color to differentiate each byte according 

to its function, the image gains an additional layer of semantic 

information on top of the raw bytecode. Even though various 

techniques can be used to encode semantic information into an 

image, a universally accepted standard technique is lacking. 

The contextual features are encoded by allocating each byte to 

a specific RGB color channel based on its position in the DEX 

file structure, (i) header, (ii) signifiers and class interpretations, 

and (iii) data, and by encoding the spatial meaning in binary 

form (Figure 4). The first phase in creating a feature 

representation of the Android applications and labels is to 

retrieve the DEX (bytecode) out of each application. A 1D 

array of 8-bit unsigned integers is then created from the DEX 

document. Each item value in array ranges between 0 to 255, 

and it represents black and white pixels. Then, for each binary 

file, 1D array is transformed to 2D feature extraction, 

information content is encoded into the RGB channels, and 

images are scaled to an appropriate dimension. 
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Figure 4. MalNet Android device dataset 

 

3.3 Handcrafted feature extraction 

 

The structure-based repetitive LBPs are retrieved by 

employing an LBP descriptor based on the textural properties 

of malware image. In addition, the GLCM feature descriptor 

is used to perform statistical global texture analysis for 

malware images. Below is a detailed overview of structure-

based local texture analysis in conjunction with statistical 

global texture analysis. Manual features are extracted by using 

MATLAB. The feature analysis is performed on a machine 

with 16 GB of RAM and a 6 GB NVIDIA GeForce RTX 2060 

GPU. A local feature set with 2124 dimensions is extracted 

through the LBP descriptor, and a global feature set with 20 

dimensions is extracted through the GLCM descriptor. The 

combined feature vector contains 2144-dimensional local and 

global features.  

 

3.3.1 Structure-based local texture analysis 

Local features are extracted from malware images using an 

LBP textural descriptor. LBP description not only accurately 

recognizes micro-grayscale patterns in textual pictures, but it 

is also highly effective in extracting LBPs [21]. The binary 

patterns are textual properties that can be used to detect 

variations of visual patterns from color images. Textual 

properties, such as pixel direction, smoothness, surface 

roughness, and softness, are used to indicate variations among 

different textual images. Malware textual images consist of 

unstable patterns that require a strong feature descriptor to 

identify distinctive characteristics. As a result, an LBP textual 

descriptor is adopted to extract LBPs of malware images. To 

illustrate the internal structure of the LBP descriptor, Figure 5 

is presented with a 3 × 3-pixel block to measure the intensity 

of adjacent pixels. The threshold value is assessed using the 

LBP descriptor to measure adjacent pixel intensity. The 

computational execution of the LBP descriptor is detailed in 

the form of a four-step procedure: 

 

(1) Select surrounding pixels P within a given radius R for 

each pixel on the x- and y-axes. 

(2) Calculate the x- and y-axis intensity difference between 

the current pixel and the surrounding pixels P. 

(3) Select a threshold value for the surrounding pixels P 

and use the difference in intensity to assign 0 and 1 as 

single-bit values for the pixels. 

(4) Replace the original intensity value of the current pixel 

with the decimal value derived from the bit sequence of 

the surrounding pixels P.  

Decimal values for individual pixels are calculated using the 

following LBP equation. 

 
1

0

( , ) ( )2
−

=

= −
P

p

p c

P

LBP P R f g g  (1) 

 

where, P represents a set of adjacent pixels from a specified 

radius R and 𝑔𝑝 − 𝑔𝑐  represents the intensity variation 

between the present pixel and its neighbors. 

 

 
 

Figure 5. Visual representation of the LBP descriptor 

 

3.3.2 Statistical global texture analysis 

Global features are extracted from malware images using an 

Global textural descriptor. The GLCM descriptor exploits the 

spatial distribution of each pixel from textual images [22]. 

GLCM uses random position in textual images and examines 

the probability distribution of two grayscale pixels located 

apart at a certain distance. The GLCM descriptor uses three 

aspects to extract global characteristics: direction of pixel, 

variation in amplitude, and the integration of information at 

the grayscale level. The direction of pixels is the angle of 

change in grayscale from 0° to 135°, where pixel offset values 

and gray level orientation are both 1, which shows the 

grayscale contraction. Collectively, grayscale compression, 

co-occurrence matrix analysis, and final feature extraction 

make up the GLCM descriptor's global feature extraction. 

Figure 6 shows the extraction strategy of the GLCM descriptor. 

First, the colored image is transformed to grayscale and then 

subjected to pixel contraction to generate a 4-dimensional 

grayscale array. Second, the similarity of patterns is 

determined by looking for pixel pairs that appear together. 

Final set of features is extracted based on different properties, 

such as correlation, contrast, homogeneity, and energy, for 

both malware datasets.  

 

 
 

Figure 6. Visual representation of the GLCM descriptor 

 
2

,

( , )=
i j
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(2) 

 
2

,

( , )= = −
i j

contrast correlation i j p i j  (3) 

 

,

( , )

1
=

+ −

i j

p i j
homogeneity

i j
 (4) 

 

Finally, the proposed malware classification approach 

selected serial-based feature fusion for concatenating the 

features of both LBP and GLCM descriptors. The resulting 

fused feature set provides a 2144-dimensional feature vector. 
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3.4 Deep feature extraction 

 

Ensemble methods combine several different learning 

algorithms to improve overall prediction precision. These 

ensemble classifiers combine many classification models to 

reduce the risk of overfitting in the training results. 

Consequently, generalization efficiency can be enhanced 

because of the increased utilization of training data. Although 

various ensemble classification models have already been 

created, researchers can still increase sample classification 

accuracy, which is helpful for malware detection. Therefore, a 

multihead neural network ensemble is proposed to strengthen 

network classification performance. The formation of an 

ensemble of base classifiers is accomplished by first 

reshuffling training dataset, and then adding a base classifier 

to each reshuffled training dataset. An ensemble model is 

created by combining the predictions of base classifiers and 

learned from combined predictions of base classifiers. The 

proposed ensemble comprises two levels of learners, such as 

weak 1D CNN and GRU learners, and MLP meta learner. The 

proposed multihead neural ensemble consists of two base 

networks (CNN and GRU weak learners) and one meta 

classifier (MLP strong learner), which learns from combined 

predictions from each input base network. 

 

3.4.1 Base networks 

The proposed multihead neural ensemble selects two base 

networks namely 1D CNN and GRU for weak learning. The 

detail workflow of each base network is given below: 

1D-CNN is selected for weak learning at this level. The 

input 2144-dimensional combined local–global feature set 

substantially assists in decreasing the training complexity of 

the CNN. The CNN captures more significant features with a 

subsequent reduction in the dimension. The 1D CNN contains 

two convolution layers, two pooling layers, one flattened, one 

dropout, and one fully connected layer, as shown in Figure 7. 

After sliding over the combined local-global feature set, the 

convolution layer filters retrieve the best deep features. A new 

feature set is generated as a consequence of applying each 

filter, which is denoted as a “feature map.” The max-pooling 

layer reduces spatial and feature size as well as computational 

complexity. The resulting feature set is further compressed 

using the flattened layer. The proposed CNN also includes a 

fully connected classification layer. In order to prevent 

overfitting in the suggested CNN, we employ the SoftMax 

activation function and a dropout layer. Eq. (5) is used to 

express the output of the proposed 1D CNN. 

 

1 1 1( 1 ( , ))

1

− − −= + 
=

N
ll l l lo f c Conv D X t

k k ik i
i

 (5) 

 

where, 𝑐𝑘
𝑙  represents the kth neuron's scalar bias in the first 

layer, 𝑡𝑖
𝑙−1denotes the output of ith neuron at layer l-1, 𝑋𝑖𝑘

𝑙−1is 

the kernel weight from the ith neuron at layer l-1 to kth neurons 

at layer l, and f denotes the activation function. The CNN and 

GRU networks are trained with 50% data.  

GRU Network is also selected for weak learning at this step. 

The 2144-dimensional combined local-global feature set is 

used as input. GRU is a recurrent neural network that is highly 

similar to the long short-term memory (LSTM) but simpler in 

design. Instead of the three gates utilized by LSTM, the GRU 

uses two gates: update and reset gate. It also does not have a 

separate cell state or memory. Instead, it uses the hidden state 

for transferring information. The update gate serves the 

functions of the forget and input gates in that it decides what 

new information to consider and what information to forget. 

The reset gate is used for controlling the amount of past 

information to forget. 
 



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t
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h h t t h

tt t t

z

r

h

h h

 
(6) 

 

where, σg is the sigmoid function, ϕh is the hyperbolic tangent, 

xt is the input vector, ht is the output vector, ℎ
∧

t is the candidate 

activation vector, zt is the update gate vector, rt is the reset gate 

vector, W and U are the parameter matrices, and b is the bias 

vector. 

 

 
 

Figure 7. Multihead neural ensemble for malware classification 
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3.4.2 Meta learning 

An MLP neural network performs the meta-learning 

process. The weak combined prediction results of base 

networks are used as the learning input of the MLP meta 

learner. A feedforward neural network with one input layer, 

one hidden layer, and one output layer is used in the proposed 

multihead ensemble, as shown in Figure 7. The first and last 

layers in the MLP model are used as input and output, 

respectively. However, the hidden layer uses a weighted input 

set for model learning and an activation function for output 

production. The computation of hidden layer Hi can be 

mathematically formulated as follows.  
 

( ) ( )= +T

i i iH x f w x b  (7) 

 

where, HI ∶ Rdi−1 → Rdi, f ∶  R →  R, wi ∈ Rd×di−1 , bi ∈ Rdi. 

where, f is the element wise nonlinear function. The SoftMax 

activation function is selected with the output layer that 

displays the nonlinear neural network form. 
 

 

4. RESULTS AND DISCUSSIONS 
 

A confusion matrix was used to evaluate the proposed and 

other models. Confusion matrices were used to summarize the 

predictions of classifiers (also known as an error matrix). The 

confusion matrix included FP, false-negative (FN), and true-

positive (TP) outcomes. For each false sample of malware, FP 

was counted, and the total number of false samples was 

reported as FN. These values were used to compute the 

following metrics: 
 





TP FP
Precision = , Recall = , 

TP + FP FP + TN
2 TP TP+TN

F1-Score = ,Accuracy =
2 TP + FP + FN TP + TN + FP + FN

 
(8) 

 

Experiments were carried out to (1) validate the impact of 

the handcrafted feature set over different malware datasets, (2) 

evaluate the impact of layer numbers and tuning settings on 

the proposed multihead ensemble's training performance, (3) 

and assess the suggested method's accuracy in classifying data 

compared to other published studies. This experiment has 200 

epochs, with a batch size of 32 and a learning rate of 0.01. 
 

4.1 Impact of hand-crafted feature set over different 

malware datasets 
 

The impact of the hand-crafted feature set on the 

classification performance of the proposed multihead 

ensemble approach was investigated. Table 1 displays the 

classification performance of individual feature and combined 

features across different malware datasets (R2-D2 and MalNet, 

respectively). The overall classification accuracy of the 

combined handcrafted feature set was above 50% for both 

malware datasets. The local binary feature set obtained 

classification accuracy (0.98 and 0.933, respectively) with two 

different malware datasets. The global statistical feature set 

obtained classification accuracy (0.917 and 0.521, 

respectively) with two different malware datasets. The 

combined feature set obtained classification accuracy (0.978 

and 0.941, respectively) with two different malware datasets. 

The global statistical feature set and the local binary feature 

set obtained the lowest classification accuracy with the 

MalNet malware dataset. The combined extraction of LBPs 

and global statistical features from malware images 

significantly increased the classification performance. Hence, 

the combined set of features achieved better classification 

accuracy than the individual feature set across a variety of 

malware datasets, as shown in Table 1. 

We determined the train and test performance (accuracy, 

loss and roc curve) of three different handcrafted features over 

the R2-D2 and MalNet malware datasets, as shown in Figures 

8 and 9. The combined set of features better matched the train 

and test accuracy on the proposed multi head ensemble than 

the individual feature set. As shown in Figure 8, the training 

and testing accuracy curves of the local handcrafted features 

started at the 0-graph scale and increased between the 0.90 and 

0.98 graph scales after the 14th epoch. Similarly, the training 

and testing loss curves of the local handcrafted features started 

at the 0.4 graph scale and decreased between the 0.088 and 

0.0050 graph scales after the 40th epoch. The training and 

testing accuracy curves of the global statistical features started 

at the 0.7 graph scale and increased between the 0.79 and 0.91 

graph scales after the 12th epoch. Similarly, the training and 

testing loss curves of the global statistical features started at 

the 0.45 graph scale and decreased between the 0.39 and 0.2 

graph scales after the 9th epoch. The training and testing 

accuracy curves of the combined features started at the 0.7 

graph scale and increased between the 0.79 and 0.99 graph 

scales after the 7th epoch. Similarly, the training and testing 

loss curves of the combined features started at the 0.47 graph 

scale and decreased between the 0.24 and 0.003 graph scales 

after the 9th epoch. 

As shown in Figure 9, the training and testing curves of the 

local handcrafted features started at the 0.1 graph scale and 

increased between the 0.32 and 0.99 graph scales after the 9th 

epoch. Similarly, the training and testing loss curves of the 

local handcrafted features started at the 2.67 graph scale and 

decreased between the 2.3 and 0.02 graph scales after the 4th 

epoch. The training and testing accuracy curves of the global 

statistical features started at the 0.04 graph scale and increased 

between the 0.10 and 0.52 graph scales after the 3rd epoch. 

Similarly, the training and testing loss curves of the global 

statistical features started at the 2.94 graph scale and decreased 

between the 2.82 and 1.54 graph scales after the 2nd epoch. 

After the second epoch, the combined features' training and 

testing accuracy curves both begin at the 0.1 graph scale and 

increase to the 0.14 to 0.99 graph scale. Similarly, both the 

train and test loss curves for the combined features begin at a 

graph scale of 2.71 and fall between 2.4 to 0.01 scales after the 

second epoch. Table 2 shows the training and testing 

performance of the hand-crafted features with the different 

malware datasets. 

The accuracy of each instance’s prediction is shown in two 

normalized confusion matrices. The prediction accuracies of 

the instances are provided in two normalized confusion 

matrices, as shown in Figure 10. The confusion matrix of the 

R2-D2 dataset showed a malware detection rate of 0.96, which 

is close to the benign detection rate (0.99). Thus, none of the 

sample distributions in the two classes were biased. Compared 

with other malware families, the Addisplay and exploit 

families had the lowest classification rates (0.69 and 0.87, 

respectively) in the confusion matrix of the MalNet dataset. 

Generalization is a key advantage of neural networks. It is 

the model’s capacity to apply what it has learned to new and 

unknown data. The generalizability of proposed multihead 

ensemble was tested by adding a validation set and evaluating 

the model’s performance on this additional data. For verifying 
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the generalization of the proposed multihead ensemble, the 

R2-D2 dataset was separated into three subsets using threefold 

cross validation: train set (75%), the test set (25%), and 

validation set (10%). The generalizability of the proposed 

multihead ensemble was tested using threefold cross 

validation with a 10% validation set during the training phase. 

Table 3 shows the detection performance of the proposed 

multihead ensemble with three distinct subsets. The proposed 

multihead ensemble had a detection accuracy of 99.61% on the 

training set, 98.34% on the testing set, and 98.28% on the 

validation set. As shown in Table 3, the proposed multihead 

ensemble generalized not only the known and unseen sets well, 

but also the new set extremely effectively. In addition, the 

dynamic graphs of accuracy and loss through threefold cross 

validation demonstrate the generalizability of the proposed 

multihead ensemble, as shown in Figure 11. 
 

Table 1. Impact of hand-crafted features on classification performance with different malware datasets 
 

Feature Dataset Feature Type Accuracy Precision Recall F1-Score 

Local R2-D2 Binary Features 0.98 0.98 0.98 0.98 

MALNET 0.933 0.93 0.93 0.93 

Global R2-D2 Statistical Features 0.917 0.92 0.92 0.92 

MALNET 0.521 0.49 0.52 0.48 

Local-Global R2-D2 Binary+ Statistical Features 0.978 0.98 0.98 0.98 

MALNET 0.941 0.94 0.94 0.94 
 

 
 

Figure 8. Training and testing dynamic plots of three different handcrafted features with the R2-D2 malware dataset 
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Figure 9. Training and testing dynamic plots of three different handcrafted features with the MalNet malware dataset 
 

 
 

Figure 10. Confusion matrices for the proposed multihead ensemble over malware datasets 
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Table 2. Training and testing performance of hand-crafted features with different malware datasets 
 

Feature Dataset Train Accuracy Test Accuracy Train Loss Test Loss 

Local R2-D2 0.999 0.980 0.0050 0.091 

MALNET 0.9908 0.9332 0.02834 0.544 

Global R2-D2 0.9103 0.9176 0.2050 0.2084 

MALNET 0.4861 0.5210 1.6126 1.5450 

Local-Global R2-D2 0.9993 0.97814 0.00362 0.10546 

MALNET 0.9943 0.9412 0.0185 0.49242 
 

Table 3. Classification performance of the proposed multihead ensemble over three data subsets 
 

Performance with Training Set 

Families Precision Recall F1-Score 

Benign 1 1 1 

Malware 1 1 1 

Accuracy: 99.61% Loss: 0.02 

Performance with Test Set 

Benign 0.99 0.98 0.98 

Malware 0.98 0.99 0.98 

Accuracy: 98.34% Loss: 0.07 

Performance with Validation Set 

Benign 0.99 0.97 0.98 

Malware 0.97 0.99 0.98 

Accuracy: 98.28% Loss: 0.10 
 

 
 

Figure 11. Dynamic plots of validation accuracy and loss through threefold cross validation 
 

 

 

Figure 12. Comparison between dynamic plots of state-of-the-art CNN pre-trained models and the proposed multihead ensemble 
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4.2 Effect of combined handcrafted and deep feature 

extraction on the training performance of the proposed 

multihead ensemble 

 

Table 4 evaluates the performance of the suggested 

multihead ensemble with those of four machine learning 

classifiers and different combinations of multihead neural 

ensembles. Different machine learning classifiers, such as 

decision tree (DT), logistic regression (LR), K-nearest 

neighbor (KNN), and random forest (RF), were used to 

evaluate the prediction performance of the proposed multihead 

ensemble. The predictive accuracy, precision, recall, and f1-

score of the RF classifier were 0.70, 0.71, 0.70, and 0.67, 

respectively, whereas those of the DT classifier were 0.567, 

0.56, 0.56, and 0.56; KNN classifier, 0.711, 0.70, 0.71, and 

0.70; and LR classifier, 0.662, 0.62, 0.66, and 0.63. The 

overall accuracy of the proposed multihead ensemble was 

above 0.941. The lowest accuracy (0.567) was achieved by the 

DT classifier. The proposed multihead ensemble 

outperformed the other classifiers on all performance 

indicators.  

 

Table 4. Comparison of classification performance with 

different learning methods 
 

Machine Learning Method 

Model Accuracy Precision Recall F1-Score 

Logistic Reg. 0.662 0.62 0.66 0.63 

K-Near Neighbor 0.711 0.70 0.71 0.70 

Decision Tree 0.567 0.56 0.56 0.56 

Random Forest 0.700 0.71 0.70 0.67 

Multi head Neural Ensemble 

CNN-Bidirectional 

GRU+MLP 

0.939 0.94 0.94 0.94  

CNN-Bidirectional 

LSTM+MLP 

0.938 0.94 0.94 0.94  

CNN-LSTM+MLP 0.931 0.93 0.93 0.93  

CNN-GRU+MLP 0.941 0.94 0.94 0.94  

Conventional CNN Pre-Trained Models  

 Pre-Trained Train 

Parameters 

Layers Accuracy 

ResNET50  Yes 38,931 175 0.441 

InceptionV3  Yes 38,931 311 0.687 

DenseNET201 Yes 36,499 707 0.721 

Mobile NET Yes 19,475 87 0.681 

VGG16 Yes 9,747 19 0.685 

Proposed Multi-head 

Ensemble 

No 678,489 18 0.941 

 

The performance of the multihead neural ensemble was also 

compared with those of several combinations of multihead 

neural ensembles, such as CNN–Bidirectional GRU, CNN–

Bidirectional LSTM, and CNN–LSTM. The predictive 

accuracy, precision, recall, and f1-score of CNN–Bidirectional 

GRU were 0.939, 0.94, 0.94, and 0.94, respectively, whereas 

those of CNN-Bidirectional LSTM were 0.938, 0.94, 0.94, and 

0.94, respectively, and those of CNN-LSTM were 0.931, 0.93, 

0.93, and 0.93, respectively. The proposed multihead 

ensemble had an overall accuracy of 0.941. On all 

performance measures, the proposed multihead ensemble 

outperformed the other multihead ensembles. 

The proposed multihead ensemble was compared with 

traditional pre-trained ResNET50, Inception V3, 

DenseNET201, Mobile NET, and VGG16 models to 

demonstrate how different layer and parameter sizes affect 

network training. To train the network, the proposed multihead 

ensemble uses fewer layers than traditional pre-trained CNN 

models, which need entire images to be fed into the model. 

The total detection accuracy of the proposed multihead 

ensemble was 0.941. In this regard, pre-trained models such as 

ResNET50, Inception V3, DenseNet201, Mobile NET, and 

VGG16 all require additional layers to learn the whole set of 

images. ResNET50, Inception V3, DenseNET201, 

MobileNET, and VGG16 models were pre-trained using the 

ImageNet dataset. Therefore, fine-tuning the CNN network 

will be more difficult if the training and testing scenes are used 

for different purposes. Although the pre-trained ResNET50, 

Inception V3, DenseNET201, MobileNET, and VGG16 

models required less parameters for the training phase, their 

detection accuracies were 0.441, 0.687, 0.721, 0.681, and 

0.685, respectively. These pre-trained CNN models require 

further weight fine tuning to obtain satisfactory results.  

The proposed multi-head ensemble requires a fewer number 

of training layers than the pre-trained CNN models, and it 

delivers superior detection results. Figure 12 compares the 

dynamic graphs of state-of-the-art CNN pre-trained models 

with that of the proposed multihead ensemble. 
 

4.3 Comparison of the classification performance of the 

proposed approach with those of previously published 

works 
 

We compared the computational time and resource 

consumption of the proposed malware classification approach 

with those of previously published works. For example, 

Nataraj et al. [12] extracted textural features using the GIST 

descriptor from 32 × 32-dimensional malware images. Their 

approach consumes 1.45 s feature extraction time with 91.40% 

classification accuracy. Fu et al. [23] further extracted textural, 

local, and color features using SimHash, Color moment, and 

GLCM descriptor from color malware images. Their approach 

utilizes 1.17 s feature extraction time with 97.47% 

classification accuracy.  
 

Table 5. Comparison of the proposed model with previously 

published works 
 

Study 
Feature 

Selection 
Dimension Accuracy  

Nataraj et al. [12] GIST 32×32 0.914 

Fu et al. [23] Sim Hash-

Color Moment 

NA 0.974 

Naeem et al. [8] DSIFT-GIST 200×200 0.984 

Bozkir et al. [18] GIST-HOG 4096×4096 0.963 

Proposed 

Approach 

LBP-GLCM 299×299 0.978 

 

Naeem et al. [8] proposed a combined DSIFT and GIST 

feature descriptor for local and global feature extraction from 

200 × 200-dimensional malware images. Their strategy 

attained 98.4% classification accuracy with 9.31 s total time 

consumption. Bozkir et al. [18] also proposed a combined 

HOG and GIST feature descriptor for local and global feature 

extraction from 4096 × 4096-dimensional malware images. 

Their approach obtained 96.39% classification accuracy with 

3.56 s total time consumption. The methods using large images 

were resource and time consuming with the best classification 

accuracies. By contrast, the proposed malware classification 

approach extracted textural and local features through a 

combined LBP-GLCM descriptor. The proposed approach 

obtained 97.8% classification accuracy. The detailed results in 

Table 5 justify our claim. 
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5. CONCLUSIONS 

 

This paper introduced a new way to classify malware 

families by capturing malicious behavior from suspect 

Android files as color images of various sizes. A combined 

feature descriptor selected relevant local and global 

characteristics of color images to reduce neural network 

training complexity. To improve network classification 

performance, a multihead neural ensemble was developed by 

integrating prediction results from weak learners (CNN and 

GRUs) and applying them as learning input to a meta learner 

(MLP). Performance was assessed using two publicly 

available android malware datasets. A baseline was 

established for comparing the malware classification 

performance of the proposed approach with those of state-of-

the-art and previous systems. The proposed multihead 

ensemble method increased malware classification 

performance up to 97.85% accuracy with the R2-D2 dataset 

and 94.1% accuracy with the MalNet dataset. We plan to 

create a blockchain-based, memory-petite malware 

categorization methodology in the future to cut down on the 

time and resources spent processing malware. 
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