
Android Device Malware Classification Framework Using Multistep Image Feature

Extraction and Multihead Deep Neural Ensemble

Hamad Naeem1*, Amjad Alsirhani2,3, Mohammed Mujib Alshahrani4, Abdullah Alomari5

1 School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China
2 College of Computer and Information Sciences, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
3 Faculty of Computer Science, Dalhousie University, Halifax B3H 4R2, NS, Canada
4 College of Computing and Information Technology, University of Bisha, Bisha 61361, Kingdom of Saudi Arabia
5 Department of Computer Science, Albaha University, Albaha 65799, Saudi Arabia

Corresponding Author Email: hamadnaeem@zknu.edu.cn

https://doi.org/10.18280/ts.390326 ABSTRACT

Received: 28 February 2022

Accepted: 26 May 2022

The incidence of malicious threats to computer systems has increased with the increasing

use of Android devices and high-speed Internet. Malware visualization mechanism can

analyze a computer whenever a software or system crash occurs because of malicious

activity. This paper presents a new malware classification approach to recognize such

Android device malware families by capturing suspicious processes in the form of different

size color images. Important local and global characteristics of color images are extracted

through a combined local and global feature descriptor (structure based local and statistical

based global combined texture analysis) to reduce the training complexity of neural

networks. A multihead ensemble of neural networks is proposed to increase network

classification performance by merging prediction results from weak learners (convolutional

neural network + gated recurrent unit) and using them as learning input to a multi-layer

perceptron meta learner. Two public datasets of Android device malware are used to

evaluate the classification and detection performance of the proposed approach. A baseline

is established to compare the classification performance of the proposed approach with those

of state-of-the-art and previous malware detection approaches. The proposed multihead

ensemble improved the malware classification performance, with up to 97.8%, accuracy

with the R2-D2 dataset and 94.1% accuracy with the MalNet dataset. The overall results

show that a multihead ensemble with multi-step feature extraction is a practical approach to

classify and detect Android malware.

Keywords:

cybersecurity, android image, multihead

ensemble, malware visualization, threat

detection

1. INTRODUCTION

Digital Internet and information technology has progressed

swiftly and plays an essential role in daily life and social

activities. Alternatively, malicious software has also evolved

with such advancements while posing new threats to digital

devices. The traditional and state-of-the-art detection

approaches are purely based on signature-based methods.

Such methods depend on binary sequences generated by

malicious activities to identify potential malware [1, 2].

Antimalware programs usually scan and match signatures of

malware with other computer files. In general, malware

detection using signature matching is effective by generating

few false-positive (FP) outcomes. A signature-based malware

detection strategy requires a short amount of time to extract

potential malware and add its signatures to antimalware

software. As a result, a computer system can be exposed to

malware threats during extraction [3]. Heuristic algorithms

that identify malicious activity have been designed to preserve

the characteristics of suspicious programs. An unauthorized

packer used to secure malware identify will be flagged as

suspicious software aiming to obscure or manipulate original

software signatures. Although heuristic approaches can

identify emerging malware families, they may generate a

significant number of false-positive outcomes. Different

strategies have been proposed to overcome these limitations.

These strategies can be classified into five categories, namely,

static, dynamic, and hybrid, image analysis including memory

forensics of malicious activities [4]. Static approaches are fast

and clearly distinguishable from other types of malware

detection strategies. These approaches generally examine code

sequencing, byte structures, bytecode, executable commands,

and other key characteristics of suspected applications from

portable executables [5]. Such characteristics of a suspected

application, often referred as “signatures,” are algorithms or

distinctive hashes used to differentiate one malware from

another as well in malware families. As a result, no actual

malware execution or resource consumption is involved

throughout the detection process, resulting in the fast detection

of malicious applications. However, static approaches have a

few drawbacks, such as binary encryption and code

obfuscation, which can easily outsmart static malware

detection strategies [6]. Therefore, an alternative strategy may

be employed to detect obfuscated and encrypted malware with

a high true-positive ratio. Therefore, an alternative strategy

may be employed to detect obfuscated and encrypted malware

with a high true-positive ratio. Dynamic methods can virtually

identify dynamic malware activities under a simulated

Traitement du Signal
Vol. 39, No. 3, June, 2022, pp. 991-1003

Journal homepage: http://iieta.org/journals/ts

991

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390326&domain=pdf

environment. Nonetheless, dynamic methods are

computationally expensive and time consuming. For instance,

dynamic observations involve several strategies, such as

method calls, method workflow tracing, method parameter

analysis, and dynamic visualization of software command

executions. Various analyzer tools, such as Anubis, TT

analyzer, and CW Sandbox, are also available online for

dynamic analysis and are widely studied. Although dynamic

methods can identify obfuscated and encrypted malware with

few false-positive outcomes, they entail more computations

than traditional static analyses [7]. A machine or deep learning

model captures and trains visual characteristics of malware

binaries in the form of local and global features. Scale-

invariant feature transform and speeded-up robust features

provide the local textural properties of malware binaries. Some

researchers have used combined strategies on global and local

features to optimize malware detection and classification [8,

9]. Local binary patterns (LBPs) are resilient in capturing

grayscale contrast to record fluctuations caused by unknown

malware, whereas gray level co-occurrence matrix descriptors

employ a degree of correlation among adjacent pixels to

estimate separation distance and discrimination. Predictive

outcomes of malware classification are effective, but new

malware and their subgroups limit the prediction of unknown

malware families. Apart from static, dynamic, and predictive

hybrid approaches, memory forensics has attracted attention in

recent years to overcome the limitations of previous

approaches. For instance, instead of the static or dynamic

analyses of malware binaries, a volatile memory dump can be

generated from malicious processes. A memory dump

contains all vital information regarding the structure and

execution of malware commands. As a result, abundant

discriminating information can be captured to classify

malware and benign samples. Memory forensics works in two

simple steps. First, the physical memory is converted into

memory dump binaries. Second, malicious behavior and

anomalies are analyzed in the form of visual images using

textual descriptors. Smart approaches based on machine and

deep learning models have been applied to classify actual

malware families [6]. Key issues which must be solved in

machine learning and malware detection areas are as follows.

First, convolutional neural networks can extract features from

large datasets of high-dimensional images and videos.

However, the training process of these networks is complex,

time consuming, and resource consuming because of high

dimensional input. As a result, the need for these networks

must be removed, especially in Internet-of-Things (IoT)-based

solutions where the computing resources are less compared

with CNN computational complexity [10, 11]. Second, there

is no guarantee that the classifier can generalize to new or

unknown data. Third, malware samples with obfuscation or

encryption are difficult to identify using traditional malware

detection methods such as static, dynamic, hybrid, and image

analysis. The main contributions of this paper are listed as

follows:

(1) A multihead neural ensemble that employs color image

representation to store the malicious behavior of Android

device malware executables is proposed to replace

traditional malware signatures, which can be obfuscated

and encrypted to escape detection.

(2) The training complexity of neural networks is reduced by

combining deep and handcrafted malware feature

extraction. Structure-based local and statistically-based

global combined texture analysis is used to extract the

handcrafted characteristics from the image.

(3) A multihead neural ensemble is proposed to increase

network classification performance. The multi-head base

networks (CNN+GRU base learners) embed into an

extensive network (multilayer perceptron (MLP) meta

learner), which learns from combined predictions from

each input base network.

(4) The generalizability of proposed multihead ensemble is

tested by adding a verification set through k fold cross

validation.

(5) Multihead neural ensembles, CNN models and machine

learning approaches are tested against the proposed

multihead ensembles in order to verify the aforesaid

contributions.

This study is structured as follows. The literature review is

given in Section 2, the proposed malware classification

approach is explained in Section 3, results and discussions are

presented in Section 4, and the conclusion is provided in

Section 5.

2. LITERATURE REVIEW

Malware detection studies used various methods to identify

different categories and families of malicious software.

Malware classification based on image processing is more

effective than traditional methods. Image-based malware

detection first applies image conversion to transform malware

binaries into grayscale or color format. Then, the image

features are extracted to train predictive models and detect

malware and benign samples. Some advantages and

disadvantages of image processing-based malware detection

approaches are as follows.

Natraj et al. [12] were the first to apply computer vision to

detect malware categories and their families. First, they

transformed malware samples into grayscale visual images

and designed a dataset of 9339 malicious samples into 25

malware families. A GIST descriptor was applied on the

malware dataset to extract LBPs from grayscale images.

Empirical evaluation showed that the predictive models

achieved an accuracy of 97% on their dataset. Kalash et al.

[13] further experimented and evaluated the dataset of Natraj

et al. on the optimized CNN predative model. They randomly

selected 10% test samples for different malware families and

improved the malware detection accuracy by 98.52%. Han et

al. [14] proposed a new strategy in order to transform malware

binaries into grayscale images. Instead of using traditional

transformation, a graph theory based on information entropy

was used to find associations and malicious characteristics of

malware samples. The empirical evaluation of 1000 malware

samples and their families achieved 97.9% accuracy on

supplied dataset. Few studies successfully applied feature

reduction techniques to improve classification accuracy.

Machine learning algorithms can produce equivalent results,

but they are restricted by data and feasibility. Researchers have

taken use of neural network models for various predictive

applications. Ullah et al. [15] studied IoT-oriented industrial

malware. The raw binaries of IoT malware were converted to

colored images and trained using a CNN model to detect and

classify malware samples. The empirical evaluation of IoT-

oriented industrial malware achieved an accuracy of 97.46%

on multiple malware families. Vasan et al. [16] further used a

fine-tuned CNN model to optimize classification accuracy.

The empirical evaluation found that fine-tuned CNNs can

992

improve accuracy between 98% to 99% for packed and

unpacked malware families. Latest malware studies

investigated the concept of memory forensics to identify

potential malicious software. Many malwares can remove

their traces after successful execution of malicious codes. As

a result, traditional malware detection strategies fail to detect

such malware in a specified time. However, malware traces

remain in volatile memory until the end process execution. Dai

et al. [17] used volatile memory data from memory dumps

generated from malicious codes to detect such malware and

their families. They generated grayscale visual images of each

malware and resized images based on bi-cubic interpolation.

The empirical evaluation of their own dataset produces a

malware detection accuracy of 96.7%. Bozkir et al. [18]

further exploited memory forensics for malware detection by

generating colored images instead of grayscale. They prepared

a public dataset of 4294 malware and benign samples based on

memory dumps. Feature descriptors GIST and HOG were used

to extract textual features from malware images, and

dimensionality reduction was applied on extracted features by

using uniform manifold approximation and projection. The

overall malware detection accuracy improved by 96.39%,

whereas the detection time also improved by 3.56 s.

3. ARCHITECTURE OF ANDROID DEVICE

MALWARE CLASSIFICATION FRAMEWORK

Figure 1. Architecture of Android device malware classification framework

993

The proposed malware classification consists of three main

parts: (a) Android device malware data acquisition with image

visualization (b) manual feature extraction (c) generalized

multihead neural ensemble. Figure 1 displays the workflow of

the suggested malware detection approach. The suggested

method employs a multihead neural network ensemble along

a manual feature extraction strategy for malware classification.

At first step, malware files are pre-processed and visualized as

images. At second step, structure based local and statistical

based global combined texture analysis is performed by using

conventional image descriptors, such as LBP and GLCM. At

end, the multihead neural network ensemble utilizes the

manual features as input for malware classification.

Comprehensive details on each step are provided below.

3.1 Data pre-processing

Each apk file containing malware is unpacked so that it can

be examined. Apk file also contains the Dalvik executable

(DEX). The byte code is deduced from the apk file in three

stages. The apk file is first decompressed to determine the

class.DEX file. The class. DEX file is then transformed into a

Java.class file by using the dex2jar tool. Finally, the JD-GUI

decompiler is utilized to obtain the byte code from the Java.

Class file, as shown in Figure 2.

The DEX (bytecode) of each Android app must be gathered

prior to developing a feature representation of the applications

and labels. A 1D array of 8-bit unsigned integers was created

using the DEX file. Each item value in array ranges between 0

to 255, and it represents black and white pixels. One

dimensional array is converted into a two-dimensional feature

extraction format, data is encoded into RGB pixels, and

pictures are scaled to the appropriate size; these are the three

steps that are performed on every binary file. The 1D byte

array is transformed into a 2D array by using conventional

sequential charting techniques [10]. Nonetheless, the image's

height can change based on the amount of information being

displayed. To generate 256×256 and 200×200 pictures, we

employ the Pillow library and a standard Lanczos filtration

technique.

Figure 2. Android malware color image visualization

3.2 Malware sample acquisition

3.2.1 R2-D2 IoT device dataset [19]

It comprises RGB color images translated from the DEX

files retrieved by decompressing approximately 2 million

benign and malicious Android applications. Leopard Mobile

Inc.'s original back-end detection system was used to gather

these apps between January 2017 and August 2017. The

infected programs belong to different malware types,

including Trojans and Ad-Ware as well as Clickers and SMS

Spyware. The Android color image dataset enables to save

important information about Android apps with 16777216

colors per image compared with 8-bit grayscale images. The

size of all images is reduced to 299 × 299. Mini-batch learning

is facilitated by resizing pictures to 299 × 299, which allows

computer vision models to be trained faster while meeting the

computational limits. The image sizes are approximately 10–

50 KB.

RGB Image Representation: Android APK is first

decompressed to acquire the classes.dex file. This file’s

bytecode and the RGB color coding are recorded in

hexadecimal. Hexadecimal from the DEX files are converted

to RGB color coding, such that three-digit numbers are

separated in left to right order. As a result, each of these

integers is transformed into a decimal form and assigned to a

specific code (R, G, or B). For example, 646778 is split into

64, 67, and 78, which are then converted into their decimal

forms and assigned as (R:100, G:103; B:120). Finally, RGB

images of Android devices are obtained and fed into CNNs for

the malware detection of Android devices. Figure 3 shows the

chunks of malware images from the R2-D2 IoT device dataset.

Figure 3. R2-D2 Android device dataset

3.2.2 MalNet IoT device dataset [20]

MalNet has provided 8633 IoT device malware samples of

19 families. The sample distribution of each training malware

dataset family is given: Addisplay (1022),

Addisplay++Adware (59), Adload (67), Adsware (530),

adware++adware (501), adware++grayware++virus (167),

adware++virus (55), Backdoor (121), banker++trojan (221),

Adwareare (46), clicker (53), 'click (22), clicker++trojan (573),

clickfraud++riskware (74), exploit (1116), fakeangry (42),

fakeapp (85), fakeapp++trojan (51), and fakeinst++trojan

(143), respectively.

Color Image Representation: Embedding semantic

features is a complex process. Semantics can be extremely

helpful in analyzing the bytecode of an application. For

instance, a randomly selected byte could represent an ascii

character, an opcode, or a portion of a pointer address.

Through the use of color to differentiate each byte according

to its function, the image gains an additional layer of semantic

information on top of the raw bytecode. Even though various

techniques can be used to encode semantic information into an

image, a universally accepted standard technique is lacking.

The contextual features are encoded by allocating each byte to

a specific RGB color channel based on its position in the DEX

file structure, (i) header, (ii) signifiers and class interpretations,

and (iii) data, and by encoding the spatial meaning in binary

form (Figure 4). The first phase in creating a feature

representation of the Android applications and labels is to

retrieve the DEX (bytecode) out of each application. A 1D

array of 8-bit unsigned integers is then created from the DEX

document. Each item value in array ranges between 0 to 255,

and it represents black and white pixels. Then, for each binary

file, 1D array is transformed to 2D feature extraction,

information content is encoded into the RGB channels, and

images are scaled to an appropriate dimension.

994

Figure 4. MalNet Android device dataset

3.3 Handcrafted feature extraction

The structure-based repetitive LBPs are retrieved by

employing an LBP descriptor based on the textural properties

of malware image. In addition, the GLCM feature descriptor

is used to perform statistical global texture analysis for

malware images. Below is a detailed overview of structure-

based local texture analysis in conjunction with statistical

global texture analysis. Manual features are extracted by using

MATLAB. The feature analysis is performed on a machine

with 16 GB of RAM and a 6 GB NVIDIA GeForce RTX 2060

GPU. A local feature set with 2124 dimensions is extracted

through the LBP descriptor, and a global feature set with 20

dimensions is extracted through the GLCM descriptor. The

combined feature vector contains 2144-dimensional local and

global features.

3.3.1 Structure-based local texture analysis

Local features are extracted from malware images using an

LBP textural descriptor. LBP description not only accurately

recognizes micro-grayscale patterns in textual pictures, but it

is also highly effective in extracting LBPs [21]. The binary

patterns are textual properties that can be used to detect

variations of visual patterns from color images. Textual

properties, such as pixel direction, smoothness, surface

roughness, and softness, are used to indicate variations among

different textual images. Malware textual images consist of

unstable patterns that require a strong feature descriptor to

identify distinctive characteristics. As a result, an LBP textual

descriptor is adopted to extract LBPs of malware images. To

illustrate the internal structure of the LBP descriptor, Figure 5

is presented with a 3 × 3-pixel block to measure the intensity

of adjacent pixels. The threshold value is assessed using the

LBP descriptor to measure adjacent pixel intensity. The

computational execution of the LBP descriptor is detailed in

the form of a four-step procedure:

(1) Select surrounding pixels P within a given radius R for

each pixel on the x- and y-axes.

(2) Calculate the x- and y-axis intensity difference between

the current pixel and the surrounding pixels P.

(3) Select a threshold value for the surrounding pixels P

and use the difference in intensity to assign 0 and 1 as

single-bit values for the pixels.

(4) Replace the original intensity value of the current pixel

with the decimal value derived from the bit sequence of

the surrounding pixels P.

Decimal values for individual pixels are calculated using the

following LBP equation.

1

0

(,) ()2
−

=

= −
P

p

p c

P

LBP P R f g g (1)

where, P represents a set of adjacent pixels from a specified

radius R and 𝑔𝑝 − 𝑔𝑐 represents the intensity variation

between the present pixel and its neighbors.

Figure 5. Visual representation of the LBP descriptor

3.3.2 Statistical global texture analysis

Global features are extracted from malware images using an

Global textural descriptor. The GLCM descriptor exploits the

spatial distribution of each pixel from textual images [22].

GLCM uses random position in textual images and examines

the probability distribution of two grayscale pixels located

apart at a certain distance. The GLCM descriptor uses three

aspects to extract global characteristics: direction of pixel,

variation in amplitude, and the integration of information at

the grayscale level. The direction of pixels is the angle of

change in grayscale from 0° to 135°, where pixel offset values

and gray level orientation are both 1, which shows the

grayscale contraction. Collectively, grayscale compression,

co-occurrence matrix analysis, and final feature extraction

make up the GLCM descriptor's global feature extraction.

Figure 6 shows the extraction strategy of the GLCM descriptor.

First, the colored image is transformed to grayscale and then

subjected to pixel contraction to generate a 4-dimensional

grayscale array. Second, the similarity of patterns is

determined by looking for pixel pairs that appear together.

Final set of features is extracted based on different properties,

such as correlation, contrast, homogeneity, and energy, for

both malware datasets.

Figure 6. Visual representation of the GLCM descriptor

2

,

(,)=
i j

energy p i j
(2)

2

,

(,)= = −
i j

contrast correlation i j p i j (3)

,

(,)

1
=

+ −

i j

p i j
homogeneity

i j
 (4)

Finally, the proposed malware classification approach

selected serial-based feature fusion for concatenating the

features of both LBP and GLCM descriptors. The resulting

fused feature set provides a 2144-dimensional feature vector.

995

3.4 Deep feature extraction

Ensemble methods combine several different learning

algorithms to improve overall prediction precision. These

ensemble classifiers combine many classification models to

reduce the risk of overfitting in the training results.

Consequently, generalization efficiency can be enhanced

because of the increased utilization of training data. Although

various ensemble classification models have already been

created, researchers can still increase sample classification

accuracy, which is helpful for malware detection. Therefore, a

multihead neural network ensemble is proposed to strengthen

network classification performance. The formation of an

ensemble of base classifiers is accomplished by first

reshuffling training dataset, and then adding a base classifier

to each reshuffled training dataset. An ensemble model is

created by combining the predictions of base classifiers and

learned from combined predictions of base classifiers. The

proposed ensemble comprises two levels of learners, such as

weak 1D CNN and GRU learners, and MLP meta learner. The

proposed multihead neural ensemble consists of two base

networks (CNN and GRU weak learners) and one meta

classifier (MLP strong learner), which learns from combined

predictions from each input base network.

3.4.1 Base networks

The proposed multihead neural ensemble selects two base

networks namely 1D CNN and GRU for weak learning. The

detail workflow of each base network is given below:

1D-CNN is selected for weak learning at this level. The

input 2144-dimensional combined local–global feature set

substantially assists in decreasing the training complexity of

the CNN. The CNN captures more significant features with a

subsequent reduction in the dimension. The 1D CNN contains

two convolution layers, two pooling layers, one flattened, one

dropout, and one fully connected layer, as shown in Figure 7.

After sliding over the combined local-global feature set, the

convolution layer filters retrieve the best deep features. A new

feature set is generated as a consequence of applying each

filter, which is denoted as a “feature map.” The max-pooling

layer reduces spatial and feature size as well as computational

complexity. The resulting feature set is further compressed

using the flattened layer. The proposed CNN also includes a

fully connected classification layer. In order to prevent

overfitting in the suggested CNN, we employ the SoftMax

activation function and a dropout layer. Eq. (5) is used to

express the output of the proposed 1D CNN.

1 1 1(1 (,))

1

− − −= + 
=

N
ll l l lo f c Conv D X t

k k ik i
i

 (5)

where, 𝑐𝑘
𝑙 represents the kth neuron's scalar bias in the first

layer, 𝑡𝑖
𝑙−1denotes the output of ith neuron at layer l-1, 𝑋𝑖𝑘

𝑙−1is

the kernel weight from the ith neuron at layer l-1 to kth neurons

at layer l, and f denotes the activation function. The CNN and

GRU networks are trained with 50% data.

GRU Network is also selected for weak learning at this step.

The 2144-dimensional combined local-global feature set is

used as input. GRU is a recurrent neural network that is highly

similar to the long short-term memory (LSTM) but simpler in

design. Instead of the three gates utilized by LSTM, the GRU

uses two gates: update and reset gate. It also does not have a

separate cell state or memory. Instead, it uses the hidden state

for transferring information. The update gate serves the

functions of the forget and input gates in that it decides what

new information to consider and what information to forget.

The reset gate is used for controlling the amount of past

information to forget.






−



 

1

t zx t-1

t rx t-1

t hx

t 1

 = σ (W + U h + b)

= σ (W + U h + b)

= (W + U (r h) + b)

= ((1-z) h) + (z)

t

t

t

g z z

g r r

h h t t h

tt t t

z

r

h

h h

(6)

where, σg is the sigmoid function, ϕh is the hyperbolic tangent,

xt is the input vector, ht is the output vector, ℎ
∧

t is the candidate

activation vector, zt is the update gate vector, rt is the reset gate

vector, W and U are the parameter matrices, and b is the bias

vector.

Figure 7. Multihead neural ensemble for malware classification

996

3.4.2 Meta learning

An MLP neural network performs the meta-learning

process. The weak combined prediction results of base

networks are used as the learning input of the MLP meta

learner. A feedforward neural network with one input layer,

one hidden layer, and one output layer is used in the proposed

multihead ensemble, as shown in Figure 7. The first and last

layers in the MLP model are used as input and output,

respectively. However, the hidden layer uses a weighted input

set for model learning and an activation function for output

production. The computation of hidden layer Hi can be

mathematically formulated as follows.

() ()= +T

i i iH x f w x b (7)

where, HI ∶ Rdi−1 → Rdi, f ∶ R → R, wi ∈ Rd×di−1 , bi ∈ Rdi.

where, f is the element wise nonlinear function. The SoftMax

activation function is selected with the output layer that

displays the nonlinear neural network form.

4. RESULTS AND DISCUSSIONS

A confusion matrix was used to evaluate the proposed and

other models. Confusion matrices were used to summarize the

predictions of classifiers (also known as an error matrix). The

confusion matrix included FP, false-negative (FN), and true-

positive (TP) outcomes. For each false sample of malware, FP

was counted, and the total number of false samples was

reported as FN. These values were used to compute the

following metrics:





TP FP
Precision = , Recall = ,

TP + FP FP + TN
2 TP TP+TN

F1-Score = ,Accuracy =
2 TP + FP + FN TP + TN + FP + FN

(8)

Experiments were carried out to (1) validate the impact of

the handcrafted feature set over different malware datasets, (2)

evaluate the impact of layer numbers and tuning settings on

the proposed multihead ensemble's training performance, (3)

and assess the suggested method's accuracy in classifying data

compared to other published studies. This experiment has 200

epochs, with a batch size of 32 and a learning rate of 0.01.

4.1 Impact of hand-crafted feature set over different

malware datasets

The impact of the hand-crafted feature set on the

classification performance of the proposed multihead

ensemble approach was investigated. Table 1 displays the

classification performance of individual feature and combined

features across different malware datasets (R2-D2 and MalNet,

respectively). The overall classification accuracy of the

combined handcrafted feature set was above 50% for both

malware datasets. The local binary feature set obtained

classification accuracy (0.98 and 0.933, respectively) with two

different malware datasets. The global statistical feature set

obtained classification accuracy (0.917 and 0.521,

respectively) with two different malware datasets. The

combined feature set obtained classification accuracy (0.978

and 0.941, respectively) with two different malware datasets.

The global statistical feature set and the local binary feature

set obtained the lowest classification accuracy with the

MalNet malware dataset. The combined extraction of LBPs

and global statistical features from malware images

significantly increased the classification performance. Hence,

the combined set of features achieved better classification

accuracy than the individual feature set across a variety of

malware datasets, as shown in Table 1.

We determined the train and test performance (accuracy,

loss and roc curve) of three different handcrafted features over

the R2-D2 and MalNet malware datasets, as shown in Figures

8 and 9. The combined set of features better matched the train

and test accuracy on the proposed multi head ensemble than

the individual feature set. As shown in Figure 8, the training

and testing accuracy curves of the local handcrafted features

started at the 0-graph scale and increased between the 0.90 and

0.98 graph scales after the 14th epoch. Similarly, the training

and testing loss curves of the local handcrafted features started

at the 0.4 graph scale and decreased between the 0.088 and

0.0050 graph scales after the 40th epoch. The training and

testing accuracy curves of the global statistical features started

at the 0.7 graph scale and increased between the 0.79 and 0.91

graph scales after the 12th epoch. Similarly, the training and

testing loss curves of the global statistical features started at

the 0.45 graph scale and decreased between the 0.39 and 0.2

graph scales after the 9th epoch. The training and testing

accuracy curves of the combined features started at the 0.7

graph scale and increased between the 0.79 and 0.99 graph

scales after the 7th epoch. Similarly, the training and testing

loss curves of the combined features started at the 0.47 graph

scale and decreased between the 0.24 and 0.003 graph scales

after the 9th epoch.

As shown in Figure 9, the training and testing curves of the

local handcrafted features started at the 0.1 graph scale and

increased between the 0.32 and 0.99 graph scales after the 9th

epoch. Similarly, the training and testing loss curves of the

local handcrafted features started at the 2.67 graph scale and

decreased between the 2.3 and 0.02 graph scales after the 4th

epoch. The training and testing accuracy curves of the global

statistical features started at the 0.04 graph scale and increased

between the 0.10 and 0.52 graph scales after the 3rd epoch.

Similarly, the training and testing loss curves of the global

statistical features started at the 2.94 graph scale and decreased

between the 2.82 and 1.54 graph scales after the 2nd epoch.

After the second epoch, the combined features' training and

testing accuracy curves both begin at the 0.1 graph scale and

increase to the 0.14 to 0.99 graph scale. Similarly, both the

train and test loss curves for the combined features begin at a

graph scale of 2.71 and fall between 2.4 to 0.01 scales after the

second epoch. Table 2 shows the training and testing

performance of the hand-crafted features with the different

malware datasets.

The accuracy of each instance’s prediction is shown in two

normalized confusion matrices. The prediction accuracies of

the instances are provided in two normalized confusion

matrices, as shown in Figure 10. The confusion matrix of the

R2-D2 dataset showed a malware detection rate of 0.96, which

is close to the benign detection rate (0.99). Thus, none of the

sample distributions in the two classes were biased. Compared

with other malware families, the Addisplay and exploit

families had the lowest classification rates (0.69 and 0.87,

respectively) in the confusion matrix of the MalNet dataset.

Generalization is a key advantage of neural networks. It is

the model’s capacity to apply what it has learned to new and

unknown data. The generalizability of proposed multihead

ensemble was tested by adding a validation set and evaluating

the model’s performance on this additional data. For verifying

997

the generalization of the proposed multihead ensemble, the

R2-D2 dataset was separated into three subsets using threefold

cross validation: train set (75%), the test set (25%), and

validation set (10%). The generalizability of the proposed

multihead ensemble was tested using threefold cross

validation with a 10% validation set during the training phase.

Table 3 shows the detection performance of the proposed

multihead ensemble with three distinct subsets. The proposed

multihead ensemble had a detection accuracy of 99.61% on the

training set, 98.34% on the testing set, and 98.28% on the

validation set. As shown in Table 3, the proposed multihead

ensemble generalized not only the known and unseen sets well,

but also the new set extremely effectively. In addition, the

dynamic graphs of accuracy and loss through threefold cross

validation demonstrate the generalizability of the proposed

multihead ensemble, as shown in Figure 11.

Table 1. Impact of hand-crafted features on classification performance with different malware datasets

Feature Dataset Feature Type Accuracy Precision Recall F1-Score

Local R2-D2 Binary Features 0.98 0.98 0.98 0.98

MALNET 0.933 0.93 0.93 0.93

Global R2-D2 Statistical Features 0.917 0.92 0.92 0.92

MALNET 0.521 0.49 0.52 0.48

Local-Global R2-D2 Binary+ Statistical Features 0.978 0.98 0.98 0.98

MALNET 0.941 0.94 0.94 0.94

Figure 8. Training and testing dynamic plots of three different handcrafted features with the R2-D2 malware dataset

998

Figure 9. Training and testing dynamic plots of three different handcrafted features with the MalNet malware dataset

Figure 10. Confusion matrices for the proposed multihead ensemble over malware datasets

999

Table 2. Training and testing performance of hand-crafted features with different malware datasets

Feature Dataset Train Accuracy Test Accuracy Train Loss Test Loss

Local R2-D2 0.999 0.980 0.0050 0.091

MALNET 0.9908 0.9332 0.02834 0.544

Global R2-D2 0.9103 0.9176 0.2050 0.2084

MALNET 0.4861 0.5210 1.6126 1.5450

Local-Global R2-D2 0.9993 0.97814 0.00362 0.10546

MALNET 0.9943 0.9412 0.0185 0.49242

Table 3. Classification performance of the proposed multihead ensemble over three data subsets

Performance with Training Set

Families Precision Recall F1-Score

Benign 1 1 1

Malware 1 1 1

Accuracy: 99.61% Loss: 0.02

Performance with Test Set

Benign 0.99 0.98 0.98

Malware 0.98 0.99 0.98

Accuracy: 98.34% Loss: 0.07

Performance with Validation Set

Benign 0.99 0.97 0.98

Malware 0.97 0.99 0.98

Accuracy: 98.28% Loss: 0.10

Figure 11. Dynamic plots of validation accuracy and loss through threefold cross validation

Figure 12. Comparison between dynamic plots of state-of-the-art CNN pre-trained models and the proposed multihead ensemble

1000

4.2 Effect of combined handcrafted and deep feature

extraction on the training performance of the proposed

multihead ensemble

Table 4 evaluates the performance of the suggested

multihead ensemble with those of four machine learning

classifiers and different combinations of multihead neural

ensembles. Different machine learning classifiers, such as

decision tree (DT), logistic regression (LR), K-nearest

neighbor (KNN), and random forest (RF), were used to

evaluate the prediction performance of the proposed multihead

ensemble. The predictive accuracy, precision, recall, and f1-

score of the RF classifier were 0.70, 0.71, 0.70, and 0.67,

respectively, whereas those of the DT classifier were 0.567,

0.56, 0.56, and 0.56; KNN classifier, 0.711, 0.70, 0.71, and

0.70; and LR classifier, 0.662, 0.62, 0.66, and 0.63. The

overall accuracy of the proposed multihead ensemble was

above 0.941. The lowest accuracy (0.567) was achieved by the

DT classifier. The proposed multihead ensemble

outperformed the other classifiers on all performance

indicators.

Table 4. Comparison of classification performance with

different learning methods

Machine Learning Method

Model Accuracy Precision Recall F1-Score

Logistic Reg. 0.662 0.62 0.66 0.63

K-Near Neighbor 0.711 0.70 0.71 0.70

Decision Tree 0.567 0.56 0.56 0.56

Random Forest 0.700 0.71 0.70 0.67

Multi head Neural Ensemble

CNN-Bidirectional

GRU+MLP

0.939 0.94 0.94 0.94

CNN-Bidirectional

LSTM+MLP

0.938 0.94 0.94 0.94

CNN-LSTM+MLP 0.931 0.93 0.93 0.93

CNN-GRU+MLP 0.941 0.94 0.94 0.94

Conventional CNN Pre-Trained Models

 Pre-Trained Train

Parameters

Layers Accuracy

ResNET50 Yes 38,931 175 0.441

InceptionV3 Yes 38,931 311 0.687

DenseNET201 Yes 36,499 707 0.721

Mobile NET Yes 19,475 87 0.681

VGG16 Yes 9,747 19 0.685

Proposed Multi-head

Ensemble

No 678,489 18 0.941

The performance of the multihead neural ensemble was also

compared with those of several combinations of multihead

neural ensembles, such as CNN–Bidirectional GRU, CNN–

Bidirectional LSTM, and CNN–LSTM. The predictive

accuracy, precision, recall, and f1-score of CNN–Bidirectional

GRU were 0.939, 0.94, 0.94, and 0.94, respectively, whereas

those of CNN-Bidirectional LSTM were 0.938, 0.94, 0.94, and

0.94, respectively, and those of CNN-LSTM were 0.931, 0.93,

0.93, and 0.93, respectively. The proposed multihead

ensemble had an overall accuracy of 0.941. On all

performance measures, the proposed multihead ensemble

outperformed the other multihead ensembles.

The proposed multihead ensemble was compared with

traditional pre-trained ResNET50, Inception V3,

DenseNET201, Mobile NET, and VGG16 models to

demonstrate how different layer and parameter sizes affect

network training. To train the network, the proposed multihead

ensemble uses fewer layers than traditional pre-trained CNN

models, which need entire images to be fed into the model.

The total detection accuracy of the proposed multihead

ensemble was 0.941. In this regard, pre-trained models such as

ResNET50, Inception V3, DenseNet201, Mobile NET, and

VGG16 all require additional layers to learn the whole set of

images. ResNET50, Inception V3, DenseNET201,

MobileNET, and VGG16 models were pre-trained using the

ImageNet dataset. Therefore, fine-tuning the CNN network

will be more difficult if the training and testing scenes are used

for different purposes. Although the pre-trained ResNET50,

Inception V3, DenseNET201, MobileNET, and VGG16

models required less parameters for the training phase, their

detection accuracies were 0.441, 0.687, 0.721, 0.681, and

0.685, respectively. These pre-trained CNN models require

further weight fine tuning to obtain satisfactory results.

The proposed multi-head ensemble requires a fewer number

of training layers than the pre-trained CNN models, and it

delivers superior detection results. Figure 12 compares the

dynamic graphs of state-of-the-art CNN pre-trained models

with that of the proposed multihead ensemble.

4.3 Comparison of the classification performance of the

proposed approach with those of previously published

works

We compared the computational time and resource

consumption of the proposed malware classification approach

with those of previously published works. For example,

Nataraj et al. [12] extracted textural features using the GIST

descriptor from 32 × 32-dimensional malware images. Their

approach consumes 1.45 s feature extraction time with 91.40%

classification accuracy. Fu et al. [23] further extracted textural,

local, and color features using SimHash, Color moment, and

GLCM descriptor from color malware images. Their approach

utilizes 1.17 s feature extraction time with 97.47%

classification accuracy.

Table 5. Comparison of the proposed model with previously

published works

Study
Feature

Selection
Dimension Accuracy

Nataraj et al. [12] GIST 32×32 0.914

Fu et al. [23] Sim Hash-

Color Moment

NA 0.974

Naeem et al. [8] DSIFT-GIST 200×200 0.984

Bozkir et al. [18] GIST-HOG 4096×4096 0.963

Proposed

Approach

LBP-GLCM 299×299 0.978

Naeem et al. [8] proposed a combined DSIFT and GIST

feature descriptor for local and global feature extraction from

200 × 200-dimensional malware images. Their strategy

attained 98.4% classification accuracy with 9.31 s total time

consumption. Bozkir et al. [18] also proposed a combined

HOG and GIST feature descriptor for local and global feature

extraction from 4096 × 4096-dimensional malware images.

Their approach obtained 96.39% classification accuracy with

3.56 s total time consumption. The methods using large images

were resource and time consuming with the best classification

accuracies. By contrast, the proposed malware classification

approach extracted textural and local features through a

combined LBP-GLCM descriptor. The proposed approach

obtained 97.8% classification accuracy. The detailed results in

Table 5 justify our claim.

1001

5. CONCLUSIONS

This paper introduced a new way to classify malware

families by capturing malicious behavior from suspect

Android files as color images of various sizes. A combined

feature descriptor selected relevant local and global

characteristics of color images to reduce neural network

training complexity. To improve network classification

performance, a multihead neural ensemble was developed by

integrating prediction results from weak learners (CNN and

GRUs) and applying them as learning input to a meta learner

(MLP). Performance was assessed using two publicly

available android malware datasets. A baseline was

established for comparing the malware classification

performance of the proposed approach with those of state-of-

the-art and previous systems. The proposed multihead

ensemble method increased malware classification

performance up to 97.85% accuracy with the R2-D2 dataset

and 94.1% accuracy with the MalNet dataset. We plan to

create a blockchain-based, memory-petite malware

categorization methodology in the future to cut down on the

time and resources spent processing malware.

ACKNOWLEDGMENTS

This work was supported in part by the Zhoukou Normal

University High Level Talent Scientific Research under grant

no. ZKNUC2021027.

REFERENCES

[1] Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.

H., Stamp, M. (2017). A comparison of static, dynamic,

and hybrid analysis for malware detection. Journal of

Computer Virology and Hacking Techniques, 13(1): 1-

12. https://doi.org/10.1007/s11416-015-0261-z

[2] Bin-Salem, A.A., Zubaydi, H.D., Alzubaidi, M., Tariq,

Z.U.A., Naeem, H. (2022). A scoping review on COVID-

19's early detection using deep learning model and

computed tomography and ultrasound. Traitement du

Signal, 39(1): 205-219.

https://doi.org/10.18280/ts.390121

[3] Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S. (2017). A

survey on malware detection using data mining

techniques. ACM Computing Surveys (CSUR), 50(3): 1-

40. http://dx.doi.org/10.1145/3073559

[4] Sihwail, R., Omar, K., Zainol Ariffin, K.A., Al Afghani,

S. (2019). Malware detection approach based on artifacts

in memory image and dynamic analysis. Applied

Sciences, 9(18): 3680.

https://doi.org/3680.10.3390/app9183680

[5] Gibert, D., Mateu, C., Planes, J. (2020). The rise of

machine learning for detection and classification of

malware: Research developments, trends and challenges.

Journal of Network and Computer Applications, 153:

102526. https://doi.org/10.1016/j.jnca.2019.102526

[6] Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L. (2019).

Dynamic malware analysis in the modern era—A state of

the art survey. ACM Computing Surveys (CSUR), 52(5):

1-48. https://doi.org/10.1145/3329786

[7] Cheng, Y., Fan, W., Huang, W., An, J. (2017). A

shellcode detection method based on full native API

sequence and support vector machine. In IOP Conference

Series: Materials Science and Engineering, 242(1):

012124. https://doi.org/10.1088/1757-

899X/242/1/012124

[8] Naeem, H., Guo, B., Ullah, F., Naeem, M.R. (2019). A

cross-platform malware variant classification based on

image representation. KSII Transactions on Internet and

Information Systems (TIIS), 13(7): 37563777.

http://doi.org/10.3837/tiis.2019.07.023

[9] Naeem, H., Ullah, F., Naeem, M.R., Khalid, S., Vasan,

D., Jabbar, S., Saeed, S. (2020). Malware detection in

industrial internet of things based on hybrid image

visualization and deep learning model. Ad Hoc Networks,

105: 102154.

https://doi.org/10.1016/j.adhoc.2020.102154

[10] Elmoogy, A.M., Dong, X., Lu, T., Westendorp, R.,

Tarimala, K.R. (2020). Surfcnn: A descriptor accelerated

convolutional neural network for image-based indoor

localization. IEEE Access, 8: 59750-59759.

http://doi.org/10.1109/ACCESS.2020.2981620

[11] Naeem, H., Bin-Salem, A.A. (2021). A CNN-LSTM

network with multi-level feature extraction-based

approach for automated detection of coronavirus from

CT scan and X-ray images. Applied Soft Computing, 113:

107918. http://doi.org/10.1016/j.asoc.2021.107918

[12] Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.

(2011). Malware images: Visualization and automatic

classification. In Proceedings of the 8th International

Symposium on Visualization for Cyber Security, 17.

https://doi.org/10.1145/2016904.2016908

[13] Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D.,

Wang, Y., Iqbal, F. (2018). Malware classification with

deep convolutional neural networks. In 2018 9th IFIP

International Conference on New Technologies,

Mobility and Security (NTMS), pp. 1-5.

https://doi.org/0.1109/NTMS.2018.8328749

[14] Han, K.S., Lim, J.H., Kang, B., Im, E.G. (2015).

Malware analysis using visualized images and entropy

graphs. International Journal of Information Security,

14(1): 1-14. https://doi.org/10.1007/s10207-014-0242-0

[15] Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Latif, M.A.,

Al-Turjman, F., Mostarda, L. (2019). Cyber security

threats detection in internet of things using deep learning

approach. IEEE Access, 7: 124379-124389.

https://doi.org/10.1109/ACCESS.2019.2937347

[16] Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei,

B., Zheng, Q. (2020). IMCFN: Image-based malware

classification using fine-tuned convolutional neural

network architecture. Computer Networks, 171: 107138.

https://doi.org/10.1016/j.comnet.2020.107138

[17] Dai, Y., Li, H., Qian, Y., Lu, X. (2018). A malware

classification method based on memory dump grayscale

image. Digital Investigation, 27: 30-37.

https://doi.org/10.1016/j.diin.2018.09.006

[18] Bozkir, A.S., Tahillioglu, E., Aydos, M., Kara, I. (2021).

Catch them alive: A malware detection approach through

memory forensics, manifold learning and computer

vision. Computers & Security, 103: 102-166.

https://doi.org/10.1016/j.cose.2020.102166

[19] Hsien-De Huang, T., Kao, H.Y. (2018). R2-d2: Color-

inspired convolutional neural network (CNN)-based

android malware detections. In 2018 IEEE International

Conference on Big Data, pp. 2633-2642.

https://doi.org/10.1109/BigData.2018.8622324

1002

[20] Freitas, S., Duggal, R., Chau, D.H. (2021). MalNet: A

large-scale cybersecurity image database of malicious

software. arXiv preprint arXiv:2102.01072.

[21] Ojala, T., Pietikainen, M., Maenpaa, T. (2002).

Multiresolution gray-scale and rotation invariant texture

classification with local binary patterns. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 24(7): 971-987.

https://doi.org/10.1109/ACCESS.2018.2842078

[22] Haralick, R.M., Shanmugam, K., Dinstein, I.H. (1973).

Textural features for image classification. IEEE

Transactions on Systems, Man, and Cybernetics, (6):

610-621. https://doi.org/10.1109/TSMC.1973.4309314

[23] Fu, J., Xue, J., Wang, Y., Liu, Z., Shan, C. (2018).

Malware visualization for fine-grained classification.

IEEE Access, 6: 14510-14523.

https://doi.org/10.1109/ACCESS.2018.2805301

1003

