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 Identification of plant disease sis a difficult task for farmers. If the diseases are misidentified, 

there will be a huge crop failure, which threatens the living of farmers. This paper proposes 

a new tool for farmers to identify plant leaf diseases automatically, and provide solutions to 

this problem on expert database. Firstly, the infected spots of the leaf are recognized through 

fuzzy c-means clustering (FCM). Then, the features are extracted by gray-level co-

occurrence matrix (COLCM), and classified by progressive neural architecture search 

(PNAS). The proposed tool was tested on Mendeley Dataset, which covers 2,278 images of 

healthy leaves, and 2,225 leaves with leaf blights, rust, mealy bugs, and powderily mildew, 

angular leaf spot, and downy mildew. The experimental results show that our approach 

outperformed the other methods in accuracy (up to 95%). 
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1. INTRODUCTION 

 

Modern advances have enabled the human society to 

provide enough food to feed a large population. Mishro 

Pranaba K et.al and Xie Xiaoyue et.al proposed a solution to 

meet the food demand of a large population, based on deep 

learning algorithms [1, 2]. However, food security is 

continuously jeopardized by environmental variation [3], 

pollination decline, plant diseases [4], and other factors. 

Among them, plant diseases not only threaten universal food 

safety, but also bring severe consequences to small holder 

farmers, whose livelihoods are solely based on harvests. In the 

modern world, smallholder farmers produce close to 80% of 

all the food (UNEP, 2013). The production losses mainly 

occur due to insects and plant diseases [5]. A number of rules 

have been devised to prevent crop loss induced by diseases. 

For example, integrated pest management (IPM) systems have 

been improved over time, replacing conventional approaches 

of widespread chemical treatment [6, 7]. 

The initial step of plant infection management is to 

recognize a disease effectively. Generally, the proof for 

infection recognition is provided by agriculture associations or 

different foundations, namely, plant clinics [8]. More recently, 

web-based data are provided to facilitate disease determination, 

utilizing the expanding Internet access around the world [9, 

10]. In addition, according to ITU (International 

Telecommunication Union) plant disease identification tools 

have multiplied, thanks to the quick innovation of cell phones. 

The primary goal of this paper is to build up a successful 

technique for identifying the diseases of plant leaves, and their 

indices, thus developing an appropriate framework for early 

and savvy recognition of plant leave diseases [11]. In recent 

years, computer vision and deep learning have gained 

popularity in the research of fungal diseases, owing to their 

computing ability and accuracy [12]. Deep architectures learn 

features via multiple layers. Based on these architectures, it is 

possible to learn suitable predictive features from instances, 

except hand-engineering features [13, 14]. 

 

 
 

Figure 1. Leaves with various diseases 
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This paper demonstrates the practicality of a deep learning 

approach based on Mendeley -6718 MB leaf dataset on the 

following leaves: Arjun, Bael, Basil, Chinar, Guava, Jamun, 

Jatropha, Lemon, Mango, Pomegranate, and some grains and 

grasses. Some images are displayed in Figure 1. The common 

diseases of these leaves include anthracnose, scab, leaf blotch, 

shot hole, leaf blights, rust, mealy bugs, powderily mildew, 

angular leaf spot, and downy mildew [9, 15]. 

The remainder of this paper is organized as follows: Section 

2 reviews the related literature; Section 3 introduces our model 

for leaf disease prediction; Section 4 presents and discusses 

the results; Section 5 draws the conclusions. 

 

 

2. LITERATURE REVIEW 

 

So far, many deep learning tools have been applied to 

identify various leaf diseases. For example, support vector 

machine (SVM) classifier, global pooling dilated convolution 

neural network (GPDCNN), generative adversarial networks 

(DCGAN), and improved convolutional neural network 

(ICNN) are introduced to identify rice leaf diseases (e.g., 

tungro, brown spot, blast, and bacterial blight), cucumber leaf 

diseases, tomato leaf diseases, and grape leaf diseases [1, 2]. 

 

2.1 Single shot multi-box detector (SSD) 

 

The SSD is a one-step object discovery technique that 

visualizes the sorts of substances, and organizes the associated 

bounding boxes, without needing region proposals [16]. To 

process objects of varied sizes, the classic SSD associates 

multiple feature maps of various dimensions. The SSD boasts 

a faster discovery speed than faster recurrent CNN (Faster R-

CNN) [3], although the two approaches have nearly identical 

discovery accuracies. Another advantage of the SSD lies in the 

fusion of multi-angle features. In this study, this technique is 

employed as the core procedure of object detection. 

 

2.2 Inception module 

 

The most candid way to increase the feature extraction 

ability of a deep neural network is to broaden or deepen that 

network. However, there are two drawbacks of this approach 

[17, 18]. On the one hand, the beginning segment employs 

similar layers with different kernels, and combines their 

outputs. The network thus enlarged may face the risk of over 

fitting. On the other hand, the computing overhead may surge. 

Here, the number of parameters is reduced by replacing one 

5×5 convolutional layer with two 3×3 convolutional layers [3], 

which preserves the diversity of sensitive fields. 

 

2.3 VGGNet 

 

VGGNet [19] is a highly portable model widely adopted for 

migration learning. Compared to traditional CNNs, VGGNet 

boasts a high precision in diagnosing common leaf diseases of 

apples. As a result, this paper designates VGGNet as the 

simple pre-network model. 

In a CNN, the initial layers usually extract color and corner. 

It is of minima value to extract these features, using origin. 

Hence, the Conv1 1 to Pool3 layers of the VGGNet were 

preserved, and the following Conv4 1 and Conv4 2 layers were 

superseded with at least two origin components, to enhance the 

ability to extract multi-scale targets. In addition, Conv4 to 

Pool5 layers were placed after the origin component, without 

any modification [20]. To overcome the constraint on input 

size, the fully-connecting layers were replaced with 1×1 

convolutional layers for Conv6 to Conv8. The final layer was 

designed as a 5-way soft max layer. 

 

2.4 Stochastic gradient descent (SGD) 

 

During the learning process, the VGGNet relies on the SGD 

rule to solve the biases and weights, which minimizes the loss 

function [21, 22]. The SGD rule randomly selects a few small 

cluster heads. In this paper, the number of clusters and the 

learning rate are set to 32 and 0.001, respectively. The SGD 

algorithm can quickly converge to the optimal solution. 

 

 

3. METHODOLOGY 

 

This paper presents a novel approach for identification and 

classification of plant diseases. Figure 2 shows the architecture 

of our approach. 

 

 
 

Figure 2. Architecture of our approach 

 

 
 

As shown in Figure 2, our approach contains preprocessing, 

spot or infection feature extraction, classification, and 

segmentation. The image features like color, color histogram, 

and texture are extracted and merged. The original image is 

segmented through fuzzy c-means clustering (FCE). To 

facilitate the extraction of salient visual features, this paper 

extracts and optimizes these features by fast gray level co-

Let X = {x1, x2, x3 ..., xn} be the set of data points 

and 

V = {v1, v2, v3 ..., vc} be the set of centers. 

1) Randomly select ‘c’ cluster centers. 

2) Calculate the fuzzy membership 'µij' 

3) Compute the fuzzy centers 'vj' using 

4) Repeat step 2) and 3) until the minimum 'J' value 

is achieved or ||U(k+1) - U(k)|| <β. 

where, 

‘k’ is the iteration step. 

‘β’ is the termination criterion between [0, 1]. 

‘U = (µij)n*c’ is the fuzzy membership matrix. 

‘J’ is the objective function. 
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occurrence matrix (GLCM), and classifies them by 

progressive neural architecture search (PNAS), a deep 

learning classifier. The effectiveness of our approach was 

verified on Mendeley -6718 MB Leaf Dataset. 

 

3.1 Image segmentation by FCM 

 

The unsupervised FCM can solve various tasks, such as 

clustering, feature analysis, and classifier planning. During the 

FCM, each evident focus of a component is allocated into a 

cluster, and the original image is thus divided into dissimilar 

components. The clustering is done by repeatedly reducing the 

distance of each pixel to its cluster in the element space. 

In an image, the pixels have strong correlations. For 

example, the pixels in the salient area share almost the same 

element information. Thus, the spatial relationship between 

adjacent pixels can guide image segmentation effectively.  

Through the FCM, the pixels are allocated to different 

classes through fuzzy calculation. Let X=(x1, x2,…,xN) be an 

image of N pixels; c be the number of clusters; xi be the 

multispectral salient information. Then, the clustering is 

performed repeatedly at the lowest possible cost in equation 

[1]: 
 

𝑙 =∑∑𝑢𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

[xj − vi]
2 (1) 

 

where, uij is the membership of pixel i to cluster j; v is the 

cluster size; m is the standard metric; m=2 is a constant of 

fuzziness. 

Every pixel close to the centroid of its cluster is assigned a 

high membership, while every pixel far from that centroid is 

assigned a low membership. The clustering is completed based 

on the membership. 

 

3.2 Fast GLCM 

 

The fast GLCM is suitable for eliminating unevenly 

correlated features like the traditional GLCM, but with a much 

shorter time (about 200 times faster). It also outshines the 

traditional GLCM in the precise classification of the pixels 

close to the class boundaries. To assess the effectiveness of 

fast GLCM, the general practice is to weaken the weight of 

GLCM media in each cycle, lower the sparsity of GLCM 

matrices, and re-quantize the gray levels of the input image to 

decrease G. Here, the G value is reduced from 256 levels to 32 

levels. Thus, the created GLCM matrices are of the size 32×32. 

The defining features of GLCM matrices are correlation, 

energy, contrast, homogeneity, variance, and entropy. To 

prevent these features from being excessively large or small, a 

principal component transform (PCT) needs to be applied on 

these features. 

To disclose the impact of the primary boundary of the fast 

GLCM, e.g., the effect of the step length (Ls) on the quality of 

removed features, the value range of Ls is set to [1, 20]. Note 

that Ls=1 represents the classic GLCM. Here, machine 

learning grouping accuracy is selected as the performance 

metric. 

To prepare the machine learning classifier, 5% of pixels are 

chosen randomly for network training. The other 95% of 

pixels are utilized as test set. Figure 3 shows the general 

characterization accuracy of the machine learning classifier, 

and the overall extraction times of GLCM for salient regions. 

The results were measured at different step lengths Ls=1, …, 

16. The given processing time is normalized to obtain the 

preparation time for the instance of Ls=1. It can be observed 

that fast GLCM could greatly shorten the preparation time, 

roughly by a factor of Ls=2, while ensuring the excellence of 

the structure.  
 

 
(a) Linear weighting window (b) Weighting window with an 

overlap 

 

Figure 3. General characterization accuracy of the machine 

learning classifier, and the overall extraction times of GLCM 

for salient regions 

 

3.3 PNAS 

 

 
 

Several previous methods delve straight into the filled cells, 

or worse, the whole CNN. For example, NAS uses 50-step 

RNN6 as the checker for cell design. The CNN is designed 

through classic mutations of fixed-length binary strings. 

However, this straightforward technique is hard to traverse 

straight in a big search engine, particularly when there is little 

understanding of the composition of the actual model. In 

addition, this paper examines the space in reverse order, 

opening with the simplest copies. We began by building all 

feasible cell configurations from B1 (which has only one 

block), and arrange them in a queue. Then, all the copies in the 

queue are evaluated and trained in parallel. After that, each 

Inputs: B (No. of maximum blocks), E (No.of 

Maximum Epochs),  

F (Filters in the first layer count), 

K (Beam Size)N (no. of times to enroll cells), 

trainingSet, valueSet 

SS1=B1 || candidate structure set with one block 

MM1 = cell_to_ConNeuNet(S1, N, F) 

CC1 = train_ConNeuNet(C1, valueSet) 

AA1 = eval_ConNeuNet(C1, valueSet) 

π= fit (S1, A1) 

for b=2: B do 

𝑆𝑆𝑏
1 = expanded-cell (Sb-1) 

𝐴𝐴𝑏
1  = prediction-cell (𝑆𝑏

1- Π) 

SSb = topper-K(𝑆𝑏
1, 𝐴𝑏

1 , K) 

MMb = cell_to_ConNeuNet(Sb, N, F) 

CCb = train_ConNeuNet(Mb, E, 

trainingSet) 

AAb = eval_ConNeuNet(Cb, valueSet) 

π= update_predictor(Sb, Ab, π) 

end for 

Return topper-K(SB, AB, 1) 
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block is enlarged by one, among all the virtual blocks in B2. 

Since it is impossible to train and compute all the child 

networks, we developed an interpreting module based on the 

visited cells. 

Then, all the cells are processed on Analyst, and the top-K 

elite individuals are retained in the queue. The above steps are 

repeated until all cells with sufficient blocks (B) are identified. 

The optimal cell structure is determined using PNAS. A 

predetermined number of basic cell copies are stacked on top 

of each other. The stride 1 and stride 2 are changed according 

to the number of epochs. The classifier is based on global 

average pooling. The stacking model is trained on the 

Mendeley dataset. In terms of CIFAR-10, the images are of the 

size 32×32.In terms of ImageNet, there are two image sizes: 

the smaller size of 224×224, and the larger size of 331×331. 

Only one image is of the larger size. To lower the computing 

cost, opening part of the network has a convolutional kernel of 

3×3, using stride 2. Only one kind of cells is adopted to narrow 

the cell search space. 

 

 

4. EXPERIMENTAL RESULTS 

 

Our approach was simulated on Matlab, using Python for 

coding. The neural network was programmed with Keras, and 

tested on 4,503 images in Mendeley database. The training set 

and test set were developed at a ratio of 3: 2. The accuracy of 

our approach was calculated to see if the performance on 

unknown images is consistent with that on the training images. 

Table 1 compares the accuracy of our approach and several 

deep learning CNNs: AlexNet [15], GoogLeNet [3], 

InceptionV3 [3], and VGGNet-16 [19]. Figures 4 to 6 display 

the outputs of our approach. 

During training, the SGD algorithm was implemented to 

configure the weights and biases of each network, aiming to 

reduce the loss function. A small training set and sample size 

were selected randomly for the SGD. The sample size was set 

to 32, and the learning rate to 0.001. The small sample size 

ensures the precision of search. The momentum was set to 0.9, 

which determines the speed of the SGD to converge to the 

optimal solution. Figure 7 shows the relationship between 

accuracy and the number of training epochs. Figures 8 and 9 

show the specificity and sensitivity of the various pre-

networks in Table 1. It can be observed that PNAS achieved 

the highest accuracy, specificity, sensitivities, and 

convergence speed. 

 

 
 

Figure 4. Input and contrast enhanced image 

 
 

Figure 5. Clustered image 
 

 
 

Figure 6. Output image 
 

 
 

Figure 7. Graphical representation of accuracy 
 

 
 

Figure 8. Graphical representation of sensitivity 
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Figure 9. Graphical representation of specificity 

 

Table 1. Accuracy of different approaches 

 

S.No Network Model 
I/P 

Size 

Acc 

in % 

SN 

in % 

SP 

in % 

1 AlexNet [21] 227 95.78 81.56 87.02 

2 GoogleNet [22] 224 94.85 84.65 84.16 

3 InceptionV3 [23] 223 95.49 89.13 92.93 

4 VGGNet [24] 224 96.10 91.22 94.21 

5 VGG-INCEP [23] 224 97.14 93.23 92.12 

6 PNAS [Proposed] 224 98.43 97.21 97.00 

 

 

5. CONCLUSIONS 

 

This paper presents a real-time detector of leaf diseases 

based on enhanced PNAS. This deep learning algorithm 

extracts the discriminative components of diseased leaf images 

automatically, and detects the general categories of leaf 

diseases with a high accuracy in real time. As it is understood 

throughout this paper, a methodology that instinctively grades 

the diseases on plant leaves is essential in the present scenario. 

Experimental results show that our PNAS model can detect 

general categories of leaf diseases in the Medeley dataset with 

accuracy up to 98.43% in real time. This offers potential 

remedies for the problems in plant leaf disease detection. 
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