
  

  

Hand Gesture Recognizing Model Using Optimized Capsule Neural Network  
 

Suni S S1*, K Gopakumar2 

 

 

1 LBS Centre for Science & Technology, University of Kerala, Kerala 695033, India 
2 APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala 695016, India 

 

Corresponding Author Email: suni.ss@gmail.com 

 

https://doi.org/10.18280/ts.390331 

  

ABSTRACT 

   

Received: 23 April 2022 

Accepted: 13 May 2022 

 Hand gestures are a sort of nonverbal communication that may be utilized for many diverse 

purposes, including deaf-mute interaction, robotic manipulation, human-computer interface 

(HCI), residential management, and healthcare usage. Moreover, most current research uses 

the artificial intelligence approach effectively to extract dense features from hand gestures. 

Since most of them used neural network models, the performance of the models influences 

the modification of the hyperparameter to enhance recognition accuracy. Therefore, our 

research proposed a capsule neural network, in which the internal computations on the inputs 

are better encapsulated by transforming the findings into a tiny vector of information 

outputs. Moreover, to increase the accuracy of recognizing hand gestures, the neural network 

has been optimized by inserting additional SoftMax layers before the output layer of the 

CapsNet. Subsequently, the findings of the tests were assessed and then compared. This 

developed approach has been beneficial across all tests when contrasted against state-of-the-

art systems. 
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1. INTRODUCTION 

 

Human-computer interaction had already evolved 

immensely, and now the field has always been progressing, 

with those fresh ideas and methodologies getting created. 

Gestures were spontaneous expressions from the human figure 

utilized effectively to interact with those around [1, 2]. This 

hand gesture seems to be the most extensively employed 

interaction among the many motions. It must be viewed as a 

distinct hand movement at a given moment. Signals were 

employed in almost two-thirds of overall discussions [3]. Hand 

gesture recognition enables one may create innovative, extra 

naturalistic strategies for human-machine conversations. The 

human component of the interaction is crucial to gesture 

recognition models. Hand gesture acknowledgement offers an 

incredible ability to revolutionize human-computer interaction 

(HCI). It also facilitates communication, particularly between 

the deaf population and the broader public. Visual experience 

now plays an important role in HCIs. Human behaviour can be 

recognized as an input for processing by interactive and 

appropriately gesture-classifiable computer software. The 

employment of sign language as a gesture-based, rather than 

voice-based, mode of communication with other media makes 

HCI extremely potential. Hand gesture detection is among the 

greatest broad fields wherein machine vision and intelligent 

systems have also enhanced interaction among deaf people 

and enabled gesture-depended signaling models [4, 5]. 

Hand gestures were categorized as static as well as dynamic. 

The authors [6] indicate that static gestures essentially use a 

single posture retained for a fixed period to convey the desired 

information. An example of a static gesture is the user 

acknowledging in response to an application confirmation 

query may be coupled with the "thumbs up" posture retained 

for 1 second. A dynamic gesture is characterized as a 

continuous or discrete function of time. For recognizing the 

significance of the user's gesture command (for example, the 

"drag & drop" command), dynamic generalized gestures are 

gestures in which both the motion trajectory and posture are 

equally essential. The primary distinction between posture and 

gesture seems to be that posture typically emphasizes hand 

contour, whereas gesture emphasizes hand motion. Portable 

gloves-depended sensor approaches and Camera perception-

dependent methodologies seem to be the two massive 

technologies for hand gestures investigation [6, 7]. 

Wearable sensors inserted firmly on hand-wearing gloves 

have been utilized to identify hand motions. Hand motions or 

finger bending cause these sensors to detect a physical reaction. 

The same information is again processed on a computer 

coupled with gloves. Besides, integrating a sensor into either 

a microcontroller or a glove-depended sensing technology 

might have been portable [8-13]. Although the approaches 

described above have shown positive results, they have certain 

drawbacks that make them inappropriate for the elderly, who 

may feel discomfort and disorientation due to cable connection 

issues. These disadvantages can be solved by using vision-

based approaches. Identifying hand gestures makes it possible 

to establish novel and increasingly naturalistic approaches 

involving human-machine contact. 

Approaches for gesture recognition depend substantially 

just on the individual element aspect of the interactions. 

Establishing an adequate human-computer interaction 

enabling sign language recognition is a vital domain of work 

that has already resulted in professional life aspirations, 

including for programmers and consumers. To that end, 

research into the design of computer assistive technologies is 

gaining attraction and becoming increasingly crucial. Also, the 

evolution of gesture detection technologies was particularly 

indispensable towards the progress of computers and the social 
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interface, including the employment of hand gestures, was 

becoming much more prevalent in many fields. Hand gesture 

identification encompasses subdomains including certain sign 

language acknowledgement [14-16], identification of 

particularly unique signal language utilized throughout sports 

[17], complete human motion diagnosis [18], pose as well as 

body position identification [19, 20], physical activity actively 

supervising [21], and sometimes even attempting to regulate 

smart residence living applications only with hand gestures 

[22]. Hand size diversity, skin texture and colouring, lighting, 

viewpoint discrepancy, resemblance in diverse motions, and 

even the crucial ecological context pose difficult obstacles 

toward vision-dependent hand gesture detection. Moreover, 

recognizing dynamic hand gestures in images can be difficult 

due to the different and diverse circumstances depicted in the 

images. 

Hand gesture tracking has already gotten quite a lot of 

enthusiasm in communication and machine learning 

disciplines. The basic idea in the machine learning area for 

HCI is to identify and detect human gestures accurately. Hand 

gesture identification's definite purpose should be to 

distinguish and acknowledge gestures. Hand gesture detection 

is a path that incorporates numerous notions, including 

methods throughout diverse fields, like image processing and 

neural networks, which effectively interpret how well a hand 

moves. Hand-crafted feature extraction approaches using 

classifiers were a lot more popular and were commonly used 

strategies for hand gesture detection before the emergence of 

deep learning [23-25].  

A Support Vector Machine (SVM) was being used to 

categorize Local Binary Patterns (LBP) characters [26]; 

Histograms of such oriented gradations (HOG) as well as LBP 

are being used in the study of Jadooki et al. [27]. Moreover, to 

extract the attribute features, Nakjai and Katanyukul [28] used 

an Artificial Neural Network (ANN) with discrete cosine 

transformation (DCT), as well as CNN iterations for sign 

language acknowledgement were presented in the study of 

Perimal et al. [29]. Chen et al. [30] suggests a multiscale 

attention fusion network for semantic segmentation (MAF-

DeepLab), which emphasizes key aspects and effectively 

combines multi-scale information, to enhance prediction 

performance. In contrast, several aforementioned neural 

network variations had a decent recognition rate. However, it 

employs a single scalar output to summarize a pool of repeated 

local characteristics, and it does not do internal calculations on 

the input. 

The target of the whole work should be to design robust 

deep learning-dependent hand gesture detection technology 

that would be leveraged to integrate with enhanced reality apps. 

Consequently, this research proposed a capsule neural network 

that identifies hand movements effectively and produces better 

results than the existing studies. 

• Our research proposed a novel capsule neural network to 

avoid the generalization problem in neural networks. The 

capsules do substantial internal calculations on the inputs 

to better encapsulate the findings by converting the 

outputs into a compact vector of information outputs.  

• Furthermore, the CapsNet structure is modified by 

introducing additional SoftMax layers before the output 

layer to optimize the neural network process, which 

improves the accuracy of recognizing hand gestures. 

The accompanying structure of the whole research work: 

An assessment of neural nets have been addressed in the 

second section. The third section describes the concepts of 

such a capsule neural net. This proposed method system and 

its architecture are detailed in the fourth section. The final 

section covered the execution as well as comparing outcomes. 

Also, the final section concludes the proposed work. 

 

 

2. LITERATURE SURVEY 

 

As human-computer interaction expands, several solutions 

are leveraging combined machine learning and deep learning 

approaches targeted at detecting a gesture intonated by a 

person's hand. Furthermore, several publications are being 

reviewed to understand the functioning of such a hand gesture 

detection approach. 

Perimal et al. [29] developed a hand gesture identification 

algorithm for fourteen hand gestures based on finger counting. 

The algorithm uses the maximum distance between the 

centroid of the fingers to count fingers and detect the hand 

gestures. To further understand the algorithm's performance, 

the developed method by the author [29] was tested using a 

variety of prospect and dynamic parameters. However, the 

developed hand gesture identification algorithm is less 

accurate. 

Employing static RGB-D images, Li et al. [31] presented an 

effective deep attentiveness network enabling joint hand 

gesture tracking and detection. The model automatically 

locates the hand without geographical annotations and 

performs exceptionally well in gesture classification. This 

strategy, however, will not work for dynamic motions. 

Alani et al. [32] proposed an Adapted Deep Convolutional 

Neural Network (ADCNN) Infrastructure adequate for the 

categorization of fixed hand motion picture data with 

distinctions throughout illumination, noise, magnitude, 

spinning, as well as transcription, where information 

enhancement was used to generate morphing pictures from 

actual pictures, and the enhanced images were then used to 

boost the learning algorithm. Moreover, ADCNN will be 

enhanced and evaluated with other datasets in the future and 

real-time hand gesture classification tasks. 

Nunez et al. [33] formulated a Deep Learning (DL)-

dependent strategy for sequential 3D shape pattern 

identification predicated on the same incorporation of 

Convolutional Neural Network (CNN) as well as Long Short 

Term Memory (LSTM) recurrent networks and also the data 

enhancement methodology that either strengthens the 

effectiveness of a certain system or inhibits overfitting to the 

greatest extent possible. However, for small datasets, the 

proposed data augmentation stage has a higher impact on the 

learning process, resulting in the greatest performance; the 

training time will increase for large datasets. 

Li et al. [34] developed a Deep Convolution Network-

dependent motion identification approach. The properties of 

CNN are employed to prevent feature extraction and diminish 

the count of variables that should be learned, eventually 

attaining the purpose of further unsupervised learning. This 

same error back-propagation technique was given into CNN 

architecture, which adjusts the threshold and parameters of the 

same neural net to lessen system errors. The suggested SVM 

is being utilized to boost the overall model's reliability and 

endurance by optimizing its categorization functionality of a 

CNN model. In the future, use filter size to assess current 

content in most prior and future data. However, in the long 

dependence, CNN is not as good as LSTM because size is a 

constant value. 
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Cheng et al. [35] concentrated on static gesture detection, 

using the Kinect sensor to gather colour and depth gesture 

samples, then analyzed. On this premise, a CNN-RBM 

collaborative network for gesture recognition is proposed. It 

primarily leverages numerous RBMs' enclosed systems for 

unsupervised retrieval of features, ultimately merging with 

CNN's supervised attribute retrieval. Eventually, those two 

characteristics were linked to categorizing hand gestures. Even 

though the joint network and other centralized networks 

perform poorly on the complicated sample because RBM 

necessitates appropriate data distribution. As a result, future 

research will focus on improving the combined network's 

accuracy in a complicated configuration. 

Skaria et al. [36] used a tiny radar sensor to gather Doppler 

signers of 14 distinct hands and maybe even train a deep CNN 

to distinguish such seized motions, in which the rhythmic 

signals from the two acquiring antennas of either long 

ongoing-wave radar equipment were able to create the in-

phase, as well as quadrature elements of the rhythmic signals, 

were being used to develop feature arrays. As a result, it 

appears that various users can use this architecture. Also, in 

future, the authors plan to increase the overall accuracy of the 

hand gestures. 

Wu [37] developed a novel identification approach that 

relies on the dual-channel CNN (DC-CNN) model to boost 

detection rates. The CNN's two distinct input channels are 

mostly hand motion pictures and hand edge pictures, while 

features fusion was done just at the entire connectivity tier. A 

SoftMax model categorized those gestures. There is still a lot 

of scope for DC-CNN research and development, especially in 

the three phases described below. (1) Incorporate more 

hierarchy and scale elements to enhance the model's 

adaptability to complicated backgrounds. (2) There is still a lot 

of untapped potential in the rate of dynamic gesture 

recognition, and the model can be used in this field. (3) For 

training, the convolution neural network model for gesture 

identification necessitates many image data with labels. The 

training could be done using unsupervised or semi-supervised 

learning to eliminate the model's reliance on a huge quantity 

of tag data. 

Qi et al. [38] developed an identification technique 

integrating principal element analytics and a General 

Recursive Neural Network (GRNN). Such an approach seems 

effective for lessening signal dimensionality, enhancing 

overall accuracy, or even effectiveness for real-time diagnosis, 

including retrieving key data essential during individual 

physical movement to discover discrete movement motions, 

which are being used to derive face EMG attributes. Before 

actually creating a GRNN neural net, PCA has been used to 

diminish feature granularity via omitting extraneous data. This 

GRNN paradigm should assist in the detection of the most 

precise form of hand movements, contributing to clinical 

medicines, public health care devices, HCI technologies, and 

other mechanisms. Even though some theoretical and 

experimental results have been generated, numerous issues 

still need to be addressed. The original feature selection, the 

specific choice of features, and the combination of features all 

need to be investigated further; in addition to the 

dimensionality reduction method, the feature selection method 

can be used to reduce the dimension, but the specific algorithm 

must be determined further. 

Relying on Video frames and hand categorization masking, 

Benitez-Garcia et al. [39] created a highly effective and robust 

classifier for real-world usage. It strengthened the overall 

accuracy underlying two distinct HGR approaches, Temporal 

Segmentation Networking (TSN) but also Temporal Shifting 

Units, that used a lighter weight semantically segmented 

methodology (FASSD-Net) (TSM). The authors also evaluate 

the outcomes of both HGR approaches, finding that TSM 

recognizes motions that rely on temporal information, whereas 

TSN excels at static gestures. We intend to combine TSM and 

TSN in a single architecture for real-time recognition of both 

types of hand gestures in the future. 

Tan et al. [40] created an improved densely linked DCNN 

network (EDenseNet), enabling vision-dependent hand 

motion identification. This redesigned transition layer in 

EDenseNet optimizes attribute propagation via leveraging 

image features. In addition, EDenseNet's redesigned 

transitioning layer enhances feature transmission through such 

a 1*1 bottleneck tier, whereas the Conv layer prunes and 

perhaps even smoothen out irrelevant attributes. Consequently, 

the overall count of trainable demanded parameters seems to 

be considerably diminished, leading to greater parameter 

effectiveness. Moreover, EDenseNet makes networks more 

prone to overfitting.  

Mujahid et al. [41] developed a lightweight model for 

motion identification predicated mostly on YOLO v3 and 

DarkNet-53 ConvNet that does not require any extra pre-

processing, picture filtering, or image augmentation. They 

created a system enabling the detection of hand gestures 

throughout real-time and motions via video sequence. 

However, many learning-based and image processing 

methodologies in gesture detection use pre-trained CNN 

concepts to extract the features. Implementing such an 

appropriate feature design strategy that incorporates 

hyperparameter adaptation, on the other hand, seems usually 

disregarded. Furthermore, the selection of hyper-parameter 

tweaking remains a serious challenge.  

The current work highlights the two characteristics 

mentioned above, which serve as an incentive to determine the 

best-featured engineering and hyperparameter optimization 

approach toward enhanced gesture detection rate. The 

following section discusses the background of deep learning. 
 

 

3. BACKGROUND 
 

Deep learning emerges to be a network learning approach 

that has received much attention in artificial intelligence. 

Functioning with vast volumes of information, neural 

networks comprised of countless asymmetric hidden units 

containing neurons conduct retrieval of features, 

categorization, and pattern discovery, including conversion. 

With deep neural networks, all output information within one 

tier is the data input over the next layer. Deep learning does 

not require handling to retrieve dense characteristics from 

certain input information, which is essential for conventional 

learning methods. Post labelled information is often used as 

data input during deep learning. Data-dense properties were 

autonomously recovered but also taught utilizing diverse 

approaches in two or even more hidden units in neural 

networks through supervised/unsupervised properties learning, 

including hierarchical retrieval of features. The next section 

goes into great detail on capsule neural nets and how routing 

protocol is achieved in capsule neural nets. 
 

3.1 Overview of capsule networks 
 

A capsule is a collection of neurons whose activity vector 
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indicates the instantiation parameters of a particular entity, 

such as an object or an object constituent. To learn visual 

features like aspects, browsing, placement, scalability, and so 

on, Capsule Networks employ capsules made up of a group of 

neurons as well as a singular routing-by-agreement approach 

to satisfactorily recognize the numerous distinct angle norms 

of the same image that even the CNN was unable to recognize 

[42]. Several outputs of the capsule are grouped to create an 

activating vector. Each orientation of the activation vector 

provides basic exposure characteristics of the item, including 

such spot or even path. In contrast, the overall length of such 

activation vector (normal but rather magnitude) shows the 

predicted likelihood. 

For instance, whenever we flip a picture, its activation 

vectors shift in length though not in width. These lengths of 

relatively low-level output capsules conform to their 

respective presence (e.g., eyes, nose, and mouth). Numerous 

properties of an item are encoded by vector dimensions, 

including size, direction, position, etc. 

 

 
 

Figure 1. Capsule network sample model 

 

After computing vectors in bottom-level capsules, the 

predicted estimates were guided towards the top-level capsules, 

which mostly precisely fit their forecasts, allowing the 

accessibility of items to be calculated more correctly using 

clearer data input. It would be referred to as dynamic routing. 

The overall topology of such capsule network structure is 

depicted in Figure 1. The same procedure of hand gesture 

identification utilizing an optimized capsule neural net has 

been presented in the forthcoming section. 

 

 

4. RECOGNIZING HAND GESTURES BY OPTIMIZED 

CAPSULE NEURAL NETWORK 

 

In deep learning research, high success rates have been 

achieved using CNN and capsule networks. While CNN has a 

high completion rate, its size depreciation and pixel shrinking 

employed for such a pooling layer are generally viewed as a 

drawback. Also, the performance of the network model will 

have an impact on modifying the hyperparameter to increase 

the accuracy of the detection of hand gestures. Furthermore, 

among the most basic issues underlying neural networks was 

a generalization. Thus to avoid this, our research introduces a 

Capsule Neural Network. A capsule is a group of neurons that 

learn to recognize objects or sections of objects in images. 

Unlike neurons, which produce scalars with no direction, 

capsules produce vectors with a direction. This characteristic 

in capsules aids in the resolution of the CNN orienting 

problem. When the picture's orientation is altered, the vector's 

direction shifts to match. It produces a vector whose length 

denotes the presence of an entity in an image. The vector's 

length serves as a confidence score. Longer vectors have a 

greater confidence score that the object exists in the image, 

whereas shorter vectors have a lower confidence value. The 

length of the vector instructs the network on which capsules to 

select for forwarding to a higher capsule where further 

processing will take place. The vector orientation specifies 

instantiation properties such as an object's rotation, size, or 

precise placement in an image. The capsules do extensive 

internal computations on the inputs to better encapsulate the 

findings by transforming the yields into a tiny vector of 

information outputs. Capsule networks were more successful 

than CNN architecture in images obtained from various 

perspectives.  

Our proposed CapsNet seems to have the following 

architecture: Firstly, the Relu layer would be employed to train 

all data input, as well as the outputs have been used as data 

input for such capsule networks. The same neural net was 

again modified to enhance its reliability in identifying hand 

motions by inserting additional SoftMax layers before the 

output layer in the CapsNet architecture. Figure 2 depicts the 

proposed architecture model. 

 

 
 

Figure 2. Proposed CapsNet architecture model 

 

The input of 32×32 RGB images initially fed into our 

proposed optimized CapsNet architecture, as shown in Figure 

2. The structure of a Capsule Neural Network comprises two 

convolution layers, primary caps, digits caps, and an additional 

SoftMax layer before the output class. The input image is 

transformed using a convolution layer to extract features from 

it, where the image is convolved with a filter in this 

transformation. In convolution layers, the hyperparameters are 

the size of the filter =4×4, stride = 1, padding = 0, and the 

activation function is a squashing function instead of Rectified 

Linear Unit (ReLU) are utilized to condense the information 

to a length of between 0 and 1. The activation function of the 

ReLU is also employed. This layer is in charge of turning pixel 

intensities into local feature detector activity. These outputs 

are subsequently supplied into the principal capsule layer as 

inputs. 

Moreover, the inverse graphics process takes place at the 

primary capsule layer. This layer is in charge of capturing 

entities at the most basic level. A CapsNet seeks to borrow the 

concept of inverse graphics, which is the technique by which 

computers typically produce images in reverse. The network 

begins with a picture and attempts to discover the objects 

included inside it and instantiation factors such as posture 

(relative position, orientation, and size). In contrast, CNN 

disregard the spatial correlations between features. 

To get a representation of instantiation parameters like, 

1. We use a handful of convolution layers to generate an 

array of feature maps.  

2. This array is reshaped to provide a collection of vectors 

for each position.  

3. The final step is to ensure that no vector is longer than 

one. It is accomplished by using a squashing function to 

squash it so that its length is between 0 and 1. 

The preservation of comprehensive information about an 

object's position and posture throughout the network is a major 
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characteristic of Capsule Networks. It is referred to as 

equivariance.  

There are numerous pooling levels in CNNs. Researchers 

discovered that these pooling levels frequently lose 

information. Because Capsule Networks are equivariant, they 

may be used for object identification and picture segmentation 

applications.  

The Matrix Multiplication is conducted on the input layer in 

the first step. We take a picture and turn it into vector values 

to grasp the spatial arrangement. Then, the weights of the 

inputs which way the current capsules should travel in the 

following layer. It operates in tandem with the Dynamic 

Routing Algorithm. The Dynamic Routing method is 

responsible for CapsNet's effectiveness. Its function is to 

provide communication between the Primary Capsule and the 

DigitCaps layer. A capsule in the bottom layer of the primary 

capsule layer must figure out how to deliver its output vector 

to the DigitCaps layer. This layer has one 6D capsule for each 

digit class. Every capsule receives input from capsules in the 

layer underneath it. The output of this layer is subsequently 

transmitted into the decoder network as input. The dynamic 

routing algorithm computes a coupling coefficient to 

characterize the relationship between the Primary Capsule and 

the DigitCaps layers. This coupling coefficient value is 

significant since it permits capsule routing to the proper 

following layers, which only agree with its inputs. This 

coefficient value, however, is not permanent. It has been 

updated. To optimize the loss quickly and minimize the 

problem of overfitting, only three routing iterations are 

proposed. It is how the network keeps learning by using a non-

linear function to compress the data. Short vectors are 

squashed to virtually zero length, whereas large vectors are 

crushed to less than one length. Thus, the length of a capsule's 

output vector represents the chance that an entity is present in 

the current input. In a CapsNet, the squashing function is 

applied to a hierarchical group of layers rather than each layer 

as in CNNs. 

 

Table 1. Hyperparameters values of Capsule Neural Network 

model 

 
Kind of 

Layer 

Size of 

filter 
Stride 

 Filter 

count/capsule size 
Padding Activation 

Convolutional 4×4 1  256 Same ReLu 

Convolutional 4×4 1  512 Same ReLu 

Primary Caps 4×4 2  8 Valid ReLu 

Digit Caps 4×4 2  16 Valid ReLu 

ReLu 4×4 1  512 Same ReLu 

  

The following hyper parameter values are used in the 

primary caps layer: The filter size is 4×4, its stride is 2, the 

digit's capsule is 8, the same channels comprise 32, and the 

squashing activation function is employed. The main caps 

layer comprises 32 basic capsules, one of which contains 

eight-dimensional vectors. A dynamic routing approach has 

been used to send capsule outputs among all high-levelled 

capsules inside the layer below. Eventually, sub-capsules for 

every potential high-levelled capsule have been multiplied by 

weight matrices to establish its output. Again, this output 

quantity is estimated using a non-linear "squash" mechanism 

that shortens the vectors to approximately zero length. Inside 

the category capsule tier, 8-dimensional units were turned into 

16-dimensional matrices for every capsule via a weighted 

matrix and an encoding algorithm. Vector output data inside 

capsules substitute scalar output data inside a capsule. In 

addition, neural network models predict a multinomial 

probability distribution where the SoftMax function is utilized 

as an activation function in the output layer. Finally, the output 

is obtained from our proposed capsule neural network. An 

Adam optimizing method reduces the total error between the 

capsule neural net's actual output and the correct quantity. The 

rate of learning was set at roughly 0.001. This developed 

Capsule Neural Network model and hyperparameter values are 

shown in Table 1. Both frameworks, as well as parameters 

provided throughout this research, have been established after 

various evaluations. 

The mathematical expression of the proposed model's 

functions is described below. Eq. (1) gives the mathematical 

expression for the convolution process. 
 

( )k j j

j

b g e f c= +   
(1) 

 

In Eq. (1), bk seems to be the (j+1) tier output consequence; 

ej have become the (kernel) weights first from the preceding 

layer; fj is just the features mapping recovered from the 

preceding layer; c has been the biased value from the 

preceding layer, while g is now an activation function. 

When such ReLU activation function is being employed in 

the conv layer, its output is 0 whenever that input score is less 

than zero, as well as the output becomes equal to its input 

quantity because once the input score is higher than 0, even a 

linear association with both the dependent factor is created. Eq. 

(2) shows the ReLU activation function represented in g(f) 

formula. 
 

( ) max(0, )g f f=  (2) 

 

At a depth of 8×32, the convolutional findings have been 

utilized again for the principal capsule. So every capsule has 

32 channels and eight convolutional modules, along with 4×4 

filters and one stride. These affine transformations have been 

done first from the scalar input data from the CNN network 

towards the capsule network's fundamental caps. Even the 

weights of such analysis were added and afterwards converted 

in vector-only with squash functions. A formula again for 

affine transformations has been provided in Eq. (3), as well as 

the equation of summing all weights is given in Eq. (4). 
 

kmj jk j
v e v


=  (3) 

 

𝑣𝑘𝑚𝑗̂  is the prediction vector derived in Eq. (3) by 

multiplying the weight matrix ejk by the capsule output vj. 
 

j jk kmj
j

t d v


=  (4) 

 

In Eq. (4), 𝑡𝑗  is indeed the total weight of either the 

predictive vectors, whereas 𝑑𝑗𝑘 would be the connection 

coefficients acquired either by iterative dynamical routing 

approach. The 𝑑𝑗𝑘 the formula is presented in Eq. (5). 

 

 
exp( )

exp( )

jk

jk

jll

c
d

c
=


  (5) 
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Figure 3. Mathematical expression of capsule neural network model 

 

Even a non-linear squash function has been used to 

guarantee that perhaps the length of such a capsule's output 

vector equals zero whether it is short or somewhat lower than 

one if it is long. Eq. (6) contains the squash function formula. 

 
2

21
k

tk tk
w

tk tk
=

+
  (6) 

 

This same vector output for capsule k has been represented 

by 𝑤𝑘in Eq. (6). There are 16 capsules for each class in the 

output layer (DigitsCaps), relying just on the dataset's category 

count, and now those capsules acquire input data from either 

the preceding layers. At the capsule network's output, given 

into the SoftMax layer. At the capsule network's output, there 

are three Fully Connected layers. In contrast, the ReLU and 

sigmoid functions will be used towards fully linked layers that 

carry out the network's activation functionality. This sigmoid 

function has been utilized to recreate the picture. A sigmoid 

activation mechanism provides an output around zero for 

every component therein definition set. An expression for such 

a sigmoid activation function has been seen in Eq. (7). 

 

1
( )

(1 )f
g f

e−
=

+
 (7) 

 

The full neural network architecture of such Capsule Neural 

Network model presented in this work is seen in Figure 3. 

The image arrays are our model's inputs. A convolutional 

layer is even used to learn the feature mapping in the input 

image. Several dense features of such an image stream were 

developed utilizing multiple convolution kernels, as well as 

the weights were also obtained employing a CNN architecture. 

These weights were lowered, and indeed the findings are 

assessed for adequacy. Its scalar outcomes of the 

convolutional layer are always used as inputs towards the 

capsule net, having vector output capsules substituting those 

scalar outputs. 

The Capsule Neural Network employs a high dynamic 

routing mechanism to ensure that its output attains its adequate 

capsule. Capsule outputs get passed among all high-levelled 

capsules inside the layer below. In contrast, sub-capsules for 

every conceivable high-levelled capsule were multiplied either 

by weight matrices or to compute output. This capsule 

network's output has been given through into the SoftMax 

layer. The output value is estimated even if the shorter vectors 

are shrunk toward a length nearly to 0, using a non-linear 

"squash". 

 

 

5. RESULT AND DISCUSSION 
 

This section goes through the implementation outcomes and 

the overall performance of our developed system. In addition, 

comparison results of existing works are presented. 

 

Tool: PYTHON 3 

OS: Windows 7 (64 bit) 

Processor: Intel Premium 

RAM: 8GB RAM 

 

5.1 Dataset description 

 

In our proposed work, we use two different types of datasets 

which are Human-Computer Interaction (HCI) [43] and Leap 

Motion hand gesture-based dataset [44]. 

 

5.1.1 Human-Computer Interaction (HCI) dataset 

The Human-Computer Interaction (HCI) dynamic hand-

gesture database seems to be a brand-new visual database 

established to test our hand-gesture detection methodology 

[43]. As illustrated in Figure 5, to conduct numerous mouse 

operations, distinct dynamic hand motions have been 

presented: pointer, left-clicking, right-clicking, mouse 

activating, and cursor deactivation. The collection of videos 

includes 30 training video sequences, each performed by 

different individuals. Each participant accomplishes 5 video 

sequences wherein they execute a different dynamic hand 

motion in numerous instances. Those 30 video sequences have 

been used to train the algorithm's duplicate detection and 

identification stages. In addition, the database comprises six 

extensive video sequences during testing. Every test video 

sequence exhibits a person's behaviour when utilizing the 

application and making distinct dynamic hand motions. Those 

test video sequences have been used to validate the whole 

system of hand motion detection. 
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5.1.2 Leap motion hand gesture-based dataset 

The leap motion sensor captured several different dynamic 

motions in this dataset [44]. A collection of ten different 

motions were recorded from ten different people (5 women 

and five males). For each motion and participant, a total of 200 

frames were recorded. Open palm parallel to the sensor (Palm), 

closed palm with the thumb and index fingers extended (L), 

palm closed (Fist), fist perpendicular to the sensor (Fist m), 

and palm closed with the thumb extended (Palm). A closed 

palm with the index extended (Index), an open palm with the 

index and thumb constituting a circle (OK), an open palm 

perpendicular to the sensor (Palm m), a semi-close palm in the 

shape of a 'C,' and an open palm with all its fingers separated 

(Palm m). 

Figure 4 shows how the Human-Computer Interaction (HCI) 

dynamic hand-gesture database [43] images are pre-processed 

to create the threshold value. The pre-processed image's output 

is sent into the input of our new capsule neural network. Figure 

4(a) depicts images taken from the HCI dynamic hand-gesture 

database, subsequently transformed into grayscale images, as 

seen in Figure 4(b). The threshold is then determined using 

local data such as the greyscale pixel area's mean, range, and 

variance. Figure 4(c) shows the thresholding after it has been 

constructed.  

 

 
 

Figure 4. Processed images from database HCI 

 

 
 

Figure 5. Images from the leap movement hand gesture-

dependent dataset were utilized as input [44] 

 
 

Figure 6. Normalized images from the given input 

 

Figure 5 depicts the input images from the dataset in which 

dynamic hand gestures such as C, L, first, firstly moved, 

thumb, index, ok, and palm moved have been taken for this 

research work.  

Figure 6 depicts the visuals normalized by our optimized 

capsule neural network. Normalization for information is 

executed by subtracting the mean out of each pixel and 

dividing this result by a standard deviation afterwards. While 

the network is being trained, this allows for rapid convergence. 

Furthermore, it overcomes the neural network's generalization 

difficulty. 

 

5.2 Performance analysis 

 

This section encompasses the overall performance 

assessment of the presented model, which again was assessed 

utilizing accuracy and loss measures. 

 

 
 

Figure 7. Training as well as test loss 

 

5.2.1 Training as well as test loss 

Training loss refers to a mistake in the training set of data. 

Validation loss pertains to the error after passing this same 

validation set of information via a trained network. Figure 7 

 

            (a) 

 

 

 

              (b)                 (c)   
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depicts the proposed model's training and testing loss. Figure 

7 shows the train loss graph, and the proposed optimized 

capsule neural network model achieved less than 0.1 train loss 

in two epochs. The proposed optimized capsule neural 

network model obtained less than 0.1 validation loss in three 

epochs. 

 

5.2.2 Accuracy during training as well as testing 

Training accuracy refers to the trained model's capacity to 

recognize independent pictures that were not utilized during 

training. The trained model's potential to detect independent 

pictures which were not utilized during training has been 

regarded as test accuracy. Figure 8 depicts the recommended 

model's training and testing accuracy. The presented 

optimized capsule neural network model obtained a learning 

rate of more than 95% in 2 epochs, as demonstrated in Figure 

8, which is coloured green. The proposed optimized capsule 

neural network model obtained greater than 95% validation 

accuracy in three epochs, as indicated in the blue-coloured test 

accuracy graph. 

 

 
 

Figure 8. Accuracy during training as well as testing 

 

5.2.3 Accuracy and loss 

The average findings of overall tests conducted just on the 

HCI dataset have been visualized in Figure 9. While looking 

at Figure 9, it is clear that the recommended optimized capsule 

neural network model outperformed the others in the testing. 

The presented optimized capsule neural network model 

obtained a more than 90% learning rate in two epochs. Figure 

9 shows that the proposed optimized capsule neural network 

model achieved less than 10% train loss in two epochs. 

 

 
 

Figure 9. Accuracy and loss 

 

5.2.4 Error rate 

The erroneous rate was specified simply as the fraction of 

false data units to the total amount of data units transferred. 

Figure 10 depicts the error rate of a proposed technique vs the 

number of epochs utilizing optimal capsule neural network 

model training and testing data. Our advanced technique's 

performance is tested, and the error rate decreases as epochs 

grow. Furthermore, Figure 10 shows that the error rate stays 

constant after ten epochs. 

 

 
 

Figure 10. Error rate 

 

5.2.5 Execution time 

Figure 11 displays the developed model's epoch-depended 

operational time. The overall effectiveness of our presented 

strategy was tested, and as the number of epochs rises, the 

execution time decreases. As a result of the innovative, 

optimized capsule neural network model, our execution time 

is reduced. 

 

 
 

Figure 11. Execution time with epochs 

 

5.2.6 Confusion matrix 

Figure 12 exhibits typical confusion matrix underlying hand 

gesture identification. The proposed optimized capsule neural 

network produces the confusion matrix, in which these same 

diagonal values symbolize the overall count of effectively 

categorized tuples through the algorithms. In contrast, the off-

diagonal results depict the count of misclassified tuples even 

by designs. As higher the diagonal value, the better its 

effectiveness. 

 

 
 

Figure 12. Confusion matrix 
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5.3 Comparison results 

 

This section describes the proposed technique's comparison 

results, in which our novel technique is compared to baseline 

approaches such as volumetric Spatiograms of either the Local 

Binary Pattern (VS-LBP) [45], Local Binary Pattern (LBP) 

[46], Temporal Pyramid Matching of the Local Binary Pattern 

(TPM-LBP) [47], Pyramid Histogram of Gradients (PHOG) 

[48], as well as Scale Invariant Feature Transform (SIFT) [49]. 

 

Table 2. Overall accuracy 

 
Methods Accuracy (%) 

VS-LBP [45] 92.7 

LBP [46] 91.5 

TPM-LBP [47] 96.5 

PHOG [48] 94.6 

SIFT [49] 97.6 

Proposed Method 99.5 

 

Figure 13 depicts the total accuracy comparison. The 

suggested approach achieves improved accuracy by using an 

optimized capsule neural network. Our proposed approach 

outperformed the baseline Volumetric Spatiograms of Local 

Binary Pattern (VS-LBP) [45], Local Binary Pattern (LBP) 

[46], Temporal Pyramid Matching of Local Binary Pattern 

(TPM-LBP) [47], Pyramid Histogram of Gradients (PHOG) 

[47], as well as Scale Invariant Feature Transform (SIFT) [49] 

by 92.7, 91.5, 96.5, 94.6, and 97.6% and tabulated in Table 2. 

As a result, our unique approach has a greater accuracy of 

99.5% than existing techniques. 

Figure 14 depicts the total error rate comparison. An 

improved capsule neural network reduces the error rate of the 

proposed technique. Our suggested method outperformed the 

baseline Hidden Markov Model (HMM) [50], Hand 

Movements Temporal Features (HMTF) [51], Pyramid 

Histogram of Gradients (PHOG Top) [47], and Scale Invariant 

Feature Transform (SIFT) [49] by 35.7%, 27.6%, 11%, and 

7%, respectively, which is tabulated in Table 3. As a result, 

our unique approach has a 5% error rate, greater than the 

existing strategies. 

 

 
 

Figure 13. Overall accuracy 

 

Table 3. Overall error rate 

 
Methods Error Rate (%) 

HMM [50] 35.7 

HMTF [51] 27.6 

PHOG_Top [48] 11 

SIFT [49] 7 

Proposed Method 5 

 

 
 

Figure 14. Overall error rate 

 

Table 4. Accuracy comparison 

 
Methods Accuracy (%) 

Deep LSTM [52] 86.18 

HBU-LSTM [52] 89.98 

CNN-SVM [53] 97.28 

Proposed Method 99.5 

 

 
 

Figure 15. Accuracy comparison 

 

Figure 15 depicts the total accuracy comparison. The 

proposed approach attains improved accuracy by using an 

optimized capsule neural network. Our proposed approach 

outperformed the baseline Deep Long Short Term Memory 

(D-LSTM) [52], Hybrid Bidirectional Uni-directional Long 

Short Term Memory (HBU-LSTM) [52], and Convolutional 

Neural Network with Support Vector Machine (CNN-SVM) 

[53] such as 86.18%, 89.98%, and 97.28% which is 

accumulated in Table 4. As a result, our unique approach has 

a greater accuracy of 99.5% than existing techniques. 

We may infer from the visual assessment above that the 

developed strategy surpasses some conventional approaches 

regarding identification accuracy, rate of error, and 

performance. 

 

 

6. CONCLUSION 

 

Hand gesture detection has been the most effective 

communication tool in human-computer interaction, with a 

broad range of purposes. Deep learning hand gesture detection 

work has utilized CNN, RNN, and LSTM, including 3D CNN 

concepts with intelligent automobile control, sign language 

identification systems, wearable technologies, robotic devices, 

and virtual reality uses. While assessed jointly, deep learning 

systems utilized with hand gesture detection were highly 

effective throughout all tests. In contrast to this research, we 

proposed a novel model called an optimized capsule neural 
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network. Thus, by removing the pooling layer, our suggested 

model minimizes the computational complexity of the neural 

network and outperforms existing neural network models. 

When the training results were compared, the developed 

hybrid system had a maximum accuracy rate of 99.5% in these 

hand gesture-dependent datasets. 
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