
DDAPSO: Hybrid Discrete Dragonfly Algorithm and Particle Swarm Algorithm to Service

Selection and Composition for the Internet of Things Applications

Bilal Benmessahel1*, Farid Nouioua2,3

1 Mechatronics Laboratory (LMETR) - E1764200 and Faculty of Technology, Setif 1 University, Setif 19000, Algeria
2 LMSE and Computer Science Department, University of Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria
3 LIS UMR – CNRS 7020, Aix-Marseille University, Campus de St-Jérôme, Marseille 13397, France

Corresponding Author Email: bilal.benmessahel@gmail.com

https://doi.org/10.18280/ria.360309 ABSTRACT

Received: 16 February 2022

Accepted: 8 June 2022

Recently, the Internet of Things (IoT) has quickly risen as one of the most essential

technologies of this century. IoT allows users to connect to a vast network of smart devices,

services, and data. An important and challenging research problem in the Internet of Things

applications is how to select an appropriate service selection (SS). In the SS problem, users

can combine several services from diverse sources (things or devices) to satisfy their needs.

On the other hand, the SS problem is known for its complexity and is categorized as an NP-

hard problem; such problems are typically solved utilizing heuristics like bio-inspired

algorithms. In this research a new bio-inspired algorithm called DDAPSO is created to

solve the SS problem where a new strategy is proposed to maintain a balance between the

exploration and exploitation abilities. This hybrid algorithm is the result of coupling a

Discrete Dragonfly Algorithm (DDA) with the particle swarm optimization algorithm

(PSO). The suggested algorithm was properly tested using a variety of scenarios with

different numbers of services and with different numbers of concrete services per each

service set or task. The proposed algorithm is compared with the main recent well-known

algorithms, i.e. GA, PSO, DDA, ABC and MVO for service selection. In a large-scale

setting, the results clearly show that the DDAPSO algorithm outperforms other services

selection algorithms reported in the literature in terms of selection optimally as well as

execution time.

Keywords:

discrete dragonfly algorithm, particle swarm

algorithm, service selection, Internet of

Things (IoT)

1. INTRODUCTION

Nowadays, Internet of Things (IoT) is a hot spot for

researchers and industries. It establishes the road for the

development of new intelligent applications that may be used

to provide unique and important services in a variety of fields,

including smart cities/homes, transportation, healthcare

monitoring, industrial automation, agriculture, etc. [1].

IoT is composed of many smart objects providing software

services that abstract diverse functionalities (abstract service

(AS)). Composite services (CS) are made up of these

functionalities that can be combined to develop new

applications, to meet complicated user needs and specific

quality of service (QoS) requirements (such as response speed,

throughput, availability, price, popularity, etc.).

Service-oriented architecture (SOA) encourages the

development of complex applications by combining atomic

services to deliver new functions that none of the services

could give individually [2].

The word “concrete service” refers to a real service in this

work, whereas an abstract service, also known as a class of

services or tasks, defines the concrete service abstractly. There

may be numerous physical services for each abstract service,

each with the same functionality, but maybe varying in quality

levels.

The composition method consists in generating a new

service class by putting together existing classes in a plan or

actions flow, and then determining the best bindings between

these classes and their concrete services, also known as

candidate services [3].

The QoS-aware service selection and composition (QoS-SC)

problem is a combinatorial optimization problem that is also

an NP-hard problem. Metaheuristics, such as bio-inspired

algorithms, are commonly used to solve such types of

problems. The goal of this research is to create a new hybrid

bio-inspired algorithm “DDAPSO” to solve the QoS-SC

problem. In DDAPSO two algorithms are coupled: The first

one is a Discrete Dragonfly Algorithm (DDA) and the second

one is a particle swarm optimization algorithm (PSO).

To conduct the evolutionary process, The proposed

algorithm combines two phases: The first one is the

exploration phase and uses a discrete version of the Dragonfly

Algorithm (DDA) and the second one is the exploitation phase,

which is considered as a local search strategy, and uses the

particle swarm optimization algorithm (PSO). The

exploitation phase improves on the findings of the exploration

phase by looking deeper into the process of finding potential

places in search space.

When there is no nearby dragonfly, the discrete dragonfly

algorithm [4] uses the Levy flight technique to enhance

random behavior in the exploitation phase. This could

considerably improve the algorithm’s exploring process.

However, the best personal solution of dragonflies is not used

in the process. Due to this, DDA converges to the optimal

Revue d'Intelligence Artificielle
Vol. 36, No. 3, June, 2022, pp. 417-425

Journal homepage: http://iieta.org/journals/ria

417

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360309&domain=pdf

solution very slowly and can become stuck in the local optima

or perhaps be unable to find an optimal solution.

On another side, particle swarm optimization (PSO) [5] has

been demonstrated in many prior works to discover the best

solutions to a variety of problems. Since may rapidly converge

to the optimal solution, it is a good candidate for the

exploitation phase because it equated finding the optimal

solution by exploiting the best solutions of the particles.

The subsequent parts of the paper are organized as follows.

Section 2 introduces the related work. The QoS aware service

in IoT and the Mathematical model for QSS are presented in

section 3. In section 4, the proposed algorithm is presented in

detail, including the solution schema and its fitness evaluation

and the two phrases used in the algorithm. Section 5 analyses

and discusses the experimental results. Finally, conclusions

and future work are given in Section 6.

2. RELATED WORK

In IoT many heterogeneous smart objects are connected,

each object can provide a service. To develop and

commercialize more complicated IoT applications with

advanced capabilities, smart object services must be integrated

and composed. In the literature, many approaches for selecting

and composing IoT services based on their function have been

developed [6, 7]. This section gives a brief review of some

related works and approaches used to solve the service

selection and composition problem in IoT.

In Ref. [8], to locate the candidate service with the best QoS,

the authors used a lexicographic optimization strategy and a

quality of service constraint relaxation technique. Then, using

a simple weighting method, the IoT service selection problem

is turned into a mono-objective optimization problem, and the

final selected service that meets the user’s QoS needs is

derived from the candidate service.

To improve the quality of service factors in cloud-edge

computing, Hosseinzadeh et al. [9] propose a hybrid Artificial

Neural Network-based Particle Swarm Optimization (ANN-

PSO) Algorithm. A meta-heuristic and machine learning

algorithm for evaluating service selection problems is proved

in which formal approaches are used to ensure that functional

and non-functional specifications are met. Also, they provide

a formal verification method for checking some essential

Linear Temporal Logics (LTL) formulations based on a

labelled transition system.

Alizadeh et al. [10] give a method to choose the best

composition out of all feasible combinations without knowing

a priori the preferences quality of service of the users. For

determining the best QoS-aware service composition, they

offer a vector-valued MDP technique. The method solves

MDP using dynamic programming and learns the user’s

preferences through direct queries.

According to Khanouche et al. [11], to obtain a solution

which is very close to the optimal composition in an

acceptable amount of time, an improved teaching learning-

based QoS-aware services composition algorithm (ITL-QCA)

is suggested. The proposed services composition algorithm is

distinguished by a small number of tuning parameters and a

high exploration capability of the composition search space.

This enables the creation of compositions with high QoS

optimality without the need for any hard tuning parameters.

Also, Khanouche et al. [12] proposes an energy-centered

and QoS-aware services selection algorithm (EQSA) for IoT

services selection. Using a lexicographic optimization strategy

and a QoS constraints relaxation technique, the suggested

selection approach consists of pre-selecting the services that

provide the QoS level required for user satisfaction.

Kurdi et al. [13] propose in a multi-cloud environment, a

bio-inspired algorithm that simulates the behavior of cuckoo

birds and is used to identify a composite service that fulfills a

user’s request. They present a problem-dependent heuristic

that takes into account the SC problem and its unique

characteristics in a multi-cloud setting.

In order to establish an ideal balance between QoS level and

consumed energy of IoT service composition, Alsaryrah et al.

[14] model the problem as a bi-objective shortest path

optimization (BSPO) problem which has been solved using an

exact technique called pulse.

Li et al. [15] formulate the QoS-oriented service

composition problem as a multi-criteria goal programming

(MCGP) problem, and the obtained model is solved using a

multi-population genetic algorithm (MGA). MCGP not only

finds non-inferior composite services by lowering QoS

limitations to meet users’ QoS requirements, but it also

allocates high-quality Web services to combine a composite

service.

Kashyap et al. [16] use the NSGA2 multi-objective

metaheuristic search method to find the best solution to the

Service Composition Problem (SCP) in the context of Internet

of Things.

In summary, researchers seek to identify the best services

selection for composing an ideal composite service in IoT

applications. The development of efficient procedures remains

a critical endeavour. In reality, bio-inspired techniques can

produce near-optimal results in a short amount of time.

However, there are several limitations to this type of technique,

such as premature or local optimum stagnation and sluggish

convergence to reach near-optimal solutions. Furthermore,

because the QoS-vast CSC’s search space is a significant

challenge in terms of solution accuracy, our objective in this

study will be to propose a new effective algorithm to address

the problem.

3. QOS AWARE SERVICE SELECTION IN IOT

As stated in the introduction, QoS aware service selection

and composition in IOT refers to the combination of relevant

abstract services given by multiple service providers clustered

together in order to serve the user request. Different services

are required for the execution of these requests by the user.

Workflow refers to the sequence of specialized services

required to complete a task. Figure 1 shows the general schema

of a workflow selection.

An example taken from [17] is about trip planning in the

context of smart cities. A trip-planning application allows

users to automatically design a trip to visit places of interest

(PoIs) in the city using the IoT infrastructure. In this example

the compound task (trip-planning) uses different primitive

tasks or sub-services for booking local transportation based on

time preference, weather conditions, person’s current location,

nearest available cab, route-planning service, visiting hours of

PoIs around the city and automatic payment service. For each

of the sub-services evoked above, we can find multiple

concretes services providers using IoT devices. The difference

between these similar concrete services lies in their quality of

services.

418

The availability of functionally similar services increases

the complexity of selecting the best concrete services. So, our

aim in this work is to propose an efficient method that can

perform the selection of the best concrete services in terms of

quality of service in order to satisfy the requirements of the

end user.

Besides, the service selection and composition in the IoT

architecture is depicted in Figure 2. The service composition

of the IoT architecture is divided into five layers, the

relationship between the five layers is that each layer receives

as input the output of the previous layer, enriches it and feeds

the following layer. This relationship is similar to that found

between ISO layers in computer networks. The roles of each

layer are given as follows:

• The perception layer which is composed of sensors and

smart devices which are responsible of providing the

service as data or processing resource.

• The service provided with perception layer is send to

network layer which is responsible of transferring the

service to the cloud layer.

• The cloud layer presents the database of all services and

provides the different services by public or private cloud.

• The service selection and composition layer is

responsible of selecting the best sub services and

composing this later to achieve the global task.

• The application layer presents the interface where the

end users can use the service or requests the service.

Figure 1. QoS aware service selection and composition [18]

Figure 2. QoS aware service composition in IOT

3.1 QoS model for service selection and composition

We identify seven QoS characteristics as the quality

evaluation criteria of service according to domain application

of IoT, based on various QoS attributes for services published

by W3C working group.

(1) Execution time. The average time between when the

user sends the request and when the server responds is the

execution time of a service.

(2) Reliability. The percentage of service requests that are

executed successfully is the reliability of a service. The ratio

of successful executions to total number of services called is

used to calculate it.

(3) Execution cost. is the price to pay (in terms of money)

in order to exploit the service.

(4) Availability. During a certain time interval, the

percentage of time that a service is available.

(5) Scalability. The IoT environment’s ability to be

modified and changed in many conditions.

(6) Reputation. is a measure of its trustworthiness. It mainly

depends on end user's experiences of using the services. A

level of satisfaction for this QoS can be defined as “very high”,

“high”, “normal”, “poor” or “very poor”. We can just use a

ranking technique based on end user's experiences of using the

services for calculating the reputation quality.

(7) Response Time. It’s the amount of time between when a

user asks a service and when they get an answer.

The most extensively used service composition workflows

are: (a) sequential, (b) Loop, (c) Parallel and (d) Switch as

shown in Figure 3. The mathematical expressions used to

calculate the value of each QoS for the different workflow are

given in Table 1.

Figure 3. Workflows used in service composition

3.2 Mathematical model for QSC

In a service selection and compositions model, tasks are

represented as T=t1, t2, t3, ..., tn and the workflow must be

selected (sequential, Loop, Parallel and Switch).

Suppose that we have m atomic services given as S=s1, s2,

s3, ..., sm with the same functionality but varying only in QoS.

For each atomic service si, the QoS is expressed as ti time, ai

availability, ri reliability, and ci cost. As a result, there are a lot

of possibilities to allocate an atomic service from m services

for n tasks.

The service composition approach should also satisfy the

service level agreement (SLA), which is the level of service

required from the service provider. SLA is a contract between

a service provider and a consumer that ensures a minimum

level of service is maintained. It guarantees levels of reliability,

availability and responsiveness to systems and applications.

In other words, the service selection and composition

algorithm’s input is:

• The task list T=t1, t2, t3, ..., tn;

• Their workflow;

• The set of atomic services S=s1, s2, s3, ..., sm for each task;

419

• The QoS for each atomic service si, i=1, ..., m as {ti, ai, ri,

ci};

• SLA vector SL=(SLt, SLa, SLr, SLc) for QoS attribute

requested by the user.

The results are the chosen atomic service for each job from

a set of m atomic services that optimize QoS while meeting

the SLA requirements.

We evaluate the fitness value of the service composition

solution based on the QoS values of its selected atomic service

for each task, as well as composite models (i.e. sequential,

Loop, Parallel, and Switch) that specify the interconnection

architecture between these atomic services (see Eq. (3) below).

Cost and benefit criteria can be used to categorize the

characteristics of QoS. A larger value of a cost criterion

corresponds to a lower quality (e.g. execution price or

execution time). In contrast, a higher value of a benefit

criterion corresponds to a higher quality (e.g., reliability and

availability). The following relationship can be used to

normalize QoS attributes:

• normalization of aggregate cost attributes (i.e. qi∈cost

criteria):

𝑄(𝑞𝑖) = {

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑞𝑖)

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

1, 𝑖𝑓𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) = 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

(1)

• normalization of aggregate benefit attributes (i.e. qi ∈
benefit criteria):

𝑄(𝑞𝑖) = {

𝑎𝑔𝑔(𝑞𝑖) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖)) −

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

1, 𝑖𝑓𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) = 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

(2)

In Eqns. (1) and (2):

• max(qi) and min(qi) denote the maximum and minimum

possible values of the ith QoS criterion for the selected service

compositions, respectively,

• agg(max(qt)) denotes the aggregated value of the ith QoS

criterion of selected service compositions.

The set of possible aggregation operations is: agg={sum,

prod, avg, max and min}. Each QoS attribute can be applied

based on the composite model and the relevant QoS

parameter’s characteristic. For the sequential composite model,

the sum operation (i.e. sum) is the aggregation operation of the

QoS response time. We choose the sequential pattern in this

study because the other three patterns, as described, can be

easily transformed into the sequential pattern. The different

aggregation operations for composition models are shown in

Table 1 (sequential, Loop, Parallel and Switch).

If the user’s preference for the ith QoS attribute is wi ∈
[0,1] such that Σi=1

r wi = 1 , then the fitness value can be

constrained by the following formula for r attributes of the

composite service that satisfied users:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛴𝑖=1
𝑟 𝑄(𝑞𝑖) ∗ 𝑤𝑖 (3)

Table 1 show the different aggregation functions for QoS

properties based on the different workflows used in this work.

In Table 1, t, c, a and r are the QoS attributes, n refers to the

task number, j corresponds to jth candidate service, and i

corresponds to the ith subtask. Pi stands for the conditional

probability of the ith task, and L is the iteration number.

Table 1. Aggregation functions for QoS properties based on

the different workflows

QoS attribute
workflow

Sequential Switch Parallel Loop

Response time Σi=1
n tr,i

j
Σi=1

n tr,i
j min

1≤i≤n
 tr,i

j
L ∗ tr,i

j

Execution cost Σi=1
n cr,i

j
Σi=1

n cr,i
j min

1≤i≤n
 cr,i

j
L ∗ cr,i

j

Availability Πi=1
n ar,i

j
Πi=1

n ar,i
j max

1≤i≤n
 ar,i

j
(ar,i

j
)L

Reliability Πi=1
n rr,i

j
Πi=1

n rr,i
j max

1≤i≤n
 rr,i

j
(rr,i

j
)L

4. THE PROPOSED APPROACH

In optimization, many algorithms suffer from the

phenomenon of being locked in the local optima while the

algorithms aim at finding the optimum solution to the problem.

Any optimization algorithm is composed of the two main

phases: The exploration phase and the exploitation phase. The

primary goal of the exploration phase is to investigate the

global space as widely as possible. Whereas, the exploitation

phase builds on the findings of the exploration phase by

delving deeper into the process of finding potential places in

space.

The Dragonfly Algorithm (DA) [4], is a new optimization

algorithm that is inspired by the behaviors of dragonflies in

nature. It has been shown to be more effective and superior to

various well-known meta-heuristics in the literature. DA is

proposed for continuous functions and engineering problems.

To make this algorithm work in the discrete space, this paper

introduces a new version of DA called Discrete Dragonfly

Algorithm (DDA). In DDA when there is no surrounding

dragonfly, the Dragonfly algorithm uses the Levy flying to

improve randomization and stochastic behavior. This could

considerably improve the algorithm’s exploring process.

During the operation, however, the best experience, which is

the personal best, of dragonfly is not used. The DDA

converges to the optimal solution relatively slowly and as a

result of this, it can become stranded in the local optima. On

another side, Particle Swarm Optimization (PSO) [5] has been

demonstrated in a number of works in the literature to discover

the best answer to a variety of problems. PSO rapidly converge

to the solution thanks to its equations that enable it to find the

best solution by exploiting the best experience of the particles,

i.e., it is a good algorithm at the exploitation level.

To take advantage of both algorithms, we develop in this

paper a new method that combines the significant features of

the DDA and PSO algorithms. the idea of the proposed method

is to exploit DDA at the exploration phase and PSO at the

exploitation phase. The dragonflies in DA are initially set to

traverse the search space in order to locate the global solution

region. At the end of the DDA phase, which happens when it

cannot further improve its best solution, the best service

selection (the best solution) found by DDA is used as the

Global best solution (Gbest) of the PSO phase. So the

transferred data between the two phases is the individual

representing the best solution found by DDA.

Notice that in the proposed algorithm DDAPSO, we use a

stagnation factor (SF). This factor is a counter which allows

the passage from the exploration phase achieved by DDA to

the exploitation phase performed by PSO. The implementation

of SF is given in algorithm 1 below.

420

4.1 The exploration phase (DDA PHASE)

In this phase, we use DDA algorithm to locate the area

where it is most likely to find the best solution for our problem.

The following the mathematical formalization of the

explanation task performed by DDA.

Suppose that we have a population of N dragonflies. Eq. (4)

gives the position of the ith dragonfly.

𝑋𝑖 = {𝑥𝑖
1, 𝑥𝑖

2, . . . , 𝑥𝑖
𝑁} (4)

The solution in the search space corresponds to each

dragonfly in the swarm. Separation, Alignment, Cohesion,

Attraction towards food sources, and diversion towards enemy

sources are five different operators that influence dragonfly

swarm movement (see Figure 4).

The following is a mathematical model of each of these

behaviors:

The below formula is used to compute the separation:

𝑆𝑖 = −Σ𝑗=1
𝑁 𝑋 − 𝑋𝑗 (5)

where, X represents the current individual’s position, Xj

represents the position of the jth neighboring individual, and N

represents the total number of surrounding members.

The following formula is used to calculate alignment:

𝐴𝑖 =
Σ𝑗=1

𝑁 𝑉𝑗

𝑁
(6)

where, Xj denotes the jth neighboring individual’s velocity.

The following formula is used to calculate cohesion:

𝐶𝑖 =
Σ𝑗=1

𝑁 𝑋𝑗

𝑁
− 𝑋 (7)

The following formula is used to calculate the attraction to

a food source:

𝐹𝑖 = 𝑋+ − 𝑋 (8)

where, the position of the food source is represented by X+.

The formula below is used to calculate enemy distraction:

𝐸𝑖 = 𝑋− + 𝑋 (9)

where, the enemy’s position is indicated by X-.

A step vector should be calculated as follows to update the

position of artificial dragonflies in a search space:

Δ𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤Δ𝑋𝑡 (10)

where, s denotes the weight of separation, and Si denotes the

ith individual’s separation, a denotes the alignment weight, A

denotes the ith individual’s alignment, and c denotes the

cohesion weight. Ci is the ith individual’s cohesiveness, f is the

food factor, and the ith individual’s food supply is fi. e is the

enemy component, Ei is the ith individual’s adversary location,

w is the inertia weight and t is the number of iterations.

The position vectors are calculated after the step vector has

been determined:

𝑋𝑡+1 = 𝑋𝑡 + Δ𝑋𝑡 (11)

When there are no neighboring solutions, the artificial

dragonflies must fly across the search space utilizing a random

walk (Levy flight) to improve their randomness, stochastic

behavior, and exploration. In fact, The DDA phase use

neighboring solutions to fly across the search space.

Figure 4. Different behaviours of Dragonflies in a swarm [4]

The random walk ((Levy flight) is used intermittently only

when there are no improvement of the solution given by

neighboring dragonflies. In this case, the objective of Levy

flight technique is to try to bring out the DDA algorithm from

the stagnation by exploring new regions of the search space.

The following equation is used to update the position of

dragonflies in this case:

𝑋𝑡+1 = 𝑋𝑡 + 𝐿𝑒𝑣𝑦(𝑑)𝑋𝑡 (12)

DDA uses an approximation function to convert form

continues to discrete values as in Table 2.

Table 2. A solution for n=5 tasks and m=100 atomic services

T1 T2 T3 T4 T5

𝑇𝑖
𝑗

∈ [0.5,100] 10.6 3.7 52.4 86.8 8.1

𝐷𝑇𝑖
𝑗

= 𝑟𝑜𝑢𝑛𝑑(𝑇𝑖
𝑗
) 11 4 52 87 8

4.2 The exploitation phase (PSO phase)

In this phase, we use discrete particle swarm optimization

(DPSO) as exploitation process to exploit the results found by

DDA in the exploration phase. Particle swarm optimization

(PSO) is a population-based search strategy inspired by bird

swarm behavior (information exchange) [5]. In PSO, a random

population of particles is created at the beginning and these

particles move at a given velocity based on their interactions

with other particles in the population. The personal best of

each particle, as well as the global best of all the particles, are

tracked at each iteration, and the velocity of all the particles is

modified depending on this information. Weights are assigned

to the global and personal bests based on a set of parameters.

To transform a continuous value to a discrete value, we

employ an approximation function, just like in DDA. The

notations used in this section are mostly based on the study [5].

Each particle is represented by a d dimensional vector that is

randomly initialized with discrete values for each individual

value.

𝑋𝑖 = (𝑥𝑖1 , 𝑥𝑖2, 𝑥𝑖3, ⋯ , 𝑥𝑖𝑑) (13)

421

The velocity is initialized to zero and represented as a d

dimensional vector.

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, ⋯ , 𝑣𝑖𝑑) (14)

The best personal position that each particle has recorded is

saved as:

𝑃𝑖 = (𝑝𝑖1 , 𝑝𝑖2, 𝑝𝑖3 , ⋯ , 𝑝𝑖𝑑) (15)

Each particle adjusts its position according to its personal

best (Pbest) and the global best (gbest) at each iteration.

𝑉𝑖
𝑡+1 = 𝑊 ∗ 𝑉𝑖

𝑡 + 𝑐1 ∗ 𝑟𝑖1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖
𝑡) + 𝑐2

∗ 𝑟𝑖2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖
𝑡)

(16)

The acceleration constants c1 and c2 are referred to as

cognitive and social parameters, respectively. The values r1

and r2 are random real values in the interval [0, 1]. The inertia

weight is denoted by w. It regulates how the particle’s past

velocity affects the velocity in the next iteration.

4.3 Solution encoding

In the proposed DDAPSO, to represent each solution of

QoS-oriented service selection and composition in IoT, we use

an array of integer numbers. Each number in the array

represents a specific concrete service from the task in question.

Figure 5 shows a composite concrete IoT service consisting of

five tasks, with each element in the array encoding the

concrete IoT service chosen from its associated task. The third

entry in the array, for example, indicates the concrete service

number 25 of the third task.

Figure 5. Solution encoding

4.4 The DDAPSO algorithm

The concepts issued from the discrete dragonfly and the

discrete particle swarm optimization algorithms that are

described in the previous sections are combined to obtain the

DDAPSO algorithm that can benefit from their coexistence.

The dragonfly algorithm has the ability to obtain diverse

solutions with its formation of static swarms and the discrete

PSO converging to the global best solution creates synergy in

the implementation of the hybrid algorithm which results in

increased performance. The Flowchart of DDAPSO is given

in Figure 6. The Pseudo-codes of DDAPSO is shown in

Algorithm 1.

Figure 6. Flowchart of DDAPSO

5. EVALUATION METHODOLOGY

The following materials, which include both hardware and

software components, have been used to implement and

analyze the Hybrid Discrete Dragonfly Algorithm and Particle

Swarm Algorithm:

• Hardware: Windows OS with 2.9 GHz Intel core i3

processor and 8 GB of RAM.

• Software: Matlab version 18a.

422

To verify the effectiveness, efficiency, and superiority of

DDAPSO algorithm, its performance is compared with five

recent optimization algorithms using large-scale intances of

service selection and composition problem. These

optimization algorithms are: Multi-verse optimization

algorithm (MVO) [19, 20], Genetic algorithm (GA) [21, 22],

Discrete version of Dragonfly Algorithm (DDA) [4], Particle

Swarm Optimization Algorithm (PSO) [5] and Artificial Bee

Colony Optimization Algorithm (ABC) [23]. All algorithms’

parameter settings are shown in Table 3.

The above-mentioned references of the comparisons

algorithms are used to choose these settings. Hence, these

sources should be consulted for more information on the

meaning and function of the parameters.

The population size for all algorithms was unified, the

execution of all algorithms was performed 30 times, and each

execution included 1000 iterations. Each repetition’s average

fitness value, performance stability, and execution time has

been correctly recorded.

Table 3. Parameters settings for different Algorithms

 Parameter Values

Algorithms Pop size

MVO 30
Wep max 1

Wep min 0.3

GA 30
Pc 0.6

PM 0.01

DDA 30

PSO 30

Wmax 0.9

Wmin 0.2

C1 2

C2 2

ABC 30
L 1

NG 3

DDAPSO 30

Wmax 0.9

Wmin 0.2

C1 2

C2 2

The experimental studies have been conducted using real

datasets (Ver. 2.0) [24], which include 25 service selection and

composition challenges. The datasets [24] contain about 2500

real tasks, each with nine QoS criteria. Cost, response time,

availability, and dependability are the most effective QoS

attributes that optimization algorithms use to solve the service

selection and composition problem. With a total of 25 datasets,

different scenarios were built with a number of tasks equal to

20, 40, 60, 80, and 100, and each task is composed of a number

of concrete services equal to 200, 400, 600, 800, and 1000 as

in Ref. [20].

Figures 7-10 represent the results of all algorithms in terms

of the average solution where the scenarios have a workflow

comprising 20, 40, 60, 80 and 100 abstract tasks and, each

abstract task, comprising 200, 400, 600, 800, and 1000

concrete services. The average execution time is shown in

Figure 9 for all algorithms.

We can observe from Figures 7 and 8 that for the average of

the QoS fitness value, the proposed algorithm DDAPSO

outperforms all the other algorithms for all scenarios. From

Figure 8, where the number of concrete services is equal to

1000, the average of QoS fitness value obtained by DDAPSO

is 5,27E-01, whereas that obtained by MVO, GA, DDA, PSO

and ABC are 4,66E-01, 4,91E-01, 4,92E-01, 4,38E-01, 4,53E-

01, respectively.

Figure 7. Comparison of results (scenario 1: the number of

tasks n changes from 10 to 100, and the number of concrete

services m varies from 10 to 100)

Figure 8. Comparison of results (scenario 2: the number of

task n=20 and the number of concrete services m changes

from 200 to 1000)

Figure 9. The quality of the optimal composite service

obtained by the compared algorithms

Figure 10. Comparison of computation times (scenario 3: the

number of tasks n=20 and the number of concrete services m

varies from 200 to 1000)

423

Table 4. Statistical comparison between DDAPSO and all other algorithms in terms of best solution

Average of Qos fitness Values

Datasets MVO GA DDA PSO ABC DDAPSO

20-200 5,99E-01 5,91E-01 6,23E-01 5,86E-01 6,12E-01 6,37E-01

20-400 4,46E-01 4,70E-01 4,72E-01 4,62E-01 4,73E-01 5,01E-01

20-600 7,05E-01 7,33E-01 7,58E-01 6,96E-01 7,12E-01 7,88E-01

20-800 4,67E-01 5,13E-01 5,27E-01 4,95E-01 5,29E-01 5,37E-01

20-1000 5,84E-01 5,62E-01 6,16E-01 5,68E-01 5,68E-01 6,41E-01

40-200 7,15E-01 7,41E-01 7,65E-01 7,02E-01 7,36E-01 7,88E-01

40-400 5,22E-01 5,36E-01 5,80E-01 4,96E-01 5,37E-01 5,94E-01

40-600 5,19E-01 5,46E-01 5,58E-01 5,02E-01 5,22E-01 6,06E-01

40-800 3,93E-01 4,39E-01 4,56E-01 3,90E-01 4,21E-01 4,57E-01

40-1000 5,36E-01 5,53E-01 5,76E-01 5,27E-01 5,07E-01 5,96E-01

60-200 5,10E-01 5,54E-01 6,06E-01 4,97E-01 5,39E-01 6,34E-01

60-400 6,06E-01 6,44E-01 6,45E-01 5,88E-01 6,14E-01 6,87E-01

60-600 4,99E-01 5,31E-01 5,58E-01 4,84E-01 5,36E-01 5,59E-01

60-800 5,26E-01 5,57E-01 5,60E-01 4,94E-01 5,08E-01 5,68E-01

60-1000 5,45E-01 6,11E-01 5,99E-01 5,53E-01 5,68E-01 6,47E-01

80-200 6,24E-01 5,85E-01 5,64E-01 5,42E-01 5,60E-01 6,62E-01

80-400 5,58E-01 5,73E-01 5,69E-01 5,16E-01 5,10E-01 6,25E-01

80-600 4,82E-01 5,20E-01 5,26E-01 4,73E-01 4,90E-01 5,99E-01

80-800 5,10E-01 5,51E-01 5,55E-01 4,95E-01 5,21E-01 5,66E-01

80-1000 6,16E-01 6,67E-01 6,56E-01 6,35E-01 6,44E-01 7,35E-01

100-200 5,01E-01 5,10E-01 4,98E-01 4,82E-01 4,62E-01 5,83E-01

100-400 4,35E-01 4,63E-01 4,52E-01 4,08E-01 4,26E-01 4,94E-01

100-600 5,41E-01 5,84E-01 5,87E-01 5,46E-01 5,62E-01 6,47E-01

100-800 7,38E-01 7,54E-01 7,48E-01 6,60E-01 7,16E-01 7,88E-01

100-1000 4,66E-01 4,91E-01 4,92E-01 4,38E-01 4,53E-01 5,27E-01

The best QoS fitness values are in bold

The convergence curves of the different algorithms vs the

number of function evaluations for QoS are shown in Figure 9

with the number of tasks equal to 100 and the number of micro

services equal to 1000. The number of iterations is assumed to

be the same as the number of tasks. The number of function

evaluations in each iteration is equal to the number of

individuals in a population, which is 30. Our experiments

show that all algorithms suffer from stagnation, except the

proposed algorithm DDPASO which succeeds to escape from

stagnation.

Figure 10 shows the Computation time comparison in

seconds of DDAPSO compared to the other five algorithms for

a number of tasks n=20 and a number of concrete services m

which varies from 200 to 1000 (the number of iterations is

fixed to 100). As seen from Figure 5, the execution time of

DDAPSO with respect to 1000 concrete services was 2,1 s,

whereas the execution time of MVO, GA, DDA, PSO and

ABC were 0,7558794, 0,594872, 3,0191281, 1,7630176 and

3,5550047 s, respectively. From Figure 10, we can observe

that DDAPSO is in the DDAPSO is in the middle and presents

average time of computation in comparison with the other

algorithms.

Table 4 shows that DDAPSO obtains the best results for 25

out of 25 datasets, i.e. DDAPSO performed best on all datasets

while MVO, GA, DDA, PSO, and ABC failed to provide any

best solution.

6. CONCLUSION AND FUTURE WORK

Users can access IoT computing services via the internet.

However, different services with comparable functionality but

varying levels of service quality exist. As a result, selecting the

suitable services among the service sets to meet the user’s

needs is a difficult problem. In this paper we have proposed a

hybrid algorithm which combines discrete dragonfly

algorithm and particle swarm optimization for service

selection and composition in the IoT context.

Both the exploration and exploitation stages of this

algorithm are improved. Simulation results show that the

proposed approach outperforms competing algorithms,

especially when dealing with high-dimensional and service

composition problems with SLA constraints.

In future research, the service selection and composition

problem for the Internet of Things will be seen as a multi-

objective optimization problem, with the goal of developing a

novel multi-objective optimization method to improve the

service selection and composition with QoS.

REFERENCES

[1] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,

M., Ayyash, M. (2015). Internet of Things: A survey on

enabling technologies, protocols, and applications. IEEE

Communications Surveys & Tutorials, 17(4): 2347-2376.

http://dx.doi.org/10.1109/COMST.2015.2444095

[2] Giusto, D., Iera, A., Morabito, G., Atzori, L. (2010). The

Internet of Things: 20th Tyrrhenian workshop on digital

communications. Springer Science & Business Media.

http://dx.doi.org/10.1007/978-1-4419-1674-7

[3] Jatoth, C., Gangadharan, G.R., Buyya, R. (2015).

Computational intelligence based QoS-aware web

service composition: a systematic literature review. IEEE

Transactions on Services Computing, 10(3): 475-492.

http://dx.doi.org/10.1109/TSC.2015.2473840

[4] Mirjalili, S. (2016). Dragonfly algorithm: a new meta-

heuristic optimization technique for solving single-

objective, discrete, and multi-objective problems. Neural

Computing and Applications, 27(4): 1053-1073.

424

http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1007/978-1-4419-1674-7
http://dx.doi.org/10.1109/TSC.2015.2473840

https://doi.org/10.1007/s00521-015-1920-1

[5] Kennedy, J., Eberhart, R. (1995). Particle swarm

optimization. Proceedings of IEEE International

Conference on Neural Networks. IV. pp. 1942-1948.

http://dx.doi.org/10.1109/ICNN.1995.488968

[6] Jatoth, C., Gangadharan, G.R., Buyya, R. (2015).

Computational intelligence based QoS-aware web

service composition: A systematic literature review.

IEEE Transactions on Services Computing, 10(3): 475-

492. http://dx.doi.org/10.1109/TSC.2015.2473840

[7] Asghari, P., Rahmani, A.M., Javadi, H.H.S. (2018).

Service composition approaches in IoT: A systematic

review. Journal of Network and Computer Applications,

120: 61-77. https://doi.org/10.1016/j.jnca.2018.07.013

[8] Zhang, X., Geng, J., Ma, J., Liu, H., Niu, X., Mao, W.

(2021). A hybrid service selection optimization

algorithm in Internet of Things. EURASIP Journal on

Wireless Communications and Networking, 4.

http://dx.doi.org/10.1186/s13638-020-01883-2

[9] Hosseinzadeh, M., Tho, Q.T., Ali, S., Rahmani, A.M.,

Souri, A., Norouzi, M., Huynh, B. (2020). A hybrid

service selection and composition model for cloud-edge

computing in the Internet of Things. IEEE Access, 8:

85939-85949.

http://dx.doi.org/10.1109/ACCESS.2020.2992262

[10] Alizadeh, P., Osmani, A., Khanouche, M.E., Chibani, A.,

Amirat, Y. (2020). Reinforcement learning for

interactive QoS-aware services composition. IEEE

Systems Journal, 15(1): 1098-1108.

http://dx.doi.org/10.1109/JSYST.2020.2997069

[11] Khanouche, M.E., Atmani, N., Cherifi, A. (2020).

Improved teaching learning-based QoS-aware services

composition for Internet of Things. IEEE Systems

Journal, 14(3): 4155-4164.

http://dx.doi.org/10.1109/JSYST.2019.2960677

[12] Khanouche, M.E., Amirat, Y., Chibani, A., Kerkar, M.,

Yachir, A. (2016). Energy-centered and QoS-aware

services selection for Internet of Things. IEEE

Transactions on Automation Science and Engineering,

13(3): 1256-1269.

http://dx.doi.org/10.1109/TASE.2016.2539240

[13] Kurdi, H., Ezzat, F., Altoaimy, L., Ahmed, S.H., Youcef-

Toumi, K. (2018). MultiCuckoo: multi-cloud service

composition using a cuckoo-inspired algorithm for the

Internet of Things Applications. IEEE Access, 6: 56737-

56749.

http://dx.doi.org/10.1109/ACCESS.2018.2872744

[14] Alsaryrah, O., Mashal, I., Chung, T.Y. (2018). Bi-

objective optimization for energy aware Internet of

Things service composition. IEEE Access, 6: 26809-

26819.

http://dx.doi.org/10.1109/ACCESS.2018.2836334

[15] Li, Q., Dou, R., Chen, F., Nan, G. (2014). A QoS-

oriented Web service composition approach based on

multi-population genetic algorithm for Internet of Things.

International Journal of Computational Intelligence

Systems, 7(sup2): 26-34.

https://doi.org/10.1080/18756891.2014.947090

[16] Kashyap, N., Kumari, A.C., Chhikara, R. (2020). Multi-

objective optimization using NSGA II for service

composition in IoT. Procedia Computer Science, 167

1928-1933. https://doi.org/10.1016/j.procs.2020.03.214

[17] Purohit, L., Kumar, S. (2019). Web services in the

Internet of Things and smart cities: A case study on

classification techniques. IEEE Consumer Electronics

Magazine, 8(2): 39-43.

https://doi.org/10.1109/MCE.2018.2880808

[18] Zhou, J., Gao, L., Yao, X., Zhang, C., Chan, F.T., Lin, Y.

(2019). Evolutionary algorithms for many-objective

cloud service composition: Performance assessments and

comparisons. Swarm and Evolutionary Computation, 51:

100605. https://doi.org/10.1016/j.swevo.2019.100605

[19] Mirjalili, S., Mirjalili, S.M., Hatamlou, A. (2016). Multi-

verse optimizer: A nature-inspired algorithm for global

optimization. Neural Computing and Applications, 27(2):

495-513. http://dx.doi.org/10.1007/s00521-015-1870-7

[20] Yaghoubi, M., Maroosi, A. (2020). Simulation and

modeling of an improved multi-verse optimization

algorithm for QoS-aware web service composition with

service level agreements in the cloud environments.

Simulation Modelling Practice and Theory, 103: 102090.

https://doi.org/10.1016/j.simpat.2020.102090

[21] Golberg, D.E. (1989). Genetic algorithms in search,

optimization, and machine learning. Addion Wesley,

1989(102): 36.

https://doi.org/10.1023/A:1022602019183

[22] Wang, D., Yang, Y., Mi, Z. (2015). A genetic-based

approach to web service composition in geo-distributed

cloud environment. Computers & Electrical Engineering,

43: 129-141.

https://doi.org/10.1016/j.compeleceng.2014.10.008

[23] Karaboga, D., Basturk, B. (2007). Artificial bee colony

(ABC) optimization algorithm for solving constrained

optimization problems. In International Fuzzy Systems

Association World Congress, pp. 789-798.

https://doi.org/10.1007/978-3-540-72950-1_77

[24] Al-Masri, E., Mahmoud, Q.H. (2007). Qos-based

discovery and ranking of web services. In 2007 16th

International Conference on Computer Communications

and Networks, pp. 529-534.

http://dx.doi.org/10.1109/ICCCN.2007.4317873

425

http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/TSC.2015.2473840
https://doi.org/10.1016/j.jnca.2018.07.013
http://dx.doi.org/10.1186/s13638-020-01883-2
http://dx.doi.org/10.1109/ACCESS.2020.2992262
http://dx.doi.org/10.1109/JSYST.2020.2997069
http://dx.doi.org/10.1109/JSYST.2019.2960677
http://dx.doi.org/10.1109/TASE.2016.2539240
http://dx.doi.org/10.1109/ACCESS.2018.2872744
http://dx.doi.org/10.1109/ACCESS.2018.2836334
https://doi.org/10.1080/18756891.2014.947090
https://doi.org/10.1016/j.procs.2020.03.214
https://doi.org/10.1016/j.swevo.2019.100605
http://dx.doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.simpat.2020.102090
https://doi.org/10.1016/j.compeleceng.2014.10.008
http://dx.doi.org/10.1109/ICCCN.2007.4317873

