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Recently, the Internet of Things (IoT) has quickly risen as one of the most essential 

technologies of this century. IoT allows users to connect to a vast network of smart devices, 

services, and data. An important and challenging research problem in the Internet of Things 

applications is how to select an appropriate service selection (SS). In the SS problem, users 

can combine several services from diverse sources (things or devices) to satisfy their needs. 

On the other hand, the SS problem is known for its complexity and is categorized as an NP-

hard problem; such problems are typically solved utilizing heuristics like bio-inspired 

algorithms. In this research a new bio-inspired algorithm called DDAPSO is created to 

solve the SS problem where a new strategy is proposed to maintain a balance between the 

exploration and exploitation abilities. This hybrid algorithm is the result of coupling a 

Discrete Dragonfly Algorithm (DDA) with the particle swarm optimization algorithm 

(PSO). The suggested algorithm was properly tested using a variety of scenarios with 

different numbers of services and with different numbers of concrete services per each 

service set or task. The proposed algorithm is compared with the main recent well-known 

algorithms, i.e. GA, PSO, DDA, ABC and MVO for service selection. In a large-scale 

setting, the results clearly show that the DDAPSO algorithm outperforms other services 

selection algorithms reported in the literature in terms of selection optimally as well as 

execution time. 
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1. INTRODUCTION

Nowadays, Internet of Things (IoT) is a hot spot for 

researchers and industries. It establishes the road for the 

development of new intelligent applications that may be used 

to provide unique and important services in a variety of fields, 

including smart cities/homes, transportation, healthcare 

monitoring, industrial automation, agriculture, etc. [1]. 

IoT is composed of many smart objects providing software 

services that abstract diverse functionalities (abstract service 

(AS)). Composite services (CS) are made up of these 

functionalities that can be combined to develop new 

applications, to meet complicated user needs and specific 

quality of service (QoS) requirements (such as response speed, 

throughput, availability, price, popularity, etc.). 

Service-oriented architecture (SOA) encourages the 

development of complex applications by combining atomic 

services to deliver new functions that none of the services 

could give individually [2]. 

The word “concrete service” refers to a real service in this 

work, whereas an abstract service, also known as a class of 

services or tasks, defines the concrete service abstractly. There 

may be numerous physical services for each abstract service, 

each with the same functionality, but maybe varying in quality 

levels. 

The composition method consists in generating a new 

service class by putting together existing classes in a plan or 

actions flow, and then determining the best bindings between 

these classes and their concrete services, also known as 

candidate services [3]. 

The QoS-aware service selection and composition (QoS-SC) 

problem is a combinatorial optimization problem that is also 

an NP-hard problem. Metaheuristics, such as bio-inspired 

algorithms, are commonly used to solve such types of 

problems. The goal of this research is to create a new hybrid 

bio-inspired algorithm “DDAPSO” to solve the QoS-SC 

problem. In DDAPSO two algorithms are coupled: The first 

one is a Discrete Dragonfly Algorithm (DDA) and the second 

one is a particle swarm optimization algorithm (PSO). 

To conduct the evolutionary process, The proposed 

algorithm combines two phases: The first one is the 

exploration phase and uses a discrete version of the Dragonfly 

Algorithm (DDA) and the second one is the exploitation phase, 

which is considered as a local search strategy, and uses the 

particle swarm optimization algorithm (PSO). The 

exploitation phase improves on the findings of the exploration 

phase by looking deeper into the process of finding potential 

places in search space. 

When there is no nearby dragonfly, the discrete dragonfly 

algorithm [4] uses the Levy flight technique to enhance 

random behavior in the exploitation phase. This could 

considerably improve the algorithm’s exploring process. 

However, the best personal solution of dragonflies is not used 

in the process. Due to this, DDA converges to the optimal 
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solution very slowly and can become stuck in the local optima 

or perhaps be unable to find an optimal solution. 

On another side, particle swarm optimization (PSO) [5] has 

been demonstrated in many prior works to discover the best 

solutions to a variety of problems. Since may rapidly converge 

to the optimal solution, it is a good candidate for the 

exploitation phase because it equated finding the optimal 

solution by exploiting the best solutions of the particles. 

The subsequent parts of the paper are organized as follows. 

Section 2 introduces the related work. The QoS aware service 

in IoT and the Mathematical model for QSS are presented in 

section 3. In section 4, the proposed algorithm is presented in 

detail, including the solution schema and its fitness evaluation 

and the two phrases used in the algorithm. Section 5 analyses 

and discusses the experimental results. Finally, conclusions 

and future work are given in Section 6. 

2. RELATED WORK

In IoT many heterogeneous smart objects are connected, 

each object can provide a service. To develop and 

commercialize more complicated IoT applications with 

advanced capabilities, smart object services must be integrated 

and composed. In the literature, many approaches for selecting 

and composing IoT services based on their function have been 

developed [6, 7]. This section gives a brief review of some 

related works and approaches used to solve the service 

selection and composition problem in IoT. 

In Ref. [8], to locate the candidate service with the best QoS, 

the authors used a lexicographic optimization strategy and a 

quality of service constraint relaxation technique. Then, using 

a simple weighting method, the IoT service selection problem 

is turned into a mono-objective optimization problem, and the 

final selected service that meets the user’s QoS needs is 

derived from the candidate service. 

To improve the quality of service factors in cloud-edge 

computing, Hosseinzadeh et al. [9] propose a hybrid Artificial 

Neural Network-based Particle Swarm Optimization (ANN-

PSO) Algorithm. A meta-heuristic and machine learning 

algorithm for evaluating service selection problems is proved 

in which formal approaches are used to ensure that functional 

and non-functional specifications are met. Also, they provide 

a formal verification method for checking some essential 

Linear Temporal Logics (LTL) formulations based on a 

labelled transition system. 

Alizadeh et al. [10] give a method to choose the best 

composition out of all feasible combinations without knowing 

a priori the preferences quality of service of the users. For 

determining the best QoS-aware service composition, they 

offer a vector-valued MDP technique. The method solves 

MDP using dynamic programming and learns the user’s 

preferences through direct queries. 

According to Khanouche et al. [11], to obtain a solution 

which is very close to the optimal composition in an 

acceptable amount of time, an improved teaching learning-

based QoS-aware services composition algorithm (ITL-QCA) 

is suggested. The proposed services composition algorithm is 

distinguished by a small number of tuning parameters and a 

high exploration capability of the composition search space. 

This enables the creation of compositions with high QoS 

optimality without the need for any hard tuning parameters. 

Also, Khanouche et al. [12] proposes an energy-centered 

and QoS-aware services selection algorithm (EQSA) for IoT 

services selection. Using a lexicographic optimization strategy 

and a QoS constraints relaxation technique, the suggested 

selection approach consists of pre-selecting the services that 

provide the QoS level required for user satisfaction. 

Kurdi et al. [13] propose in a multi-cloud environment, a 

bio-inspired algorithm that simulates the behavior of cuckoo 

birds and is used to identify a composite service that fulfills a 

user’s request. They present a problem-dependent heuristic 

that takes into account the SC problem and its unique 

characteristics in a multi-cloud setting. 

In order to establish an ideal balance between QoS level and 

consumed energy of IoT service composition, Alsaryrah et al. 

[14] model the problem as a bi-objective shortest path

optimization (BSPO) problem which has been solved using an

exact technique called pulse.

Li et al. [15] formulate the QoS-oriented service 

composition problem as a multi-criteria goal programming 

(MCGP) problem, and the obtained model is solved using a 

multi-population genetic algorithm (MGA). MCGP not only 

finds non-inferior composite services by lowering QoS 

limitations to meet users’ QoS requirements, but it also 

allocates high-quality Web services to combine a composite 

service. 

Kashyap et al. [16] use the NSGA2 multi-objective 

metaheuristic search method to find the best solution to the 

Service Composition Problem (SCP) in the context of Internet 

of Things. 

In summary, researchers seek to identify the best services 

selection for composing an ideal composite service in IoT 

applications. The development of efficient procedures remains 

a critical endeavour. In reality, bio-inspired techniques can 

produce near-optimal results in a short amount of time. 

However, there are several limitations to this type of technique, 

such as premature or local optimum stagnation and sluggish 

convergence to reach near-optimal solutions. Furthermore, 

because the QoS-vast CSC’s search space is a significant 

challenge in terms of solution accuracy, our objective in this 

study will be to propose a new effective algorithm to address 

the problem. 

3. QOS AWARE SERVICE SELECTION IN IOT

As stated in the introduction, QoS aware service selection 

and composition in IOT refers to the combination of relevant 

abstract services given by multiple service providers clustered 

together in order to serve the user request. Different services 

are required for the execution of these requests by the user. 

Workflow refers to the sequence of specialized services 

required to complete a task. Figure 1 shows the general schema 

of a workflow selection.  

An example taken from [17] is about trip planning in the 

context of smart cities. A trip-planning application allows 

users to automatically design a trip to visit places of interest 

(PoIs) in the city using the IoT infrastructure. In this example 

the compound task (trip-planning) uses different primitive 

tasks or sub-services for booking local transportation based on 

time preference, weather conditions, person’s current location, 

nearest available cab, route-planning service, visiting hours of 

PoIs around the city and automatic payment service. For each 

of the sub-services evoked above, we can find multiple 

concretes services providers using IoT devices. The difference 

between these similar concrete services lies in their quality of 

services. 

418



The availability of functionally similar services increases 

the complexity of selecting the best concrete services. So, our 

aim in this work is to propose an efficient method that can 

perform the selection of the best concrete services in terms of 

quality of service in order to satisfy the requirements of the 

end user. 

Besides, the service selection and composition in the IoT 

architecture is depicted in Figure 2. The service composition 

of the IoT architecture is divided into five layers, the 

relationship between the five layers is that each layer receives 

as input the output of the previous layer, enriches it and feeds 

the following layer. This relationship is similar to that found 

between ISO layers in computer networks. The roles of each 

layer are given as follows: 

• The perception layer which is composed of sensors and

smart devices which are responsible of providing the

service as data or processing resource.

• The service provided with perception layer is send to

network layer which is responsible of transferring the

service to the cloud layer.

• The cloud layer presents the database of all services and

provides the different services by public or private cloud.

• The service selection and composition layer is

responsible of selecting the best sub services and

composing this later to achieve the global task.

• The application layer presents the interface where the

end users can use the service or requests the service.

Figure 1. QoS aware service selection and composition [18] 

Figure 2. QoS aware service composition in IOT 

3.1 QoS model for service selection and composition 

We identify seven QoS characteristics as the quality 

evaluation criteria of service according to domain application 

of IoT, based on various QoS attributes for services published 

by W3C working group. 

(1) Execution time. The average time between when the

user sends the request and when the server responds is the 

execution time of a service. 

(2) Reliability. The percentage of service requests that are

executed successfully is the reliability of a service. The ratio 

of successful executions to total number of services called is 

used to calculate it. 

(3) Execution cost. is the price to pay (in terms of money)

in order to exploit the service. 

(4) Availability. During a certain time interval, the

percentage of time that a service is available. 

(5) Scalability. The IoT environment’s ability to be

modified and changed in many conditions. 

(6) Reputation. is a measure of its trustworthiness. It mainly

depends on end user's experiences of using the services. A 

level of satisfaction for this QoS can be defined as “very high”, 

“high”, “normal”, “poor” or “very poor”. We can just use a 

ranking technique based on end user's experiences of using the 

services for calculating the reputation quality. 

(7) Response Time. It’s the amount of time between when a

user asks a service and when they get an answer. 

The most extensively used service composition workflows 

are: (a) sequential, (b) Loop, (c) Parallel and (d) Switch as 

shown in Figure 3. The mathematical expressions used to 

calculate the value of each QoS for the different workflow are 

given in Table 1. 

Figure 3. Workflows used in service composition 

3.2 Mathematical model for QSC 

In a service selection and compositions model, tasks are 

represented as T=t1, t2, t3, ..., tn and the workflow must be 

selected (sequential, Loop, Parallel and Switch). 

Suppose that we have m atomic services given as S=s1, s2, 

s3, ..., sm with the same functionality but varying only in QoS. 

For each atomic service si, the QoS is expressed as ti time, ai 

availability, ri reliability, and ci cost. As a result, there are a lot 

of possibilities to allocate an atomic service from m services 

for n tasks. 

The service composition approach should also satisfy the 

service level agreement (SLA), which is the level of service 

required from the service provider. SLA is a contract between 

a service provider and a consumer that ensures a minimum 

level of service is maintained. It guarantees levels of reliability, 

availability and responsiveness to systems and applications. 

In other words, the service selection and composition 

algorithm’s input is: 

• The task list T=t1, t2, t3, ..., tn;

• Their workflow;

• The set of atomic services S=s1, s2, s3, ..., sm for each task;
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• The QoS for each atomic service si, i=1, ..., m as {ti, ai, ri,

ci}; 

• SLA vector SL=(SLt, SLa, SLr, SLc) for QoS attribute

requested by the user. 

The results are the chosen atomic service for each job from 

a set of m atomic services that optimize QoS while meeting 

the SLA requirements. 

We evaluate the fitness value of the service composition 

solution based on the QoS values of its selected atomic service 

for each task, as well as composite models (i.e. sequential, 

Loop, Parallel, and Switch) that specify the interconnection 

architecture between these atomic services (see Eq. (3) below). 

Cost and benefit criteria can be used to categorize the 

characteristics of QoS. A larger value of a cost criterion 

corresponds to a lower quality (e.g. execution price or 

execution time). In contrast, a higher value of a benefit 

criterion corresponds to a higher quality (e.g., reliability and 

availability). The following relationship can be used to 

normalize QoS attributes: 

• normalization of aggregate cost attributes (i.e. qi∈cost

criteria): 

𝑄(𝑞𝑖) = {

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑞𝑖)

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

1, 𝑖𝑓𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) = 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

(1) 

• normalization of aggregate benefit attributes (i.e. qi ∈
benefit criteria): 

𝑄(𝑞𝑖) = {

𝑎𝑔𝑔(𝑞𝑖) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖)) −

𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) − 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

1, 𝑖𝑓𝑎𝑔𝑔(𝑚𝑎𝑥(𝑞𝑖)) = 𝑎𝑔𝑔(𝑚𝑖𝑛(𝑞𝑖))

(2) 

In Eqns. (1) and (2): 

• max(qi) and min(qi) denote the maximum and minimum

possible values of the ith QoS criterion for the selected service 

compositions, respectively,  

• agg(max(qt)) denotes the aggregated value of the ith QoS

criterion of selected service compositions. 

The set of possible aggregation operations is: agg={sum, 

prod, avg, max and min}. Each QoS attribute can be applied 

based on the composite model and the relevant QoS 

parameter’s characteristic. For the sequential composite model, 

the sum operation (i.e. sum) is the aggregation operation of the 

QoS response time. We choose the sequential pattern in this 

study because the other three patterns, as described, can be 

easily transformed into the sequential pattern. The different 

aggregation operations for composition models are shown in 

Table 1 (sequential, Loop, Parallel and Switch). 

If the user’s preference for the ith  QoS attribute is wi ∈
[0,1]  such that Σi=1

r wi = 1 , then the fitness value can be

constrained by the following formula for r attributes of the 

composite service that satisfied users: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛴𝑖=1
𝑟 𝑄(𝑞𝑖) ∗ 𝑤𝑖 (3) 

Table 1 show the different aggregation functions for QoS 

properties based on the different workflows used in this work. 

In Table 1, t, c, a and r are the QoS attributes, n refers to the 

task number, j corresponds to jth candidate service, and i 

corresponds to the ith subtask. Pi stands for the conditional 

probability of the ith task, and L is the iteration number. 

Table 1. Aggregation functions for QoS properties based on 

the different workflows 

QoS attribute 
workflow 

Sequential Switch Parallel Loop 

Response time Σi=1
n tr,i

j
Σi=1

n tr,i
j min

1≤i≤n
 tr,i

j
L ∗ tr,i

j

Execution cost Σi=1
n cr,i

j
Σi=1

n cr,i
j min

1≤i≤n
 cr,i

j
L ∗ cr,i

j

Availability Πi=1
n ar,i

j
Πi=1

n ar,i
j max

1≤i≤n
 ar,i

j
(ar,i

j
)L

Reliability Πi=1
n rr,i

j
Πi=1

n rr,i
j max

1≤i≤n
 rr,i

j
(rr,i

j
)L

4. THE PROPOSED APPROACH

In optimization, many algorithms suffer from the 

phenomenon of being locked in the local optima while the 

algorithms aim at finding the optimum solution to the problem. 

Any optimization algorithm is composed of the two main 

phases: The exploration phase and the exploitation phase. The 

primary goal of the exploration phase is to investigate the 

global space as widely as possible. Whereas, the exploitation 

phase builds on the findings of the exploration phase by 

delving deeper into the process of finding potential places in 

space. 

The Dragonfly Algorithm (DA) [4], is a new optimization 

algorithm that is inspired by the behaviors of dragonflies in 

nature. It has been shown to be more effective and superior to 

various well-known meta-heuristics in the literature. DA is 

proposed for continuous functions and engineering problems. 

To make this algorithm work in the discrete space, this paper 

introduces a new version of DA called Discrete Dragonfly 

Algorithm (DDA). In DDA when there is no surrounding 

dragonfly, the Dragonfly algorithm uses the Levy flying to 

improve randomization and stochastic behavior. This could 

considerably improve the algorithm’s exploring process. 

During the operation, however, the best experience, which is 

the personal best, of dragonfly is not used. The DDA 

converges to the optimal solution relatively slowly and as a 

result of this, it can become stranded in the local optima. On 

another side, Particle Swarm Optimization (PSO) [5] has been 

demonstrated in a number of works in the literature to discover 

the best answer to a variety of problems. PSO rapidly converge 

to the solution thanks to its equations that enable it to find the 

best solution by exploiting the best experience of the particles, 

i.e., it is a good algorithm at the exploitation level.

To take advantage of both algorithms, we develop in this

paper a new method that combines the significant features of 

the DDA and PSO algorithms. the idea of the proposed method 

is to exploit DDA at the exploration phase and PSO at the 

exploitation phase. The dragonflies in DA are initially set to 

traverse the search space in order to locate the global solution 

region. At the end of the DDA phase, which happens when it 

cannot further improve its best solution, the best service 

selection (the best solution) found by DDA is used as the 

Global best solution (Gbest) of the PSO phase. So the 

transferred data between the two phases is the individual 

representing the best solution found by DDA.  

Notice that in the proposed algorithm DDAPSO, we use a 

stagnation factor (SF). This factor is a counter which allows 

the passage from the exploration phase achieved by DDA to 

the exploitation phase performed by PSO. The implementation 

of SF is given in algorithm 1 below. 
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4.1 The exploration phase (DDA PHASE) 

In this phase, we use DDA algorithm to locate the area 

where it is most likely to find the best solution for our problem. 

The following the mathematical formalization of the 

explanation task performed by DDA. 

Suppose that we have a population of N dragonflies. Eq. (4) 

gives the position of the ith dragonfly. 

𝑋𝑖 = {𝑥𝑖
1, 𝑥𝑖

2, . . . , 𝑥𝑖
𝑁} (4) 

The solution in the search space corresponds to each 

dragonfly in the swarm. Separation, Alignment, Cohesion, 

Attraction towards food sources, and diversion towards enemy 

sources are five different operators that influence dragonfly 

swarm movement (see Figure 4). 

The following is a mathematical model of each of these 

behaviors: 

The below formula is used to compute the separation: 

𝑆𝑖 = −Σ𝑗=1
𝑁 𝑋 − 𝑋𝑗 (5) 

where, X represents the current individual’s position, Xj 

represents the position of the jth neighboring individual, and N 

represents the total number of surrounding members. 

The following formula is used to calculate alignment: 

𝐴𝑖 =
Σ𝑗=1

𝑁 𝑉𝑗

𝑁
(6) 

where, Xj denotes the jth neighboring individual’s velocity. 

The following formula is used to calculate cohesion: 

𝐶𝑖 =
Σ𝑗=1

𝑁 𝑋𝑗

𝑁
− 𝑋 (7) 

The following formula is used to calculate the attraction to 

a food source: 

𝐹𝑖 = 𝑋+ − 𝑋 (8) 

where, the position of the food source is represented by X+. 

The formula below is used to calculate enemy distraction: 

𝐸𝑖 = 𝑋− + 𝑋 (9) 

where, the enemy’s position is indicated by X-. 

A step vector should be calculated as follows to update the 

position of artificial dragonflies in a search space: 

Δ𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤Δ𝑋𝑡 (10) 

where, s denotes the weight of separation, and Si denotes the 

ith individual’s separation, a denotes the alignment weight, A 

denotes the ith individual’s alignment, and c denotes the 

cohesion weight. Ci is the ith individual’s cohesiveness, f is the 

food factor, and the ith individual’s food supply is fi. e is the 

enemy component, Ei is the ith individual’s adversary location, 

w is the inertia weight and t is the number of iterations. 

The position vectors are calculated after the step vector has 

been determined: 

𝑋𝑡+1 = 𝑋𝑡 + Δ𝑋𝑡 (11) 

When there are no neighboring solutions, the artificial 

dragonflies must fly across the search space utilizing a random 

walk (Levy flight) to improve their randomness, stochastic 

behavior, and exploration. In fact, The DDA phase use 

neighboring solutions to fly across the search space. 

Figure 4. Different behaviours of Dragonflies in a swarm [4] 

The random walk ((Levy flight) is used intermittently only 

when there are no improvement of the solution given by 

neighboring dragonflies. In this case, the objective of Levy 

flight technique is to try to bring out the DDA algorithm from 

the stagnation by exploring new regions of the search space. 

The following equation is used to update the position of 

dragonflies in this case: 

𝑋𝑡+1 = 𝑋𝑡 + 𝐿𝑒𝑣𝑦(𝑑)𝑋𝑡 (12) 

DDA uses an approximation function to convert form 

continues to discrete values as in Table 2. 

Table 2. A solution for n=5 tasks and m=100 atomic services 

T1 T2 T3 T4 T5 

𝑇𝑖
𝑗

∈ [0.5,100] 10.6 3.7 52.4 86.8 8.1 

𝐷𝑇𝑖
𝑗

= 𝑟𝑜𝑢𝑛𝑑(𝑇𝑖
𝑗
) 11 4 52 87 8 

4.2 The exploitation phase (PSO phase) 

In this phase, we use discrete particle swarm optimization 

(DPSO) as exploitation process to exploit the results found by 

DDA in the exploration phase. Particle swarm optimization 

(PSO) is a population-based search strategy inspired by bird 

swarm behavior (information exchange) [5]. In PSO, a random 

population of particles is created at the beginning and these 

particles move at a given velocity based on their interactions 

with other particles in the population. The personal best of 

each particle, as well as the global best of all the particles, are 

tracked at each iteration, and the velocity of all the particles is 

modified depending on this information. Weights are assigned 

to the global and personal bests based on a set of parameters. 

To transform a continuous value to a discrete value, we 

employ an approximation function, just like in DDA. The 

notations used in this section are mostly based on the study [5]. 

Each particle is represented by a d dimensional vector that is 

randomly initialized with discrete values for each individual 

value. 

𝑋𝑖 = (𝑥𝑖1 , 𝑥𝑖2, 𝑥𝑖3, ⋯ , 𝑥𝑖𝑑) (13) 
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The velocity is initialized to zero and represented as a d 

dimensional vector. 

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, ⋯ , 𝑣𝑖𝑑) (14) 

The best personal position that each particle has recorded is 

saved as: 

𝑃𝑖 = (𝑝𝑖1 , 𝑝𝑖2, 𝑝𝑖3 , ⋯ , 𝑝𝑖𝑑) (15) 

Each particle adjusts its position according to its personal 

best (Pbest) and the global best (gbest) at each iteration. 

𝑉𝑖
𝑡+1 = 𝑊 ∗ 𝑉𝑖

𝑡 + 𝑐1 ∗ 𝑟𝑖1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖
𝑡) + 𝑐2

∗ 𝑟𝑖2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖
𝑡)

(16) 

The acceleration constants c1 and c2 are referred to as 

cognitive and social parameters, respectively. The values r1 

and r2 are random real values in the interval [0, 1]. The inertia 

weight is denoted by w. It regulates how the particle’s past 

velocity affects the velocity in the next iteration. 

4.3 Solution encoding 

In the proposed DDAPSO, to represent each solution of 

QoS-oriented service selection and composition in IoT, we use 

an array of integer numbers. Each number in the array 

represents a specific concrete service from the task in question. 

Figure 5 shows a composite concrete IoT service consisting of 

five tasks, with each element in the array encoding the 

concrete IoT service chosen from its associated task. The third 

entry in the array, for example, indicates the concrete service 

number 25 of the third task. 

Figure 5. Solution encoding 

4.4 The DDAPSO algorithm 

The concepts issued from the discrete dragonfly and the 

discrete particle swarm optimization algorithms that are 

described in the previous sections are combined to obtain the 

DDAPSO algorithm that can benefit from their coexistence. 

The dragonfly algorithm has the ability to obtain diverse 

solutions with its formation of static swarms and the discrete 

PSO converging to the global best solution creates synergy in 

the implementation of the hybrid algorithm which results in 

increased performance. The Flowchart of DDAPSO is given 

in Figure 6. The Pseudo-codes of DDAPSO is shown in 

Algorithm 1. 

Figure 6. Flowchart of DDAPSO 

5. EVALUATION METHODOLOGY

The following materials, which include both hardware and

software components, have been used to implement and 

analyze the Hybrid Discrete Dragonfly Algorithm and Particle 

Swarm Algorithm: 

• Hardware: Windows OS with 2.9 GHz Intel core i3

processor and 8 GB of RAM. 

• Software: Matlab version 18a.
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To verify the effectiveness, efficiency, and superiority of 

DDAPSO algorithm, its performance is compared with five 

recent optimization algorithms using large-scale intances of 

service selection and composition problem. These 

optimization algorithms are: Multi-verse optimization 

algorithm (MVO) [19, 20], Genetic algorithm (GA) [21, 22], 

Discrete version of Dragonfly Algorithm (DDA) [4], Particle 

Swarm Optimization Algorithm (PSO) [5] and Artificial Bee 

Colony Optimization Algorithm (ABC) [23]. All algorithms’ 

parameter settings are shown in Table 3. 

The above-mentioned references of the comparisons 

algorithms are used to choose these settings. Hence, these 

sources should be consulted for more information on the 

meaning and function of the parameters. 

The population size for all algorithms was unified, the 

execution of all algorithms was performed 30 times, and each 

execution included 1000 iterations. Each repetition’s average 

fitness value, performance stability, and execution time has 

been correctly recorded. 

 

Table 3. Parameters settings for different Algorithms 

 
 Parameter Values 

Algorithms  Pop size  

MVO 30 
Wep max 1 

Wep min 0.3 

GA 30 
Pc 0.6 

PM 0.01 

DDA 30   

PSO 30 

Wmax 0.9 

Wmin 0.2 

C1 2 

C2 2 

ABC 30 
L 1 

NG 3 

DDAPSO 30 

Wmax 0.9 

Wmin 0.2 

C1 2 

C2 2 

 

The experimental studies have been conducted using real 

datasets (Ver. 2.0) [24], which include 25 service selection and 

composition challenges. The datasets [24] contain about 2500 

real tasks, each with nine QoS criteria. Cost, response time, 

availability, and dependability are the most effective QoS 

attributes that optimization algorithms use to solve the service 

selection and composition problem. With a total of 25 datasets, 

different scenarios were built with a number of tasks equal to 

20, 40, 60, 80, and 100, and each task is composed of a number 

of concrete services equal to 200, 400, 600, 800, and 1000 as 

in Ref. [20]. 

Figures 7-10 represent the results of all algorithms in terms 

of the average solution where the scenarios have a workflow 

comprising 20, 40, 60, 80 and 100 abstract tasks and, each 

abstract task, comprising 200, 400, 600, 800, and 1000 

concrete services. The average execution time is shown in 

Figure 9 for all algorithms. 

We can observe from Figures 7 and 8 that for the average of 

the QoS fitness value, the proposed algorithm DDAPSO 

outperforms all the other algorithms for all scenarios. From 

Figure 8, where the number of concrete services is equal to 

1000, the average of QoS fitness value obtained by DDAPSO 

is 5,27E-01, whereas that obtained by MVO, GA, DDA, PSO 

and ABC are 4,66E-01, 4,91E-01, 4,92E-01, 4,38E-01, 4,53E-

01, respectively. 

 

 
 

Figure 7. Comparison of results (scenario 1: the number of 

tasks n changes from 10 to 100, and the number of concrete 

services m varies from 10 to 100) 
 

 
 

Figure 8. Comparison of results (scenario 2: the number of 

task n=20 and the number of concrete services m changes 

from 200 to 1000) 

 

 
 

Figure 9. The quality of the optimal composite service 

obtained by the compared algorithms 

 

 
 

Figure 10. Comparison of computation times (scenario 3: the 

number of tasks n=20 and the number of concrete services m 

varies from 200 to 1000) 
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Table 4. Statistical comparison between DDAPSO and all other algorithms in terms of best solution 

 
Average of Qos fitness Values 

Datasets MVO GA DDA PSO ABC DDAPSO 

20-200 5,99E-01 5,91E-01 6,23E-01 5,86E-01 6,12E-01 6,37E-01 

20-400 4,46E-01 4,70E-01 4,72E-01 4,62E-01 4,73E-01 5,01E-01 

20-600 7,05E-01 7,33E-01 7,58E-01 6,96E-01 7,12E-01 7,88E-01 

20-800 4,67E-01 5,13E-01 5,27E-01 4,95E-01 5,29E-01 5,37E-01 

20-1000 5,84E-01 5,62E-01 6,16E-01 5,68E-01 5,68E-01 6,41E-01 

40-200 7,15E-01 7,41E-01 7,65E-01 7,02E-01 7,36E-01 7,88E-01 

40-400 5,22E-01 5,36E-01 5,80E-01 4,96E-01 5,37E-01 5,94E-01 

40-600 5,19E-01 5,46E-01 5,58E-01 5,02E-01 5,22E-01 6,06E-01 

40-800 3,93E-01 4,39E-01 4,56E-01 3,90E-01 4,21E-01 4,57E-01 

40-1000 5,36E-01 5,53E-01 5,76E-01 5,27E-01 5,07E-01 5,96E-01 

60-200 5,10E-01 5,54E-01 6,06E-01 4,97E-01 5,39E-01 6,34E-01 

60-400 6,06E-01 6,44E-01 6,45E-01 5,88E-01 6,14E-01 6,87E-01 

60-600 4,99E-01 5,31E-01 5,58E-01 4,84E-01 5,36E-01 5,59E-01 

60-800 5,26E-01 5,57E-01 5,60E-01 4,94E-01 5,08E-01 5,68E-01 

60-1000 5,45E-01 6,11E-01 5,99E-01 5,53E-01 5,68E-01 6,47E-01 

80-200 6,24E-01 5,85E-01 5,64E-01 5,42E-01 5,60E-01 6,62E-01 

80-400 5,58E-01 5,73E-01 5,69E-01 5,16E-01 5,10E-01 6,25E-01 

80-600 4,82E-01 5,20E-01 5,26E-01 4,73E-01 4,90E-01 5,99E-01 

80-800 5,10E-01 5,51E-01 5,55E-01 4,95E-01 5,21E-01 5,66E-01 

80-1000 6,16E-01 6,67E-01 6,56E-01 6,35E-01 6,44E-01 7,35E-01 

100-200 5,01E-01 5,10E-01 4,98E-01 4,82E-01 4,62E-01 5,83E-01 

100-400 4,35E-01 4,63E-01 4,52E-01 4,08E-01 4,26E-01 4,94E-01 

100-600 5,41E-01 5,84E-01 5,87E-01 5,46E-01 5,62E-01 6,47E-01 

100-800 7,38E-01 7,54E-01 7,48E-01 6,60E-01 7,16E-01 7,88E-01 

100-1000 4,66E-01 4,91E-01 4,92E-01 4,38E-01 4,53E-01 5,27E-01 

The best QoS fitness values are in bold 

 

The convergence curves of the different algorithms vs the 

number of function evaluations for QoS are shown in Figure 9 

with the number of tasks equal to 100 and the number of micro 

services equal to 1000. The number of iterations is assumed to 

be the same as the number of tasks. The number of function 

evaluations in each iteration is equal to the number of 

individuals in a population, which is 30. Our experiments 

show that all algorithms suffer from stagnation, except the 

proposed algorithm DDPASO which succeeds to escape from 

stagnation. 

Figure 10 shows the Computation time comparison in 

seconds of DDAPSO compared to the other five algorithms for 

a number of tasks n=20 and a number of concrete services m 

which varies from 200 to 1000 (the number of iterations is 

fixed to 100). As seen from Figure 5, the execution time of 

DDAPSO with respect to 1000 concrete services was 2,1 s, 

whereas the execution time of MVO, GA, DDA, PSO and 

ABC were 0,7558794, 0,594872, 3,0191281, 1,7630176 and 

3,5550047 s, respectively. From Figure 10, we can observe 

that DDAPSO is in the DDAPSO is in the middle and presents 

average time of computation in comparison with the other 

algorithms. 

Table 4 shows that DDAPSO obtains the best results for 25 

out of 25 datasets, i.e. DDAPSO performed best on all datasets 

while MVO, GA, DDA, PSO, and ABC failed to provide any 

best solution. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

Users can access IoT computing services via the internet. 

However, different services with comparable functionality but 

varying levels of service quality exist. As a result, selecting the 

suitable services among the service sets to meet the user’s 

needs is a difficult problem. In this paper we have proposed a 

hybrid algorithm which combines discrete dragonfly 

algorithm and particle swarm optimization for service 

selection and composition in the IoT context. 

Both the exploration and exploitation stages of this 

algorithm are improved. Simulation results show that the 

proposed approach outperforms competing algorithms, 

especially when dealing with high-dimensional and service 

composition problems with SLA constraints. 

In future research, the service selection and composition 

problem for the Internet of Things will be seen as a multi-

objective optimization problem, with the goal of developing a 

novel multi-objective optimization method to improve the 

service selection and composition with QoS. 
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