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 The present investigation suggests a novel control technique that merge the advantage of 

the adaptive Neuro- Fuzzy inference system (ANFIS) with the proportional integral 

derivative (PID) controller, abbreviated as (ANFIS-PID), for dealing with the dynamics of 

the of wheeled mobile robot (WMR). A comparative study of various meta-heuristic 

optimization algorithms is made. The results revealed the highest efficiency of the 

suggested ANFIS-PID technique compared to seven designed PID controllers, in terms of 

settling and rise time, overshoot, and the integral square error (ISE) as a cost function. 

Various cases, study (circular path, diamond path, zigzag path) have highlighted the over 

performance of mentioned controller. Moreover, this hybrid technique is fused with back-

stepping approach for the kinematic control. A lemniscate and a square trajectory were 

performed to clarify the capability of the mentioned controller.  
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1. INTRODUCTION 

 

Nowadays, the tracking control issue in the robotics field 

still challenging and fascinates many researchers. Specifically 

for the wheeled mobile robot (WMR), since it covers a large 

civilian and military demands such as agriculture, 

manufacturing, services, medical, rescue and combat [1-5]. 

Each application has a special constraint connected to the 

robot composition (non-holonomic properties of WMRs), 

Moreover, WMRs are disturbed by task conditions, external 

load interruption, wheel slips, feedback sensors, which make 

the design of a precise control technique more difficult [6]. For 

that purpose, the investigating for new highly precise 

regulation schemes is required. 

In order to overcome this issue, new control methods have 

been suggested in the last decade. These techniques can be 

classified into two parts and described by the kinematic or 

dynamic models [7]. The first group of researchers introduces 

a basic PID controller to handle the dynamics problem of the 

robot mobile and concentrating on developing the kinematic 

controller, an adaptive technique based on neural network 

using gradient decent for the auto-tuning the parameters for 

the back-stepping controller is demonstrated in Ref. [8], fuzzy 

logic controller for the self-tuning of the kinematic controller 

in Ref. [9], and a radial basis function network has been 

utilized in Ref. [10]. 

The major reason behind preferring this kind of controllers 

is that the dynamic controller’s design is more complex 

compared to the kinematic one, while the dynamics depend on 

robot internal components such as the moment of inertia, mass, 

frictions [11]. However, the underestimating of the complete 

dynamics knowledge produce insufficient control technique, a 

torque controller is essential in many applications, like high-

speed motions and large transportation [11]. For that reason, a 

sliding mode controller is introduced in references [12-14], an 

online real parameters identification of the WMR dynamics is 

suggested by Martins et al. [15], an adaptive back-stepping 

controller in reference [16], using an adaptive neural network 

controller for treating unmodeled dynamics in references [17, 

18], fuzzy logic controller has been applied in reference [19, 

20]. 

The PID control technique is one of the highly practical and 

most generally adopted approaches in various industrial 

applications because of the simplicity structure and good 

performance [21]. However, optimizing the parameter of the 

controller is challenging, especially for MIMO systems 

applications, to overcome this issue, many studies prove the 

high capability of meta-heuristic algorithms in dealing with 

this problem. We distingue, Genetic Algorithms (GA) [22], 

using particle swarm optimizer (PSO) [23], whale optimizer 
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(WOA) [24], grey wolf optimizer (GWO) [25], using Henry 

gas solubility optimizer in reference [26], artificial bee 

colonies (ABC) [27]. 

Generally, the fixed parameters reduce the control 

performance [28]. In order to overcome this problem, many 

researchers focusing on the inventing of new modified PID, 

like integrating the neural network with traditional PID 

controller (NN-PID) in references [29-31]. This concept gets 

the simplicity of a PID controllers and the capacity of 

understanding, adaptability and treating with nonlinearity 

from neural networks. Other researchers aiming to use the 

fuzzy logic controller as a tuning method for adjusting PID 

gains [32-34], a Reinforcement Learning method, have been 

utilized in reference [35]. However, the need for new 

regulation mechanisms growing higher and higher in 

accordance to complexity of the working environment. 

The ANFIS could solve this problem by combining fuzzy 

logic controller advantage to deal with the uncertainties with 

the ability of neural networks to learn from plants/processes, 

this concept has attracted an exceptional attention in various 

engineering fields [36-40]. In this context, several hybrid 

designs have been made to enhance the robustness of the 

ANFIS controlled system, by benefiting from advantage and 

simplicity of a PID controller, we distingue the following 

mergers: hybrid ANFIS-PID [41-43], (ANFIS+I) controller 

optimizing using multidimensional PSO for Quadrotor 

Position Control [44], (ANFIS-PD+I) controller for robot 

manipulator [45]. 

The purpose of this work is to design a new hybrid 

optimized controller (ANFIS with PID) by using the grey wolf 

optimizer (GWO). The suggested controller is abbreviated as 

GWO-ANFIS-PID controller and it combines the advantages 

of the PID controller with the ANFIS controller to deal with 

the speed and angle control of the robot mobile. Moreover, a 

back-stepping kinematic controller is located in external loop 

for the regulation of the X, Y and theta coordinates. The 

following points present the main contributions of our work: 

Introducing seven new meta-heuristics techniques to 

optimize the PID controller, based on the objective function 

under the name integral square error (ISE). Where these 

techniques are: particle swarm optimizer (PSO), grey wolf 

optimizer algorithm (GWO), dragonfly algorithm (DA), ant 

lion optimizer (ALO), grasshopper algorithm (GOA), moth 

flame optimizer (MFO), and the artificial bee colony algorithm 

(ABC). 

Several tests in time domain have been made (such as rise 

time (tr), settling time (ts), overshoot (Mp), peak, and peak 

time (tp)) to give judgments between the selected nature 

inspired algorithms. 

Results in MATLAB Shows the best designed PID 

candidate to realize the new hybrid controller (ANFIS-PID). 

Improving the ANFIS-PID gains by the power full 

algorithm namely, grey wolf optimizer (GWO). Where several 

cases study (circular path, diamond path and zigzag path) 

gives the demonstration of the high robustness for the 

mentioned controller over the seven designed PID controllers. 

Combining the ANFIS-PID controller with a Back-stepping 

approached in order to guarantee a minimum tracking error. 

To prove the need for a kinematic controller, two types of 

paths are selected, the lemniscates and the squares trajectory 

to highlight the superiority of the designed technique in 

handling both smooth and sharp shaped trajectory. 

The rest of the paper is presented as follows: The complete 

mathematical model of the wheeled mobile robot is presented 

in Section 2. The global control strategy is described in Section 

3, where the simulation findings and analyses are summarized 

in Sections 4 and section 5, the conclusion of the work. 

 

 

2. MODELING THE WHEELED MOBILE ROBOT 

 

The WMR in Figure 1 has two pairs of DC motors, where 

R represents the driving wheels radius, φL and φR are the left 

and right spinning angles of wheels, respectively. Separated 

by a distance L, θ is the robot angle. At the distance d from the 

mind-point A, where (Xa, Ya) is the coordinate of A in the 

inertial frame (X,Y), and the coordinates of any position in the 

robot frame are illustrated by (Xr, Yr). 

 

 
 

Figure 1. Description of the WMR 

 

There are three basic steps to arrive at the complete 

mathematical model of the WMR: the kinematic model, 

dynamic model, and finally the DC actuator modeling, which 

are expressed as follows: 

 

2.1 Kinematic model 

 

This section concentrates on revealing the relationship 

between the linear and angular velocities of the mechanical 

processes without analyzing the forces disturbing the motion 

[8]. The linear speed of each driving wheel is represented as 

follows: 

 

{
𝑣𝑅 = 𝑅𝜑̇𝑅
𝑣𝐿 = 𝑅𝜑̇𝑅

 (1) 

 

The linear and angular speeds for the WMR are formulated 

by Eqns. (2) and (3): 

 

𝑣 =
𝑣𝑅 + 𝑣𝐿
2

= 𝑅
(𝜑̇𝑅 + 𝜑̇𝐿)

2
 (2) 

 

ɷ =
𝑣𝑅 − 𝑣𝐿
2𝐿

= 𝑅
(𝜑̇𝑅 − 𝜑̇𝐿)

2𝐿
 (3) 

 

The kinematic constraint can express by the following 

equations [34]: 

No slip constraint: 

 

−𝑥̇𝑎 𝑠𝑖𝑛 𝜃 + 𝑦̇𝑎 𝑐𝑜𝑠 𝜃 = 0 (4) 

 

Pur rolling constraint: 
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𝑥̇𝑎 𝑐𝑜𝑠 𝜃 + 𝑦̇𝑎 𝑠𝑖𝑛 𝜃 + 𝐿𝜃̇ = 𝑅𝜑̇𝑅
𝑥̇𝑎 𝑐𝑜𝑠 𝜃 + 𝑦̇𝑎 𝑠𝑖𝑛 𝜃 − 𝐿𝜃̇ =  𝑅𝜑̇𝐿

 (5) 

 

The three constraint equations are: 

 

𝛬(𝑞)𝑞̇ = 0 (6) 

 

where: 

 

(𝑞) = [
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃   0    0 0
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃𝐿 − 𝑅 0
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝐿   0 −𝑅

] (7) 

 

and 

 

𝑞̇ = [𝑥̇𝑎𝑦̇𝑎𝜃̇𝜑̇𝑅𝜑̇𝐿]
𝑇
 (8) 

 

So, the kinematic model obtained is: 

 

[
 
 
 
 
𝑥̇𝑎
𝑦̇𝑎
𝜃̇
𝜑̇𝑅
𝜑̇𝐿]
 
 
 
 

=

[
 
 
 
 
 
 
𝑐𝑜𝑠 𝜃  
𝑠𝑖𝑛 𝜃  
0 
1

𝑅
1

𝑅

0
0
1
−𝐿

𝑅
−𝐿

𝑅 ]
 
 
 
 
 
 

[
𝑣
ɷ
] =

1

2

[
 
 
 
 
 
 
𝑐𝑜𝑠 𝜃  
𝑠𝑖𝑛 𝜃  
0 
1

𝑅
1

𝑅

0
0
1
−𝐿

𝑅
−𝐿

𝑅 ]
 
 
 
 
 
 

[
𝜑̇𝑅
𝜑̇𝐿
] (9) 

 

This may be written as:  

 

𝑞̇ = 𝑆(𝑞)η (10) 

 

where, η = [
φ̇R
φ̇L
]

̇
 is the vector of the angular velocities of two 

wheels. 

 

2.2 Dynamical model 

 

The dynamic model purpose describes the study of the 

relationship between many forces and energies influencing on 

the process. The interpretation of the robot mechanism is 

expressed in terms of its component parts, such us the inertia, 

and centre of mass. Where The Lagrangian equation is 

represented by Ben Jabeur et al. [34, 46]: 

 

𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) + 𝜏 𝑑
= 𝐵(𝑞)𝜏 − 𝛬𝑇(𝑞)𝜆 

(11) 

 

For simulation purposes and control, Eq. (11) should be 

transformed into an alternative form, using the kinematic 

model (10): 

 

𝑆𝑇(𝑞)𝛬𝑇(𝑞) = 0  (12) 

 

The new matrices are illustrated as following: 

 

{

𝑀̅(𝑞) = 𝑆𝑇(𝑞) 𝑀(𝑞)𝑆(𝑞)

𝑉̅ = 𝑆𝑇(𝑞)𝑀(𝑞)𝑆̇(𝑞) + 𝑆𝑇(𝑞)𝑉(𝑞, 𝑞̇)𝑆(𝑞)

𝐵̅ = 𝑆𝑇(𝑞)𝐵(𝑞)

  (13) 

 

The simplified structure of the dynamic equations is given 

as:  

 

{𝑀̅(𝑞)𝜂̇ + 𝑉̅(𝑞, 𝑞̇)𝜂 = 𝐵̅(𝑞)𝜏  (14) 

where, 

 

𝑀̅(𝑞) = [
𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼) 𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

]  (14a) 

 

and 

 

𝑉̅(𝑞, 𝑞)̇ = [
0

𝑅2

2𝐿
𝑚𝑐𝑑𝜃̇

−
𝑅2

2𝐿
𝑚𝑐𝑑𝜃̇ 0

] , 𝐵̅(𝑞) =

[
1 0
0 1

]  

(14b) 

 

Eq. (14) may be rewritten in a compact form: 

 

{
(𝑚 +

2𝐼𝑤

𝑅2
) 𝑣̇ − 𝑚𝑐𝑑𝜔

2 =
1

𝑅
(𝜏𝑅 + 𝜏𝐿)

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤)𝜔 + 𝑚𝑐𝑑𝜔𝑣 =

𝐿

𝑅
(𝜏𝑅 − 𝜏𝐿)

̇   (15) 

 

where, 𝑚 = 𝑚𝑐 + 2𝑚𝑤  is the total mass of the robot. 

𝐼 = 𝐼𝑐 +𝑚𝑐𝑑
2 + 2𝑚𝑤𝐿

2 + 2𝐼𝑚 is the total equivalent 

inertia. 

 

2.3 Actuator modeling 

 

The job of the electrical actuator is to drive the mechanical 

system of a robot. In this work, two pairs of DC motor are used 

in order to guide the wheels there a determined motion (Figure 

2).  

 

 
 

Figure 2. Equivalent electrical scheme of the motor. 

 

The dynamic model of the actuators can be represented as 

[34]: 

 

{
 
 

 
 𝑣𝑎 = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎

𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑒𝑎(𝑡)

𝑒𝑎(𝑡) = 𝐾𝑏𝜔𝑚(𝑡)

𝜏𝑚 = 𝑗
𝑑𝑤𝑚(𝑡)

𝑑𝑡
+ 𝑓𝑤𝑚(𝑡) + 𝐾𝑡𝑖𝑎(𝑡)

𝜏 = 𝑁𝜏𝑚

  (16) 

 

where, ia is the armature current, (Ra, La) is the resistance and 

inductance of the armature winding, respectively, ea is the back 

emf, ωm is the rotor angular speed, τm is the motor torque, (Kt, 

Kb) are the torque constant and back emf constant, respectively, 

N is the gear ratio, and τ is the output torque applied to the 

wheel Since the robot motors are mechanically coupled to 

wheels through the gears. Therefore, each dc motor will have: 

For the two motors, the dynamic model is expressed as: 

 

{
𝜔𝑚𝑅 = 𝑁𝜑̇𝑤𝑅     𝑎𝑛𝑑 𝜏𝑅 = 𝑁𝜏𝑚𝑅
𝜔𝑚𝐿 = 𝑁𝜑̇𝑤𝐿     𝑎𝑛𝑑 𝜏𝐿 = 𝑁𝜏𝑚𝐿

  (17) 
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{

1

(𝑅+𝐿𝑎𝑃)
(𝑒𝑎𝑟 − 𝐾𝑏𝑁𝜑̇𝑤𝑅) = 𝑖𝑅   𝑤𝑖𝑡ℎ 𝜏𝑅 = 𝑁𝑘𝑡𝑖𝑅

1

(𝑅+𝐿𝑎𝑃)
(𝑒𝑎𝑙 − 𝐾𝑏𝑁𝜑̇𝑤𝐿) = 𝑖𝐿   𝑤𝑖𝑡ℎ 𝜏𝐿 = 𝑁𝑘𝑡𝑖𝐿

  (18) 

 

The Physical parameters of the robot are presented in Ref. 

[34]. 

 

 

3. CONTROLLER DESIGN AND STRATEGY 

 

Figure 3 explains the simplified form of the general control 

concept based of the WMR dynamics and kinematics. The role 

of path generator is to supplies the desired variable x, y and θ, 

a back-stepping act as a kinematic controller, located in the 

external loop, this controller measures the difference between 

the recommended signals (taken from the bloc trajectory 

generator) and real value from the robot, at next realizes its 

own linear speed and angle which they are passed to the 

internal loop, where two ANFIS-PID controller deal with the 

dynamics. Here, the two dynamic controllers give their own 

angular and linear speeds based on the data selected from the 

kinematic controller. 

 

 
 

Figure 3. General control scheme of the WMR 

 

3.1 Kinematic controller design 

 

In order to reach at a nearly zero distance error, a kinematic 

controller is required. The major advantage of the back-

stepping approach is its practical and simplicity structure, 

since it will depend only on the kinematic model. Moreover, it 

has been classified as a stable tracking control law, where 

other techniques, such as nonlinear feedbacks and sliding-

mode techniques, demand the knowledge of the dynamic 

model and their hardware realization is difficult to implement. 

For that reason, this controller makes it adopted in our study 

[33]. The controller structure is introduced in Figure 3, where 

the input error and velocity vector (vc) are: 

 

[

𝑒𝑥
𝑒𝑦
𝑒𝜃
] = ⌊

𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛 𝜃  0
− 𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜃  0

0 0 1
⌋ [

𝑋𝑟 − 𝑋
𝑌𝑟 − 𝑌
𝜃𝑟 − 𝜃

] = 𝑇𝑒𝑒𝑟   (19) 

 

𝑣𝑐 = ⌊
𝑣𝑟𝑐𝑜𝑠(𝑒𝜃) + 𝑘𝑥𝑒𝑥

𝑤𝑟 + 𝑘𝑦𝑣𝑟𝑒𝑦 + 𝑘𝜃𝑣𝑟𝑠𝑖𝑛(𝑒𝜃)
⌋  (20) 

 

where, kx, ky and kθ are tuning parameters. 

 

3.2 The PID dynamic controller 

 

The PID is a feedback controller that is widely utilized in 

various applications, especially for robotics and automation 

industry due to its simplicity structure and reliability that 

usually leads to satisfying results [21, 47] (Figure 4). 

 

 
 

Figure 4. Block diagram of the PID controller 

 

The representation of the transfer function for the PID in the 

time domain (Eq. (21)) and the transfer function in the Laplace 

domain (Eq. (22)). 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
  (21) 

 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑆
+ 𝐾𝑑𝑆  (22) 

 

where, Kp, Ki and Kd are proportional, integral and derivative 

gains constants, respectively. The proportional constant kp 

role is to regulate the rise time value. where the purpose of the 

integral action ki is to eliminate steady-state error, the 

derivative gain kd for reducing the value of overflow and 

improving a transient response. 

The success in designing PID controller rests to the optimal 

selection of parameters. The Ziegler–Nichols (Z-N) was 

supported in adjusting the tuning details for the PID. Today, 

the tuning methodology reaches a new era for soft computing 

approaches like the meta-heuristics algorithms. For that reason, 

the next section will focus on describing the tuning strategies. 

 

3.3 Tuning methodology for PID 

 

The block diagram for WMR tuning strategy is highlighted 

in Figure 5. While the first PID controller obtains the contrast 

between the desired and real speed from the right DC motor 

wheel as an input, where the reference velocity is fixed at: Ur 

=1 m/s. 

 

 
 

Figure 5. Bloc diagram for tuning methodology 

 

The second PID controller in the left wheel examines the 

difference between the physical and desired directions angle 

as input. Here, the reference angle is a constant value: 

θr=0.785 rad. 

The following Eq. (23) represent the relation between the 

input voltage of the right and left DC actuators, respectively 
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UR, UL with the outputs of the first and second controller UV, 

Uθ, respectively. 

 

{
𝑈𝑅 =

𝑈𝑉+ 𝑈𝜃

2

𝑈𝐿 =
𝑈𝑉−𝑈𝜃

2

  (23) 

 

The cost function used in the study is the integral square 

error (ISE) which is demonstrated by Eq. (24): 

 

𝐼𝑆𝐸 = (∫ [𝑒𝑣(𝑡)]
2𝑑𝑡 + ∫ [𝑒𝜃(𝑡)]

2𝑑𝑡
∞

0

∞

0
)  (24) 

 

where: 

 

{
𝑒𝑣 = 𝑈𝑟 − 𝑈𝑚
𝑒𝜃 = 𝜃𝑟 − 𝜃𝑚

 (25) 

 

Ur is the desired velocity, Um the actual velocity, ev the 

velocity error, θr the desired orientation, θm the measured 

orientation, and eθ is the orientation error, The optimization 

algorithms used to tune the parameters (Kp, KI, Kd) are 

described in the next section. 

 

 

4. META-HEURISTIC ALGORITHMS 

 

A comparative study has been made to demonstrate the 

capability of the grey wolf optimizer (GWO), compared to 

particle swarm optimizer (PSO), dragonfly optimizer (DA), 

Ant Lion optimizer (ALO), grasshopper algorithm (GOA), 

moth flame optimizer (MFO), and the artificial bee colony 

algorithm (ABC). Therefore, a brief description of all 

algorithms is given: 

 

4.1 Particle Swarm Optimizer (PSO) 

 

Each particle in the swarm updates their positions according 

to the following equations [48, 49]:  

 

𝑉𝑖
𝑘+1 = 𝑤 𝑉𝑖

𝑘 + 𝐶1𝑅1(𝑝𝑖
𝑘 + 𝑥𝑖

𝑘)

+ 𝐶2𝑅2(𝑔𝑏𝑒𝑠𝑡𝑖 + 𝑥𝑖
𝑘) 

(26) 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (27) 

 

Here, i refer to the particle in the swarm. k the iteration step 

carried out, w the inertia weight parameter and R1 and R2 are 

random numbers in the range [0, 1]. The coefficients C1 and 

C2 are the optimization parameters, X: position vector, and 𝑝𝑖
𝑘: 

best position information achieved by the ith particle, 𝑔𝑏𝑒𝑠𝑡𝑖: 
best position information available in the swarm. 

 

4.2 Dragonfly Algorithm (DA) 

 

This approached was first introduced by Mirjalili [50], and 

was inspirited by the dynamic and static behaviour of 

dragonflies in nature explained in the references [50-52]. The 

life cycle of dragonflies is divided into two phases: the nymph 

phase and the adult phase [51]. The natural behaviour of each 

agent in the swarm obligates the attraction to nurturing sources 

and distract outward enemies [50, 52].  

As demonstrated by Reynolds [53], the behaviour of swarm 

follows the following principles [50, 52, 53]: 

 

4.2.1 Separation 

This step aims to avoid individuals’ collision with their 

neighbours that is near to its position, the static swarm defined 

by the following equation: 

 

𝑆𝑖 = ∑ 𝑋 − 𝑋𝑗
𝑛
𝑗=1   (28) 

 

Here X and 𝑋𝑗are the positions of the current individual and 

the jth neighboring individual, respectively. n is the number of 

neighboring individuals. 

 

4.2.2 Alignment  

The velocity matching between dragonflies of the same 

group is given by: 

 

𝐴𝑖 =
∑ 𝑉𝑗
𝑛
𝑗=1

𝑛
− 𝑋   (29) 

 

where, vj is the velocity of neighbouring individual j.  

 

4.2.3 Cohesion  

The tendency of members towards the centre of the swarm’s 

group is known as the cohesion and it is defined as: 

  

𝐶𝑖 =
∑ 𝑋𝑗
𝑛
𝑗=1

𝑛
− 𝑋   (30) 

 

4.2.4 Attraction to food  

In order to survive, all individuals must move toward the 

food. As presented by this mathematical formula: 

 

𝐹𝑖 = 𝑋
+ − 𝑋  (31) 

 

where, 𝑋+ shows the position of the food source. 

 

4.2.5 Distraction from enemy 

This equation represents the movement of dragonflies far 

away from the enemy’s sources to survive: 

 

𝐸𝑖 = 𝑋
− − 𝑋 (32) 

 

where, 𝑋−  shows the position of the enemy. The position 

update of each dragonfly for testing another weight solution 

and receiving another fitness value is gotten by calculating ΔX 

and X using Eq. (36) and Eq. (37) [50, 52]: 

 

𝛥𝑋𝑖 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤 (33) 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝛥𝑋𝑡+1 (34) 

 

𝑒 = 0.1 − 1 ∗ (
0.1

𝐼
2

) (35) 

 

𝑤 = 0.9 − 𝑖 ∗ (
0.9 − 0.4

𝐼
) (36) 

 

where, s, a, c, f, e, and w are the weights of their correspondent 

element. w is calculated using Eq. (36) here i is the current 

iteration and I is the number of iterations, and e is calculated 

in Eq. (35). s, a, and c are three different random numbers 

between 0 and 2e, f is a random number between 0 and 2. More 

details can be found elsewhere [50]. 
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4.3 Ant Lion Optimizer (ALO) 

 

This method proposed by Mirjalili [54] is inspired by the 

hunting mechanism of antlions in nature. The antlions have 

about three years average lifespan that it is spent as larvae 

except for 3-5 weeks of that period is spent in adulthood [55]. 

The mechanism is explained elsewhere [55, 56]. The 

mathematical illustration is given as follows [54-56]: 

 

▪ Random walks of Ants 

 

𝑋(𝑡) = [0, 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡1 − 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡2)
− 1,⋯ , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡𝑛) − 1)] 

(37) 

 

where, n is the maximum number of iterations, cumsum 

calculates the cumulative sum, and t is the step of the random 

walks. Thus, 

 

𝑟(𝑡) = {
1  𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0  𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

 (38) 

 

Here (t) is a stochastic function and rand is a random 

number generated with uniform distribution at interval of [0, 

1]. The positions of ants is saved and utilised during 

optimisation in the matrix: 

 

𝑀𝑎𝑛𝑡 =

[
 
 
 
 
𝐴1,1 𝐴1,2 ⋯ ⋯ 𝐴1,𝑑
𝐴2,1 𝐴2,2 ⋯ ⋯ 𝐴2,𝑑
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝐴𝑛,1 𝐴𝑛,2 ⋯ ⋯ 𝐴𝑛,𝑑]
 
 
 
 

 (39) 

 

where, MAnt is the matrix for saving the position of each ant, 

𝐴𝑖, shows the value of the 𝑗th variable of 𝑖th ant, 𝑛is the number 

of ants, and 𝑑is the number of variables. Based on the random 

walk, each ant updates their position with each step of 

optimisation. The min-max normalisation equation is used to 

normalise the random walks: 

 

𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡 − 𝑎𝑖) × (𝑑𝑖 − 𝑐𝑖

𝑡)

(𝑑𝑖
𝑡 − 𝑎𝑖)

+ 𝑐𝑖 (40) 

 

Here 𝑎𝑖 is the minimum of random walk of 𝑖th variable, di is 

the maximum of random walk of ith variable, 𝑐𝑖
𝑡  is the 

minimum of ith variable at tth iteration, and 𝑑𝑖
𝑡 is the maximum 

of 𝑖th variable at tth iteration. 

 

▪ Trapping in Antlion’s pit 

 

The random walks of ants are influenced by the Antlion’s 

trap. It is defined as: 

 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡
 (41) 

 

where, ct represents the minimum of all variables at tth iteration, 

dt indicates the vector including the maximum of all variables 

at tth iteration, 𝑐𝑖
𝑡 is the minimum of all variables for ith ant, 𝑑𝑖

𝑡 

is the maximum of all variables for ith ant, and 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  shows 

the position of the selected jth antlion at tth iteration. 

▪ Building trap 
 

During optimisation the algorithm used a roulette wheel 

operator to choose antlions according to their fitness. This 

method increased the chance if catching ants. 
 

▪ Sliding ants toward antlion 
 

The following equations compute the decrease adaptively to 

the radius of the random walks hyper sphere of ants: 

 

𝑐𝑡 =
𝑐𝑡

𝐼

𝑑𝑡 =
𝑑𝑡

𝐼

 (42) 

 

where, I is a ratio, 𝑐𝑡  is the minimum of all variables at tth 

iteration, and 𝑑𝑡 indicates the vector, including the maximum 

of all variables at tth iteration. 
 

▪ Catching Pray and Rebuilding the Pit 

 

In the final hunting stage, antlions update their position to 

improve the possibility of catching new prey according to the 

position of the latest hunted ant:  

 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡 𝑖𝑓 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) (43) 

 

Here t represents the current iteration, 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  is the 

position of the selected jth antlion at tth iteration, and 𝐴𝑛𝑡𝑖
𝑡 

represents the position of 𝑖th ant at 𝑡th iteration. 

 

▪ Elitism  

 

Through the whole iteration, the best-obtained antlion is 

called an elite. This elite influences the movement of the rest 

of the ants during iteration. So, it is considered that every prey 

walks randomly around a chosen individual by the roulette 

wheel and the elite altogether represented by the following 

equation: 

 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (44) 

 

where, 𝑅𝐴
𝑡  is the random walk around the antlion selected by 

the roulette wheel at tth iteration, 𝑅𝐸
𝑡 is the random walk, and 

𝐴𝑛𝑡𝑖
𝑡 represents the position of ith ant at tth iteration.  

 

4.4 Artificial Bee Colony (ABC)  

 

The artificial bee colony algorithm was first introduced by 

Karaboga and Basturk [57] in 2005, while its behaviour [58] 

was analysed in 2007. The behaviours of honeybees in finding 

food sources, splitting the knowledge with the nest, are its 

main inspiration. The approached classified bees to three types 

(employed, onlooker, and scout) where each agent plays 

different roles in the process. More details can be found in 

reference [52] while the process of the ABC algorithm is the 

following [52]: 

 

▪ Initialization 

 

At first, a ratio of the population is randomly sprayed into 

the solution area. Then, the fitness value, the nectar amounts, 
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is fixed. 

▪ Move the Onlookers 

 

This equation calculates the probability of selecting a food 

source: 

 

𝑃𝑖 =
𝐹(𝜃𝑖)

∑ 𝐹(𝜃𝑘)
𝑆
𝑘=1

 (45) 

 

where, 𝜃𝑖  denotes the position of the 𝑖𝑡ℎ  employed bee, S 

represents the number of employed bees, and 𝑃𝑖  is the 

probability of selecting the 𝑖𝑡ℎ employed bee. Later, onlooker 

bees move by the roulette wheel selection. The amount of 

nectar is then determined: 

 

𝑥𝑖𝑗(𝑡 + 1) = 𝜃𝑖𝑗 + 𝜙 (𝜃𝑖𝑗(𝑡) − 𝜃𝑘𝑗(𝑡)) (46) 

 

Here 𝑥𝑖  denotes the position of the 𝑖𝑡ℎ  onlooker bee, t 

denotes the iteration number, 𝜃𝑘  is the randomly chosen 

employed bee, j represents the dimension of the solution and 

𝜙(∙) produces a series of a random variable in the range [−1, 

1]. 

 

▪ Move the Scouts 

 

The given equation shows the move of scouts:  

 

𝜃𝑖𝑗 = 𝜃𝑖𝑗𝑚𝑖𝑛 + 𝑟 ∙ (𝜃𝑖𝑗𝑚𝑎𝑥 − 𝜃𝑖𝑗𝑚𝑖𝑛) (47) 

 

where, r is a random number and 𝑟 ∈  [0, 1]. Next, the best 

food source obtained so far and the fitness value are updated 

according to the response, with the respect of termination 

condition the algorithm outputs the results or repeats the 

program from step 2. 

 

4.5 Grey Wolf Optimizer (GWO) 

 

The grey wolf algorithm inspired from the social leadership 

and hunting behaviour of grey wolves in nature [48, 49, 59]. 

This approached consist of social hierarchy, enriching prey, 

search for prey, attacking prey, and hunting. Social hierarchy: 

The alpha (𝛼) wolf is the leader of wolves, while Beta (𝛽) and 

delta (𝛿) wolves are the second and third levels in the group, 

respectively. Those three wolves are considered as the best 

solution to lead the rest wolves known as omega (ω) wolves 

toward promising areas in order to find the global solution. 

 

𝑑 = |𝑐 ∙ 𝑥𝑝(𝑛) − 𝑥(𝑛)| (48) 

 

 𝑥(𝑛 + 1) = 𝑥𝑝(𝑛) − 𝑎 ∙ 𝑑 (49) 

 

where, xp: position vector of the prey, n: current iteration, and 

x: position vector of a grey wolf. The coefficient vectors 

𝑎 𝑎𝑛𝑑 𝑐 are defined as follows: 

 

𝑎⃗(.) = 2𝑙 ∙ 𝑟1 − 𝑙 (50) 

 

𝑐(.) = 2 ∙ 𝑟2 (51) 

 

Here, r1 and r2 are random numbers in [0, 1]. The following 

equations illustrate the mechanism of hunting: 

 

{

𝑑𝛼 = |𝑐1 ∙ 𝑥⃗𝛼 − 𝑥⃗|

𝑑𝛽 = |𝑐2 ∙ 𝑥⃗𝛽 − 𝑥⃗|

𝑑𝛿 = |𝑐3 ∙ 𝑥⃗𝛿 − 𝑥⃗|

 (52a) 

 

{

𝑥⃗1 = 𝑥⃗𝛼 − 𝑎⃗1 ∙ (𝑑𝛼)

𝑥⃗2 = 𝑥⃗𝛽 − 𝑎⃗2 ∙ (𝑑𝛽)

𝑥⃗3 = 𝑥⃗𝛿 − 𝑎⃗3 ∙ (𝑑𝛿)

 (52b) 

 

𝑥(𝑛 + 1) =
𝑥⃗1 + 𝑥⃗2 + 𝑥⃗3

3
 (52c) 

 

4.6 Grasshoppers Optimization Algorithm (GOA) 

 

The Grasshoppers Optimization Algorithm simulated by 

[60] is inspired from the natural flocking behaviour of 

grasshoppers. Those insects are regarded as pests because they 

damage agricultural corps. The swarming behaviour can be 

mathematically explained by the following equations [60-62]: 

 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (53) 

 

where, Xi is the position of the ith grasshopper, Si is the classical 

interaction, Gi is the gravity force on the ith grasshopper, and 

Ai is the wind advection. The classical interaction is given by: 

 

𝑆𝑖 =∑ 𝑠(𝑑𝑖𝑗)𝑑̂𝑖𝑗
𝑁

𝑗=1
 (54) 

 

𝑑𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| (55) 

 

𝑑̂𝑖𝑗 =
𝑥𝑗 − 𝑥𝑖

𝑑𝑖𝑗
 (56) 

 

Here, dij is the distance between the ith and jth grasshoppers, 

and s is a function for the definition of the strength of social 

forces defined as follows:  
 

𝑠(𝑟) = 𝑓𝑒−
𝑟
𝑙 − 𝑒−𝑟 (57) 

 

where, f is the intensity of attraction, and l is the attractive 

length scale. The distance between grasshoppers ranges 

between 0 and 15. Repulsion is observed in the interval [0 

2.079]. The grasshoppers enter the comfort zone if they are far 

from 2.079 units from other grasshoppers. G component is 

defined as follows: 
 

𝐺𝑖 = −𝑔𝑒̂𝑔 (58) 
 

Here, g is the gravitational constant and 𝑒̂𝑔 is a unity vector 

towards the center of the earth. Parameter A is given by: 
 

𝐴𝑖 = 𝑢𝑒̂𝑤 (59) 
 

where, u is a constant drift and 𝑒̂𝑤  is a unit vector in the 

direction of the wind. The position is updated to a new position 

based on the common position of the grass-hoppers, the food 

source position, and the position of all other grasshoppers: 

 

𝑋𝑖 =∑𝑠(|𝑥𝑗 − 𝑥𝑖|)
𝑥𝑗 − 𝑥𝑖

𝑑𝑖𝑗
− 𝑔𝑒̂𝑔 + 𝑢𝑒̂𝑤

𝑁

𝑗=1
𝑗≠𝑖

 (60) 
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Here, N is the number of grasshoppers. Although, this Eq. 

(65) cannot be straight-forward applied for optimization 

because grasshoppers do not converge to a specified point. 

Hence, the following is a corrected equation to update the 

grasshopper’s position: 

 

   𝑋𝑖
𝑑 = 𝑐 ||∑𝑐

𝑢𝑏𝑑 − 𝑙𝑏𝑑
2

𝑠(|𝑥𝑗
𝑑 − 𝑥𝑖

𝑑|)
𝑥𝑗 − 𝑥𝑖

𝑑𝑖𝑗

𝑁

𝑗=1
𝑗≠1

||

+ 𝑇̂𝑑 

(61) 

 

𝐶 = (𝐶𝑚𝑎𝑥 − 1)
𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
𝑀𝑎𝑥 𝐼𝑡𝑟

 (62) 

 

where, 𝑢𝑏𝑑 is the upper bound, 𝑙𝑏𝑑 is the lower bound, 𝑇̂𝑑 is 

the value of the Dth dimension in the target space (optimal 

solution found so far), and c is a decreasing coefficient to 

shrink the comfort zone, repulsion zone, and attraction zone. 

 

4.7 Moth Flame Optimization (MFO) Algorithm 

 

The Moth-flame optimization algorithm was first 

introduced by Mirjalili [63]. Those fancy insets are quite 

similar to the butterfly family. The natural behaviour of them 

in navigation known as transverse orientation is the main 

motivation for the algorithm. Moths fly using a fixed angle 

with respect to the moon, which is a very efficient mechanism 

for long travelling distances in a straight line. The MFO 

algorithm follows the following steps: 

 

𝑀𝐹𝑂 = (𝑅, 𝑉, 𝑇) (63) 

 

moths randomly and also the fitness values of them, V is a 

main function that makes the moths move around the search 

space and T is a termination criterion flag. In V function, the 

position of each moth with regard to a flame is updated as per 

Eq. (64): 

 

𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐺𝑗) (64) 

 

where, S is the spiral function, Mi is the ith moth, and Gj is the 

jth flame, whereas 𝑆(𝑀𝑖 , 𝐺𝑗)is calculated using the following 

equations: 

 

𝑆(𝑀𝑖, 𝐺𝑗) = 𝐷𝑖𝑒
𝑏𝑙 𝑐𝑜𝑠(2𝜋𝑙) + 𝐺𝑗 (65) 

 

Here, Di represents distance of ith moth from jth flame, b is 

constant for announcing the shape of logarithmic spiral, and l 

is a random number between [− 1, 1]. D is calculated using the 

following equation. 

 

𝐷𝑖 = |𝐺𝑗 −𝑀𝑖| (66) 

 

where, 𝐺𝑗  indicate the jth flame and 𝑀𝑖 is the ith moth. The 

position of moths is updated with respect to n different 

locations in the search space, which can degrade the best 

promising solutions exploitation. Consequently, the number of 

flames adaptively decreases over the course of iterations using 

the following formula: 

 

𝑓𝑙𝑎𝑚𝑒𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑(𝐹𝑁 − 1 ∗
𝑁 − 1

𝐼𝑁
) (67) 

where, I is the current number of iterations, I N is the 

maximum number of iterations and FN is the maximum 

number of flames. More details can be found elsewhere [63-

65]. 

 

 

5. THE ANFIS CONTROLLER DESCRIPTION 

 

Adaptive Network-Based Fuzzy Inference System (ANFIS) 

is a hybrid soft computing algorithm that combined the neuro-

fuzzy technique, namely fuzzy inference system (FIS) with 

artificial neural network (ANN). ANFIS was firstly introduced 

by Jang [66] and it is based on the first-order Sugeno fuzzy 

model [67].The ANFIS approaches integrate the best feature 

of fuzzy systems and neural networks by exercising learning 

ability and capability of FIS and ANN, respectively [68]. The 

ANFIS architecture consists of if-then rules and couples of 

input-output data of fuzzy. For training, ANFIS uses neural 

network learning algorithms. As the algorithm used it to fine-

tune the membership function (MF) and the associated 

parameter that methods the desired data sets [68, 69]. 

For clarifying, a Sugeno fuzzy model with two inputs, x and 

y, and one output is considered. Normally, the fuzzy rules are 

reported as follows [66-69]: 

 

Rule I: if x=A1 and B1, then  

 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (68) 

 

Rule II: if x=A2 and y=B2, then 

 

𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (69) 

 

where, f is an output parameter (response), p, q, & r are linear 

parameters, and A&B are nonlinear parameters. Figure 6 

Illustrates the five layers used to create ANFIS structure while 

the function of each layer is represented as follows: 

 

 
 

Figure 6. The ANFIS architecture with two input parameters 

x and y 

 

Layer 1. Input nodes: the nodes of this layer generate 

membership grades to which they belong to each of the 

relevant fuzzy sets using MFs. 

 

{
𝑂𝑖
1 = µ𝐴𝑖(𝑥)

𝑂𝑖
2 = µ𝐵𝑖(𝑦)

 (70) 

 

Here, i= 1, 2, x, y are the crisp inputs to node i, and Ai &Bi. 

The linguistic label (small, large, etc.) associated with the node 

function. µAi, µBi respectively. Typically, µAi (or µBi) is selected 

as: 
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µ𝐴𝑖(𝑥) =
1

1 + [(𝑥 −
𝑐𝑖
𝑎𝑖⁄ )

2
]
𝑏𝑖

 
(71) 

 

or 

 

µ𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {−(
𝑥 − 𝑐𝑖
𝑎𝑖

)
2

} (72) 

 

where, {ai, bi, ci} are the premise parameter set. 

 

Layer 2. Rule nodes: The firing strength of each rule is 

calculated with mathematical multiplication. For instance, 

 

𝑂𝑖
2 = 𝑤𝑖 = µ𝐴𝑖(𝑥) ∙ µ𝐵𝑖(𝑦) (73) 

 

Each node output represents the firing strength of a rule. 

 

Layer 3. Average nodes: the ith node calculates the ratio of 

the ith rule firing strength to the summation of the firing 

strengths of all rules consequently, defined as: 

 

𝑂𝑖
3 = 𝑤̅𝑖 =

𝑤𝑖
𝑤1 + 𝑤2

 (74) 

 

wi is taken as the normalized firing strength. 

 

Layer 4. Consequent nodes: The node function of the fourth 

layer calculates the contribution of each ith rules toward the 

overall output, as given: 

 

𝑂𝑖
4 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖   𝑂𝑖

4  = 𝑤̅𝑖𝑓𝑖
= 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) 

(75) 

 

where, 𝑤̅𝑖 isthe output of the layer 3, and {pi, qi, ri} the 

parameter set.  

 

Layer 5. Output nodes: The single-node computes the 

overall output by adding all the incoming signals from the 4th 

layer: 

 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝑤̅𝑖𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
𝑖

 (76) 

 

The final output of ANFIS can be given as: 

 

𝑓𝑜𝑢𝑡 = 𝑤̅1 𝑓1 + 𝑤̅2𝑓2 =
𝑤1

𝑤1 + 𝑤2
𝑓1 +

𝑤2
𝑤1 +𝑤2

𝑓2

= (𝑤̅1𝑥)𝑝1 + (𝑤̅1𝑦)𝑞1 + (𝑤̅1)𝑟1
+ (𝑤̅2𝑥)𝑝2 + (𝑤̅2𝑦)𝑞2 + (𝑤̅2)𝑟2  

(77) 

 

5.1 Designing the ANFIS-PID dynamic controller 

 

The complete control approach that controls the dynamics 

of the robot mobile based on the ANFIS-PID is divided into 

three steps: 

 

First step, Figure 7, represent the first step, which indicates 

the training stage of the ANFIS controller. The ANFIS use 

their adaptive and learning skills to learn and to predict the best 

recommended control efforts based on the already data. Which 

they are obtained from the designed GWO-PID controllers in 

the previous section. 

 
 

Figure 7. The ANFIS in training phase 

 

The realized data were saved in a MATLAB/SIMULINK 

file. From the command anfisedit, these data were taken for 

training. The complete process was illustrated in Figure 8. 

Figure 8 presents the internal composition of the ANFIS 

controller. The method used for ANFIS training is the hybrid 

training algorithm, with the input nodes (2, 2, 2), gaussmf 

membership function for the inputs and linear membership 

function for the output, each having 8 rules (see Figure 8.b), 

the epoch length was used is 50 iterations for each sample, 

with, 0.01s as the Simulink sampling time.  

At the end of the training the result was saved as a fis file 

with respect to Sugeno-style. The root mean square error 

(RMSE) was found to be 0.1053 and be 0.094977 06 for 

ANFIS-PID1 and ANFIS-PID2, respectively. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 8. (a) Data configuration for first ANFIS-PID 

controller, (b) structure of the ANFIS-PID controller, (c) data 

configuration for second ANFIS-PID controller, (d) error 

minimization corresponding to the second controller 

 

 
 

Figure 9. Adjusting the parameters for the designed ANFIS-

PID controller using GWO 

 

Second step, scaling the new parameters using the GWO 

optimizer. 

After the training step is complete and the optimal data are 

received, the designed ANFIS-PID controller must be 

developed by improving the parameters, i.e., Kp, KI, Kd, Kv, 

Kθ as demonstrated in Figure 9. To find the optimal values of 

the scaling gains, grey wolf method is proposed to guarantee a 

minimum ISE value. 

 

Third step, the gained control scheme of the dynamic 

controller is showed in Figure 10. It reveals the hybridize 

between the ANFIS and PID controller, abridged as ANFIS-

PID. Two trained ANFIS-PID controllers are selected for 

running the right and left DC motor voltage of the WMR, 

where a decoupling process is applied to separate the two 

control actions. 

 

 
 

Figure 10. Bloc diagram of the final ANFIS-PID dynamic 

controller 

 

The first controller takes the difference between the actual 

and reference speed from the right wheel as an input. The angle 

controller located in the left wheel studies the difference 

between the actual and desired orientations as an input. 

Eq. (52) describe the relationship between the input 

voltages of the right and left DC actuators UR and UL, 

respectively, with the outputs of the first and second controller 

UV and Uθ, respectively, where the factors of the decoupling 

system are respectively Kv and Kθ. 

 

{
𝑈𝑅 = 𝐾 𝑉 ∙ 𝑈𝑉+  𝐾𝜃 ∙ 𝑈𝜃
𝑈𝐿 = 𝐾 𝑉 ∙ 𝑈𝑉−  𝐾𝜃 ∙ 𝑈𝜃

 (78) 

 

where 

 

{
𝑒𝑣 = 𝑈𝑟 − 𝑈𝑚
𝑒𝜃 = 𝜃𝑟 − 𝜃𝑚

 (79) 

 

Ur is the desired velocity, Um the actual velocity, ev the 

velocity error, θr the desired angle, θm the measured orientation, 

and eθ is the orientation error. 

 

 

6. RESULTS AND DISCUSSION 

 

This study selected the use of various criteria and 

evaluations, a comparative study of the convergence curve 

performance between all controllers, the transition parameters 

of linear speed and of the angle for all techniques, also several 

cases study for the path tracking has been created, in order to 

confirm the over performance and high robustness of the 

suggested GWO-ANFIS-PID controller, In comparison to 

GWO-PID, PSO-PID, ALO-PID, GOA-PID, DA-PID, ABC-

PID and MFO-PID. 
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In order to examine the convergence behavior of the nature 

inspired algorithms, all simulation experiments were executed 

more than 30 times for each method on a PC separately, the 

maximum number iterations were 100, and population size is 

set to 20. 

 

6.1 Convergence curve of all algorithms 

 

Figure 11 highlights the convergence curves of the seven 

selected optimizations algorithms for designing the PID 

controller in comparison to our proposed hybrid controller 

(GWO-ANFIS-PID).  

The result proves the over-performance of the GWO-

ANFIS-PID controller. The minimum ISE value attained for 

all approaches used in the study is shown in Table 1. From 

Figure 11 and Table 1, it’s straightforward that the GWO 

optimizer gives the lowest ISE value with the faster 

convergence behavior compared to the other six techniques. 

Which were made it the best candidate for designing the 

ANFIS-PID controller. While the proposed GWO-ANFIS-

PID controller has the lowest ISE value (0.0889). 

 

 
 

Figure 11. Convergence curve of the seven algorithms 

compared to GWO-ANFIS-PID 

 

Table 1. ISE values of the five algorithms 

 
algorithms ISE 

PSO-PID 0.138826 

DA-PID 0.139292 

ALO-PID 0.154018 

ABC-PID 0.143813 

GOA-PID 0.176242 

MFO-PID 0.138489 

GWO-PID 0.138510 

GWO-ANFIS-PID 0.089690 

 

6.2 Step response performance of speed controller 

 

Figure 12 reveals the comparative analyses of the step 

responses performance for the linear speed that was designed 

with the help of the seven different techniques in comparison 

to the proposed GWO-ANFIS-PID controller. 

 

 
 

Figure 12. Step response comparison for all velocity 

controllers 

 

Table 2 shows the parameter details of all meta-heuristic 

approaches, for the linear speed controller, and Table 3 

presents the performance achieved in the time domain. 

 

Table 2. The tuned gain details of linear velocity for all 

controllers 

 

Methods 
Speed controller parameter tuning 

𝐾𝑝 𝐾𝑖 𝐾𝑑 𝐾𝑉 𝐾𝜃 

PSO-PID 149.98 97.40 1.013 0.50 0.50 

DA-PID 150 1 1 0.50 0.50 

ALO-PID 108.46 52.24 0.72 0.50 0.50 

ABC-PID 148.78 142.40 1 0.50 0.50 

GOA-PID 81.60 89.97 1 0.50 0.50 

MFO-PID 149.88 149.97 1 0.50 0.50 

GWO-PID 150 148.94 1.001 0.50 0.50 

GWO-ANFIS-PID 452.007 13.59 1.25 1.5 0.9 

 

The best overshoot percentage (Mp %) was found by the 

ABC-PID, and best settling time (ts) is reached by DA-PID. 

where the GWO-PID controller advantage is the fast rise time 

and accepted settling time (ts) value obtained, but a high 

overshoot, this result were shared with the PSO-PID and 

MFO-PID.  

While the GWO-ANFIS-PID controller enclose all 

advantages of the previous seven techniques by giving the best 

settling time and an excellent overshoot value and fastest rise 

time (tr). 

 

6.3 Step response performance of angle controller 

 

Figure 13 describes the comparative analyses of the angle 

step responses performance that was designed with the aid of 

the seven previous mentioned approaches in comparison to the 

recommended GWO-ANFIS-PID controller. 

 

Table 3. Performance characteristic for velocity controller 

 

Methods 
Transition parameters for speed control 

𝑡𝑟 Mp% Undershoot Peak 𝑡𝑝 𝑡𝑠 

PSO-PID 0.0190 21.3279 3.3018e-05 1.2133 0.2148 1.5344 

DA-PID 0.0191 22.2135 3.3017e-05 1.2221 0.2148 0.5248 

ALO-PID 0.0221 23.2889 3.5750e-05 1.2329 0.2148 1.9670 

ABC-PID 0.0190 17.1998 3.3097e-05 1.1720 0.1933 1.3128 

GOA-PID 0.0332 35.0362 7.8275e-05 1.3504 0.2148 2.0684 

MFO-PID 0.0189 21.1015 3.3025e-05 1.2110 0.2148 1.4805 

GWO-PID 0.0189 21.1147 3.3017e-05 1.2111 0.2148 1.4849 

GWO-ANFIS-PID 0.0125 8.8853 0 1.0889 0.1700 0.2547 
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Figure 13. Comparison of step response for the orientation 

 

From Figure 13, Tables 4 and 5, we can say that the GWO-

ANFIS-PID gives a zero-overshoot value, with the best rise 

time (tr for 10% → 90%) and settling time value (ts for ±2% 

tolerance), were the GWO-PID comes at the second place. For 

that reason, our next examinations are concentrating only on 

analyzing the two best candidates (GWO-PID and GWO-

ANFIS-PID).  

 

Table 4. The tuned main parameters of the three controllers 

for angle control 

 

Methods 
angle controller parameter tuning 

𝐾𝑝 𝐾𝑖 𝐾𝑑 𝐾𝑉 𝐾𝜃 

PSO-PID 149.93 1 31.019 0.50 0.50 

DA-PID 150 1 30.53 0.50 0.50 

ALO-PID 131.90 22.60 33.21 0.50 0.50 

ABC-PID 145.24 11.46 37.86 0.50 0.50 

GOA-PID 149.95 112.96 41.14 0.50 0.50 

MFO-PID 150 1 30.85 0.50 0.50 

GWO-PID 150 1.388 30.83 0.50 0.50 

GWO-ANFIS-PID 500 1.01 75.31 1.5 0.9 

Table 5. Performance characteristics of all angle controllers 

 

Methods 
Transition parameters for angle controller 

𝑡𝑟 Mp% Undershoot Peak 𝑡𝑝 𝑡𝑠 

PSO-PID 0.3539 7.2995 0 0.8423 0.7449 1.1016 

DA-PID 0.3499 7.7670 0 0.8460 0.7449 1.1006 

ALO-PID 0.4034 8.1941 0 0.8493 0.9259 6.0690 

ABC-PID 0.4247 3.8441 0 0.8152 0.9539 3.1976 

GOA-PID 0.3606 20.0551 0 0.9424 0.9826 3.3034 

MFO-PID 0.3522 7.5138 0 0.8440 0.7449 1.1013 

GWO-PID 0.3518 7.5961 0 0.8446 0.7449 1.1057 

GWO-ANFIS-PID 0.2834 0.1047 0 0.7858 0.7700 0.4302 

 

     
(a)                                                                                  (b) 

 
(c)                                                                                   (d) 

 

Figure 14. (a) Circle trajectory in XY plane, (b) linear velocity response for all controllers, (c) angle response of all controllers, 

(d) error of the distance 
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6.4 Circular path 

 

This case, represent a conventional type of smooth 

trajectory that have been made to confirm the capacity of the 

GWO-ANFIS-PID controller in dealing with this kind of paths, 

in comparison to the GWO-PID (Figure 14).  

Here, a progressive variation in both linear and angular 

speed is applied for that purpose, results proves that the GWO-

ANFIS-PID controller better handling with smooth trajectory 

than the GWO-PID controller, due to a minimum tracking 

error from the suggested controller than the GWO-PID one. 

Moreover, since the PID controller gives a very high overshoot 

in the linear velocity response at starting time. Which makes 

him. unsupported for handling the tracking issue. 

 

6.5 Diamond shape trajectory 

 

The Diamond shaped trajectory is a clear example of a non-

continuous gradient path. The main problem of this type of 

paths is the sharp and a non-continuous motion, which calls 

for a serious control technique.  

The spontaneous changing in velocity and due to the slow 

rise time and settling time, makes the GWO-PID controller 

gives slow actions, that causes high distance error and a very 

high overshoot value too from this controller, that might 

generate an unstable and a troubled motion, which could by 

the time damage the DC actuators, for that reason it’s 

unsuitable for this kind of paths (Figure 15). 

The GWO-ANFIS-PID controller has a tolerable overshoot 

contrasted to the GWO-PID and rapidly time response, and a 

very small distance error too, which makes it supported for this 

type of trajectory. 

 

 
(a) 

 

 
(b) 

  
(c) 

 

 
(d) 

 

Figure 15. (a) Diamond shape trajectory in XY plane, (b) 

linear velocity corresponding to controllers, (c) angle 

response corresponding to the path for the two controllers, 

(d) error of the distance 

 

6.6 Zig-zag trajectory 

 

 
(a) 

 

  
(b) 
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(c) 

 

 
(d) 

 

Figure 16. (a) Zigzag path in XY plane, (b) the tracking error 

of the controllers, (c) the theta angle response corresponding 

to the controllers, (d) the linear velocity corresponding to the 

controllers 

 

Here a trapezoidal signal was applied, for that purpose 

progressively changing can be seen for both linear speed and 

angle, the GWO- ANFIS-PID controller gives less overshoot 

and better time response, contrary to the GWO-PID which 

gives an important overshoot and a high distance error value 

(Figure 16).  

 

6.7 Adding the back-stepping controller in the external 

loop 

 

The designed ANFIS-PID controller role is to guarantee a 

minimum linear and angular velocity error, which calls for a 

kinematic controller. Accordingly, a back-stepping controller 

was suggested to maintain a minimal distance error. The error 

is less than 0.002 m. To highlight the robustness of the Back-

stepping combined with ANFIS-PID controller, a square and 

a lemniscates trajectory were preferred. 

 

6.7.1 Case of lemniscates 

In order to generate this path, the following equation were 

applied [70]: 

 

𝑥𝑅(𝑛) = 2.5 ∗ 𝑐𝑜𝑠 (2 ∗ 𝜋 ∗
𝑡

20
) (80) 

 

𝑦𝑅(𝑛) = −2.5 ∗ 𝑠𝑖𝑛 (2 ∗ 𝜋 ∗
𝑡

30
) (81) 

 

𝜃𝑅(𝑛) = 𝑎 𝑡𝑎𝑛2

[
 
 
 
 (
𝑦𝑅(𝑛) − 𝑦𝑅(𝑛 − 1)

𝑡 + 𝜖
)

(𝑥𝑅(𝑛) − 𝑥𝑅(𝑛 − 1))

𝑡 + 𝜖 ]
 
 
 
 

 (82) 

where the back-stepping parameters are selected as: kx=10, ky 

= 80 and kθ = 15.  

The desired and physical paths of the lemniscates are 

presented in Figure 17, displayed in blue and red lines, 

respectively. Figure 18 (a-d) illustrate the errors of x, y, θ, and 

the tracking trajectory, respectively. The effect of the included 

kinematic controller in the external loop is indicated in Figure 

18 (d), the distance error is less than 0.002 meter. For that 

reason, the two trajectories have exactly the same form in 

Figure 17. 

 

 
Figure 17. Lemniscate path 

 

 
(a) 

  
(b)  

 
(c) 
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(d) 

 

Figure 18. Error corresponding to (a) x, (b) y, (c) the theta 

angle, (d) the trajectory tracking 

 

6.7.2 Case of square trajectory 

The recommended and actual trajectories of the square path 

are shown in Figure 19, highlighted in blue and red lines, 

respectively, Figure 20 (a)-(c) display the errors of x, y, θ, and 

the tracking distance error, respectively. 

 

 
 

Figure 19. Square trajectory 

 

 
(a) 

 

 
(b) 

   
(c) 

 

  
(d) 

 

Figure 20. Error corresponding to (a) x, (b) y, (c) the theta 

angle, (d) the trajectory tracking 

 

The square trajectory is classified as a sharp-shaped path too, 

therefore it was chosen for this study in order to justify the 

capability of the proposed hybrid controller, a minimum 

distance error reached (about 0.015 meter), and an error angle 

fewer than 0.01 rad, therefore we can see the nearly 

superposition of the actual on reference path in Figure 19. 

 

 

7. CONCLUSIONS 

 

This paper suggested a new combination technique between 

the PID controller and an adaptive neuro-fuzzy inference 

system (ANFIS), shortened to ANFIS-PID controller, to deal 

with the motion regulation of the wheeled mobile robot 

(WMR). Tuning parameter of the proposed hybrid controller 

are challenging tasks, a comparative study of various nature 

inspired methods are introduced in the study, based on the 

integral square error (ISE). the selected algorithms namely, 

particle swarm optimizer (PSO), grey wolf optimizer 

algorithms (GWO), dragonfly optimizer(DA), ant lion 

optimizer (ALO), grasshopper algorithm (GOA), moth flame 

optimizer (MFO), and the artificial bee colony algorithm 

(ABC), simulation in MATLAB environment gives a 

demonstration and judgment between the ANFIS-PID 

controller and these seven techniques ,in terms of lowest 

overshoot value, minimum ISE value, convergence curve, less 

peak, peak time, and faster rise time and settling time received. 

Various study cases have been made, demonstrates the ability 

and stability of the proposed ANFIS-PID controller tuned by 

GWO algorithm, which has the capacity to generate smooth 

and suitable control signals for both linear and angular speeds, 

great performance over the PID controllers.  

Moreover, to guarantee a low tracking error, a back-

stepping technique was applied at the kinematic control level, 
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where a lemniscate and a square trajectory have already 

demonstrated the robustness of the mentioned controller in 

both smooth and sharp, shaped trajectory. 
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