
  

 

An Improved Fractional Filter Fractional IMC-PID Controller Design and Analysis for Enhanced 

Performance of Non-integer Order Plus Time Delay Processes 
 

Ranganayakulu Rayalla, Rao S. Ambati, Babu U.B. Gara*  

 

Department of Chemical Engineering, National Institute of Technology, Warangal 506004, India 

 

Corresponding Author Email: udaybhaskar@nitw.ac.in 

 

https://doi.org/10.18280/ejee.210203 

  

ABSTRACT 

   

Received: 2 February 2019 

Accepted: 8 April 2019 

 The objective of this work is to design a fractional filter fractional order PID controller for 

non-integer order plus time delay (NIOPTD) systems using fractional internal model control 

(IMC) filter structure. The novelty of the work lies in identifying the higher order fractional 

IMC filter structure using a systematic analytical procedure based on the minimization of 

integral absolute error (IAE). The resulting controller consists of a fractional filter term and a 

fractional PID controller. The tuning parameters are identified based on the minimum value 

IAE for a fixed robustness (Ms). Simulations are carried out for servo and regulatory response 

and it was found that an enhanced performance is observed with the proposed controller in 

terms of low IAE and ITAE. Uncertainties in the process parameters are considered to check 

the robustness and the stability is assessed with robust stability analysis. The results indicate 

that the closed loop system with the proposed controllers is robustly stable. In addition, 

fragility analysis has been done for uncertainties in the controller parameters. The major 

contribution of this work is the analytical design procedure for identification of optimum 

fractional IMC filter structure with higher order pade’s approximation for timed delay. 
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1. INTRODUCTION 

 

The fractional order controllers are gaining wide acceptance 

in the industrial sector and among the scientific community to 

control the processes modeled as higher order systems. Higher 

order models capture the subtleties of the processes and better 

represent the dynamics of nonlinear processes in a precise 

manner. It is difficult to control the higher order process 

models and more challenging if they are associated with time 

delays. The control performance of such systems degrades if 

the standard proportional integral derivative (PID) controller 

is used [1]. This is the concern of many researchers from the 

last twenty years and this fact resulted in the design and 

application of fractional order proportional integral derivative 

(FOPID) controller to improve the closed loop response of 

time delay systems. 

The primary work on fractional order controllers was by 

Oustaloup in 1991 [2] and subsequently Podlubny [3] 

proposed an FOPID or PIλDµ controller with the help of 

fractional calculus. The structure of FOPID controller is such 

that it becomes a PID controller by setting the fractional 

powers of integrator and differentiator to unity. This flexibility 

in the controller structure ensures robust performance of 

integer order systems and non-integer order systems. Hence, 

FOPID controller can enhance the closed loop performance of 

higher order systems. The PIλDµ controller for such systems 

was developed by approximating higher order systems by 

lower order time delay systems [4, 5]. Further, the FOPID 

controller was developed for non-integer order time delay 

systems as they represent the system dynamics in a better way 

than integer order systems. Thus, the fractional order PI/PID 

controller improves the closed loop performance of higher 

order processes. However, this structure of FOPID controller 

complicates the tuning with the additional tuning parameters. 

There are several tuning methods reported in the literature [6] 

for tuning the FOPID controller and fractional filter PID 

controller for integer order time delay systems [7-10]. 

The tuning methods of FOPID controller for fractional order 

systems gained momentum in the last decade. It has been 

identified that higher order processes need to be brought to the 

lower order, preferably of first and second order for frequency 

domain tuning and time domain tuning of the FOPID 

controller. Based on this, PIλDµ controller tuning strategies in 

frequency domain and time domain were proposed for 

NIOPTD systems [11]. An analytical tuning method of FOPID 

controller for fractional order systems was proposed after 

reducing the higher order fractional system by retaining its 

dynamics [12]. A PIλDµ controller was also designed using soft 

computing technique for delay free non-integer order systems 

[13] and by using optimization [14]. The use of IMC [15] 

method was predominant in the design of FOPID controller for 

NIOPTD systems [16-18]. The IMC filter used in the IMC 

method plays a crucial role because the tuning parameters in 

the IMC based controller are those associated with the IMC 

filter. The controller in [17] was tuned to meet the 

specifications such as phase margin, flat phase, gain crossover 

frequency and infinite gain margin. The controller designed 

using the method in [18] was tuned based on maximum 

sensitivity. The aim of the present work is to propose a simple 

and improved method of designing the FOPID controller using 

IMC method and fractional IMC filter for NIOPTD systems. 

The design also includes different approximation for time 

delay term using Pade’s procedure. The resulting structure of 

the controller consists of a fractional order PID preceded by 

fractional filter to provide robust control. The tuning 

parameters in the controller are associated with fractional filter 

which are identified through the analytical procedure based on 

the minimum values of IAE and TV and to meet the maximum 
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sensitivity, Ms specification for fair comparison. 

The article is organized as follows: In section 2, the general 

mathematical representation of fractional order systems is 

presented along with NIOPTD systems used in this paper. 

Section 3 presents the IMC based FOPID controller design for 

NIOPTD systems. The robustness and fragility analysis are 

briefly described section 4. The simulation results for different 

NIOPTD processes are presented in section 5 and their closed 

loop response is compared using various performance indices. 

Section 6 concludes the paper followed by references. 

 

 

2. FRACTIONAL ORDER SYSTEM 

 

The dynamics of real time systems are better represented by 

non-integer order mathematical models using the fractional 

calculus with the help of fractional integration and 

differentiation. The fractional order systems are often 

described by the following fractional order differential 

equation: 

 

a0y(t)+ ∑ ai
n
i=1 Dαiy(t)=b0u(t-L)+ ∑ bi

m
i=1 Dβiu(t-L)      (1) 

 

where D is the fractional operator; ai, bi are the real coefficients; 

αi, βi are the real (R+) orders of fractional derivative; u(t) and 

y(t) are the real input and output; L is the time delay of the 

system. The Laplace transform of Eq. (1) produces a fractional 

order transfer function  

 

a0Y(s)+ ∑ ai
n
i=1 SαiY(s)=b0U(s)e-Ls+ ∑ bi

m
i=1 SβiU(s)e-Ls   (2) 

 

where SαiY(s) and SβiU(s)  are the Laplace transform of 

Dαiy(t) and Dβiu(t) respectively. Then, the transfer function 

of non-integer order system is 

 

G(s)=
Y(s)

U(s)
=

b0+ ∑ bi
m
i=1 S

βi

a0+ ∑ ai
n
i=1 S

αi
e-Ls                          (3) 

 

The fractional operators Sαi  and Sβi are difficult to program 

for simulations and for practical implementation in the 

hardware. Though, there are several means of practical 

implementation of fractional operators the most widely used 

one is the approximation of the fractional operator by integer 

order transfer function. The popular approximation used for 

fractional operator sν  was by Oustaloup recursive filter [2] 

which is based on the recursive distribution of poles and zeros 

over a frequency range [ωl, ωh]. This filter is given by 

 

sν=K ∏
s+ωk

'

s+ωk

N
k=-N                                 (4) 

 

where N is the number of poles and zeros. Selection of N is 

crucial for the approximation; smaller values of N results in 

ripples in the gain and phase behavior, but they are minimized 

for higher values of N causing an increase in the computational 

load. The poles, zeros and gain are evaluated using the 

following Equations: 

ωk
' =ωl (

ωh

ωl
)

(k+N+
1-ν

2
) (2N+1)⁄

                        (5.a) 

 

ωk=ωl (
ωh

ωl
)

(k+N+
1+ν

2
) (2N+1)⁄

                       (5.b) 

 

K=ωh
ν                                    (5.c) 

 

The non-integer order process models used for the design of 

FOPID controller are: 

(1). One non-integer order plus time delay (NIOPTD-I) 

system 

 

Gm(s)=
K

Tsα+1
e-Ls                                (6) 

 

where K-system gain; L-time delay; T-time constant and α-

fractional order. 

Two cases of NIOPTD-I process [18] are possible based on 

the value of α: case I (0<α<1); case II (1≤α<2). 

(2).  Two non-integer order plus time delay (NIOPTD-II) 

system 

 

Gm(s)=
K

sα+2ζωnsβ+ωn
2 e-Ls                         (7) 

 

where α and β are the flexible system orders. This flexibility 

allows the accurate modeling of the processes with minimum 

modeling error compared to first order and second order time 

delay (FOPTD and SOPTD) models. The two cases of 

NIOPTD-II process based on the value of α and β are: case I 

(1<α<2, α>β) and case II (2≤α<3, α>β). 

 

 

3. PROPOSED FRACTIONAL FILTER FRACTIONAL 

IMC-PID CONTROLLER DESIGN 
 

3.1 Internal model control 

 

The block diagram of IMC control structure and its 

equivalent feedback control structure is shown in Figure 1.  

 

 
 

Figure 1. Block diagram (a) IMC scheme (b) feedback loop 
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The IMC controller design procedure is summarized as 

follows: 

Step 1: Divide the process model into noninvertible and 

invertible parts 

 

Gm(s)=Gm
+ (s)Gm

- (s)                            (8) 

 

where Gm
+ (s) consists of all time delays and right-half plane 

zeros. Gm
- (s)  is invertible and contains minimum phase 

elements. 

Step 2: Obtain the IMC controller by adding a low-pass 

filter whose structure must be selected such that IMC 

controller is proper. 

 

CIMC(s)=[Gm
- (s)]-1f(s)                        (9) 

  

where f(s) is the IMC filter 

Step 3: The feedback controller C(s) is 

 

C(s)=
CIMC(s)

1-CIMC(s)G(s)
                          (10) 

 

3.2 Proposed design 

 

The proposed fractional filter fractional order PID controller 

structure is 

 

C(s)=(fractional filter term)Kp [1+
1

Tis
λ
+Tdsµ]     (11) 

 

The fractional IMC filter structures used in the present 

design are: 

 

f(s)=
1

(γsp+1)n
; n=1,2,3                          (12) 

 

f(s)=
ηs+1

(γsp+1)n+1
; n=1,2                           (13) 

 

f(s)=
(ηs+1)2

(γsp+1)n+2
; n=1,2                           (14) 

 

γ is the filter time constant, p is the fractional order and η is 

the additional degree of freedom. 

The fractional IMC filter controller according to Eq. (9) for 

the NIOPTD-I system defined in Eq. (6) and by using 

fractional IMC filter structure defined in Eq. (12) is 

 

CIMC(s)= (
Tsα+1

K
)

1

(γsp+1)n
                          (15) 

 

The feedback controller using fractional IMC filter is 

 

C(s)=
Tsα+1

K[(γsp+1)n-e-Ls]
                             (16) 

 

Now, by using Pade’s procedure for e−Ls  (Table 1), the 

general expression for C(s) is  

 

C(s)=(fractional filter term) (
T

K
) (1+

1

Tsα
)          (17) 

 

It can be observed from Eq. (17) that the controller is 

composed of fractional PI term in series with fractional filter 

term. Similarly, the controller is derived for other fractional 

IMC filter structures (Eq. (13) & Eq. (14)) by following the 

above design procedure (steps). The resulting controller takes 

the form given in Eq. (17). All the controllers derived using 

different fractional IMC filter structures differ only in the 

fractional filter term.  

The feedback controller for NIOPTD-II process can be 

obtained by applying the same procedure used for NIOPTD-I 

process. The generalized controller equation for all fractional 

IMC filter structures is 

 

C(s)=(fractional filter term) (
2ζωn

K
) (1+

ωn

2ζsβ
+

1

2ζωn
sα-β)   (18) 

 

Table 1. Equivalent term of e−Ls using Pade’s procedure 

 
1st 

Pade 

1/2 Pade 2nd Pade 2/3 Pade 

1-0.5Ls

1+0.5Ls
 

6-2Ls

6+4Ls+L2s2
 

1-(L 2⁄ )s+(L2 12⁄ )s2

1+(L 2⁄ )s+(L2 12⁄ )s2
 

60-24Ls+3L2s2

60+36Ls+9L2s2+L3s3
 

 

 

4. ROBUSTNESS AND FRAGILITY ANALYSIS  

 

4.1 Robustness analysis 

 

The closed loop stability must be assessed for the nominal 

process conditions and with uncertainties in the processes. 

This is verified with a robust stability condition [19]. 

 
‖lm(jω)T(jω)‖<1∀ω∈(-∞,∞)                      (19) 

 

where T(s)
s=jω

=
C(s)G(s)

1+C(s)G(s)
 - the complementary sensitivity 

function; lm(jω)= |
G(jω)-Gm(jω)

Gm(jω)
|  - Process multiplicative 

uncertainty bound.  

Using robust stability analysis, one can know the amount of 

uncertainty that can be introduced into the process parameters 

for the robust performance once the controller is designed. The 

controller must be tuned according to Eq. (20) for uncertainty 

in L 

 

‖T(jω)‖∞<
1

|e-∆L-1|
                              (20) 

 

4.2 Fragility analysis 

 

The robust performance of the closed loop system should 

also be observed for changes in controller parameters. This is 

found through loss of robustness (Ms) of the system using 

fragility analysis [20]. The degree of controller fragility is 

decided based on robustness delta 20 fragility index (RFIΔ20) 

which is defined in Eq. (21) 

 

RFI∆20 =
MsΔ20

Ms
-1                            (21) 

 

MsΔ20 is the Ms for 20 % variation in all parameters of the 

controller and Ms in the nominal maximum sensitivity. Any 

controller is said to be resilient if RFI∆20≤0.1; nonfragile if 

0.1<RFI∆20≤0.5 and fragile if RFI∆20>0.5. 

 

 

5. SIMULATION RESULTS 

 

The effectiveness of the proposed fractional filter FOPID 

controller is explained with four examples representing all 

cases of NIOPTD system. The control scheme used is the 
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feedback loop shown in Figure 1. The simulations have been 

performed for a step change in set point and disturbance. The 

system's performance is also observed for perturbations (-20 % 

in K and +10 % in L) in the process parameters and for 

Gaussian noise in the output. The closed loop performance of 

the NIOPTD system is assessed by using the performance 

measures given in Table 2. 

 

Table 2. Performance measures 

 

IAE ITAE TV Ms 

∫|e(t)|dt

∞

0

 ∫ t|e(t)|dt

∞

0

 ∑|ui+1-ui|

∞

i=0

 max
0<ω<∞

|
1

1+C(jω)G(jω)
| 

 

5.1 Identified fractional IMC filter structure 

 

 
 

Figure 2. Analytical procedure for identification of optimum 

fractional IMC filter structure 

The optimum fractional filter FOPID controller settings for 

all the NIOPTD processes are identified according to the 

flowchart (Figure 2). A point to be noted here is that the tuning 

becomes difficult for controllers designed using higher order 

fractional IMC filter for case I of NIOPTD processes. Hence, 

a conventional fractional IMC filter is considered during the 

controller design for case I of NIOPTD processes. The FOPI 

and FOPID controller settings for NIOPTD-I and NIOPTD-II 

processes remain same as given in Eq. (17) and Eq. (18). The 

fractional filter terms of the optimum controllers are given in 

Table 3. Hereafter, the optimum proposed methods of the 

NIOPTD processes are referred to as Proposed1 (NIOPTD-I 

case I): (1 γsp+1⁄ ) + 2/3 Pade’s approximation of e−Ls ; 

Proposed2 (NIOPTD-I case II): ((ηs+1)2 (γsp+1)3⁄ ) + 2/3 

Pade’s approximation of e−Ls; Proposed3 (NIOPTD-II case I): 

(1 γsp+1⁄ ) + 2/3 Pade’s approximation of e−Ls ; Proposed4 

(NIOPTD-II case II): (ηs+1 (γsp+1)3⁄ ) + 2/3 Pade’s 

approximation of e−Ls. 

 

5.2 Example 1 

 

The fractional order model of a heat flow experiment [21] 

is considered for the current study: 

 

Gm(s)=
66.16

12.72s0.5+1
e-1.93s                          (22) 

 

The value of α=0.5 which represents case I of NIOPTD-I 

system. The FOPID controller according to the Li et al. 

method [18] is 

 

C(s)= (
0.96s+1

4.53s1.5+10.99s0.5
) (0.19+

0.015

s0.5
)              (23) 

 

The frequency used for Oustaloup filter approximation of 

fractional operator is 0.001-1000rad/s. The Proposed1 

controller settings are listed in Table 4. The closed loop step 

response with a disturbance of magnitude -1 applied at t=100s 

is shown in Figure 3. The corresponding performance 

measures are given in Table 5. It is evident that the Proposed1 

method gives improved performance with low IAE, ITAE and 

TV compared to Li et al. method [18]. The perturbed response 

and the associated performance measures are presented in 

Figure 4 and Table 6. The Proposed1 method clearly gives 

better result than the method used for comparison. The IAE 

and ITAE values for the response in presence of output noise 

of variance 10 given in Table 7 are close to each other for both 

the methods but the TV value is low with the Proposed1 

method. 

The robust stability of the closed loop system is assessed 

with magnitude plot for T(s). The magnitude plot for the 

current example is shown in Figure 5. It is observed that both 

the methods are robustly stable up to +90 % uncertainty in L 

obeying the robust stability condition (Eq. 20). 
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Figure 3. Nominal response of Example 1 

 

Table 3. Fractional filter terms of the optimum controller 

 
Process Fractional filter term 

NIOPTD-I (case I) 
L3s3+9L2s2+36Ls+60

(γL3sp+2+9γL2sp+1+L3s2+36γLsp+6L2s+60γsp-1+60L)s1-α
 

NIOPTD-I (case II) 

η3L3s5+(9η2L2+2ηL3)s4+(36η2L+18ηL2+L3)s3+(60η2+72ηL+9L2)s2+(36L+120η)s+60

(
γ3L3s3p+2+9γ3L2s3p+1+3γ2L3s2p+2+36γ3Ls3p+27γ2L2s2p+1+3γL3sp+2-3η2L2s3+60γ3s3p-1+108γ2Ls2p

+27γL2sp+1+(L
3
+24η2L-6ηL2)s2+180γ2s2p-1+108γLsp+(48ηL+6L2-60η2)s+180γsp-1+(60L-120η)

) s1-α

 

NIOPTD-II (case I) 
L3s3+9L2s2+36Ls+60

(γL3sp+2+9γL2sp+1+L3s2+36γLsp+6L2s+60γsp-1+60L)s1-β
 

NIOPTD-II (case II) 

ηL3s4+(9ηL2+L3)s3+(36ηL+9L2)s2+(36L+60η)s+60

(
γ3L3s3p+2+9γ3L2s3p+1+3γ2L3s2p+2+36γ3Ls3p+27γ2L2s2p+1+3γL3sp+2+60γ3s3p-1+108γ2Ls2p

+27γL2sp+1+(L
3
-3ηL2)s2+180γ2s2p-1+108γLsp+(24ηL+6L2)s+180γsp-1+(60L-60η)

) s1-β

 

 

Table 4. Controller settings for proposed methods of all the examples 

 
Example Kp Ti λ Td µ η γ p Ms 

Example 1 0.19 12.72 0.5 - - - 11.1 1.05 1.15 

Example 2 0.3 1.5 1.5 - - 0.2 0.66 1.01 1.51 

Example 3 1.1963 1.1964 0.9997 0.1648 0.9947 - 0.53 1.03 1.04 

Example 4 1.17 1.17 1.02 0.1912 1.45 0.03 0.1085 1.02 1.49 

 

Table 5. Comparison of IAE, ITAE and TV values for nominal process conditions 

 
Examples Method Servo response Regulatory response Ms 

  IAE ITAE TV IAE ITAE TV  

Example 1 Proposed1 694.1 6650 4.128 365.2 11780 1.0046 1.15 

Li et al. [18] 716 9410 4.334 370 12680 1.323 1.15 

Example 2 Proposed2 2.576 3.28 0.355 0.9444 1.667 0.1093 1.51 

Li et al. [18] 3.502 7.663 0.2008 1.095 3.057 0.0644 1.51 

Example 3 Proposed3 0.5756 0.2764 19.794 0.2791 0.4618 0.5014 1.04 

Li et al. [18] 0.581 0.2771 4.987 0.2801 0.4531 0.4979 1.04 

Example 4 Proposed4 0.4761 0.0483 42.56 0.2009 0.2773 0.6106 1.49 

Li et al. [18] 0.5383 0.1384 25.037 0.2506 0.3776 0.5779 1.49 

 

Table 6. Comparison of IAE, ITAE and TV values for perturbations 

 
Examples Method Servo response  Regulatory response 

  IAE ITAE TV  IAE ITAE TV 

Example 1 Proposed1 866.1 10480 4.524  361.2 12380 1.0002 

Li et al. [18] 890.5 13740 4.7928  364.7 13170 1.4437 

Example 2 Proposed2 3.184 5.784 0.3817  0.82 2.069 0.1115 

Li et al. [18] 4.378 12.97 0.2535  0.9372 3.815 0.0596 

Example 3 Proposed3 0.718 0.4431 19.5423  0.2776 0.4935 0.4999 

Li et al. [18] 0.7244 0.4378 4.7374  0.2784 0.4838 0.4968 

Example 4 Proposed4 0.5371 0.1067 41.5226  0.201 0.2978 0.5294 

Li et al. [18] 0.6404 0.2446 24.4893  0.2504 0.4076 0.5098 
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Table 7. Comparison of IAE, ITAE and TV values in presence of output Gaussian noise 

 
Examples Method Servo response  Regulatory response 

  IAE ITAE TV  IAE ITAE TV 

Example 1 Proposed1 244 398.3 5.4628  436.5 12070 5.803 

Li et al. [18] 245.3 463.3 8.7353  435.6 12990 9.1528 

Example 2 Proposed2 3.184 3.091 0.5316  1.436 1.417 0.2929 

Li et al. [18] 4.019 7.183 0.2699  1.532 2.566 0.1306 

Example 3 Proposed3 0.6153 0.615 22.644  0.2767 0.411 3.3611 

Li et al. [18] 0.615 0.228 5.6143  0.287 0.4039 1.1652 

Example 4 Proposed4 0.5332 0.1088 50.158  0.245 0.3379 8.5352 

Li et al. [18] 0.6164 0.2108 29.530  0.2951 0.4501 5.1956 

 
 

Figure 4. Perturbed response of Example 1 

 

 
 

Figure 5. Magnitude plot for (A) Example 1 (B) Example 2 (C) Example 3 (D) Example 4 

 

5.3 Example 2 

 

The example for NIOPTD-I system [22] with fractional 

order α in the range of 1 to 2 is  

 

Gm(s)=
5

1.5s1.5+1
e-s                            (24) 

 

The controller designed according to Li et al. method [18] 

is given by 

C(s)= (
0.5s1.5+s0.5

0.79s2+2.85s+3.52
) (0.3+

0.201

s1.5
)                  (25) 

 

The frequency used for Oustaloup filter approximation of 

fractional functions is 0.001-1000 rad/s. The Proposed2 

method controller settings are listed in Table 4. The step 

response with a disturbance of magnitude -0.05 applied at 

t=25s is shown in Figure 6 and corresponding IAE, ITAE and 

TV values are given in Table 5. The measures for perturbed 

response and Gaussian noise (variance=0.001) response are 
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listed in Table 6 and Table 7. It is clear that the Proposed2 

method gives improved response for all the input changes and 

process conditions except for an increase in TV. The 

Proposed2 and Li et al. [18] methods obey the stability 

condition (Eq. 20) for uncertainty in L which is illustrated with 

magnitude plot in Figure 5. 

 

5.4 Example 3 

 

The higher order process approximated as NIOPTD-II 

system [23] is given as follows: 

 

Gm(s)=
5.069

s1.9944+6.0645s0.9997+5.069
e-0.0518s              (26) 

 

The FOPID controller for this system with Li et al. method 

[18] is 

 

C(s)= (
0.0259s+1

0.0017s2.0003+0.0772s1.0003+0.0582s0.0003
) ×  

 (1.1964+
0.9999

s0.9997
+0.1972s0.9957)                 (27) 

 

The frequency used for Oustaloup filter approximation is 

0.01-100 rad/s. The Proposed3 method controller settings are 

listed in Table 4. The nominal response (for step disturbance 

of magnitude -0.5 applied at t=5s) is shown in Figure 7 and the 

corresponding measures are listed in Table 5. Also, the IAE, 

ITAE and TV values for system response in presence of 

perturbations and noise are given in Table 6 and Table 7. It can 

be observed that both the methods are performing well while 

Proposed3 method is showing slight improvement in terms of 

IAE and ITAE. The robust stability condition is obeyed by 

both the methods which is illustrated in Figure 5. 

 

5.5 Example 4 

 

This example is taken as an approximation of higher order 

system [23] 

 

Gm(s)=
4.47

s2.47+5.23s1.02+4.47
e-0.12s                     (28) 

 

The values α=2.47 and β=1.02 represents case II of 

NIOPTD-II system. The controller with method in [18] is 

given by Eq. (29). The Proposed4 controller settings are 

presented in Table 4. 

 

C(s)= (
0.06s1.02+s0.02

0.000123s3+0.005s2+0.071s+0.5
) × (1.17+

0.9945

s1.02
+0.2223s1.45) (29) 

 

 

 
 

Figure 6. Nominal response of Example 2 

 

 
 

Figure 7. Nominal response of Example 3 
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Figure 8. Nominal response of Example 4 

 

The frequency used is same as given in Example 3. The step 

response with a disturbance of magnitude -0.5 applied at t=6s 

is shown in Figure 8. The performance measures are given in 

Table 5-7. It is observed that Proposed4 method is superior in 

performance with low IAE and ITAE but TV is high compared 

to method in [18]. The Proposed4 and Li et al. [18] methods 

are robustly stable (Figure 5). 

 

5.6  Fragility 

 

The delta 20 fragility index (RFIΔ20) values are listed in 

Table 8. The observations made from Table 8 are: Proposed1 

method is nonfragile with respect to Example 1 whereas 

method in [18] is resilient; Proposed2 and Li et al. [18] 

methods are fragile in case of Example 2; Proposed3 method 

is resilient and method in [18] is nonfragile for example 3; 

Proposed4 is fragile and Li et al. method [18] is nonfragile for 

Example 4. It is possible to tune nonfragile controllers whereas 

fragile controllers are difficult to tune. The nonfragile and 

fragile nature of the controller is caused by variation in any 

one parameter or more parameters of the controller. Hence, 

care should be taken while changing those particular 

parameters so that the closed loop system gives robust 

response. 

 

Table 8. Robustness delta 20 (RFIΔ20) fragility index for all 

the examples 

 
Example 1 Example 2 

Proposed1 0.1513 Proposed2 3.5165 

Li et al. [18] 0.0035 Li et al. [18] 0.6874 

Example 3 Example 4 

Proposed3 0.0027 Proposed4 3.604 

Li et al. [18] 0.1 Li et al. [18] 0.4697 

 

 

6. CONCLUSIONS 

 

In this paper, an improved analytical design of the FOPID 

controller is proposed for non-integer order plus time delay 

systems after identifying the optimum fractional IMC filter 

based on minimum IAE for a fixed Ms. The proposed method 

enhances the closed loop performance with additional tuning 

parameters in the controller design. Improved step response is 

observed for different input changes on the closed loop system. 

Improvement is observed with the controller designed using 

2/3 order Pade’s approximation for time delay. The error 

values are decreasing with the proposed controller for all the 

NIOPTD processes but the control effort is increasing with 

increase in the order of approximation. All the proposed 

methods give robust and stable performance for parametric 

uncertainty. The fractional controllers have become fragile for 

uncertainties in the controller parameters when higher order 

fractional IMC filter is used during their design. Hence, 

attention should be needed while changing the fractional 

orders of the controller and filter. Fragility analysis in presence 

of process parametric uncertainties can be taken up as a future 

work. The proposed method can be extended to design 

fractional controller for unstable non integer order systems. 
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NOMENCLATURE 

G process model 

C controller 

f 

T 

IMC filter 

complementary sensitivity function 

L 

RFI 

M 

D 

S 

Y 

U 

K 

L 

T 

process multiplicative uncertainty bound 

robustness fragility index 

maximum sensitivity 

fractional operator 

Laplace transform of D 

process output 

process input 

system gain 

time delay 

time constant 

Greek symbols 

 fractional order 

 

ω 

fractional order 

frequency 

ζ 

λ 

μ 

damping coefficient 

fractional order of integrator 

fractional order of differentiator 

γ IMC filter time constant 

η additional degree of freedom 

Subscripts 

p proportional 

i integral 

d 

m 

n 

l 

h 

derivative 

model 

natural 

low 

high 
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