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A design of an optimal backstepping fractional order proportional integral derivative 

(FOPID) controller for handling the trajectory tracking problem of wheeled mobile robots 

(WMR) is examined in this study. Tuning parameters is a challenging task, to overcome 

this issue a hybrid meta-heuristic optimization algorithm has been utilized. This 

evolutionary technique is known as the hybrid whale grey wolf optimizer (HWGO), which 

benefits from the performances of the two traditional algorithms, the whale optimizer 

algorithm (WOA) and the grey wolf optimizer (GWO), to obtain the most suitable 

solution. The efficiency of the HWGO algorithm is compared against those of the original 

algorithms WOA, GWO, the particle swarm optimizer (PSO), and the hybrid particle 

swarm grey wolf optimizer (HPSOGWO). The simulation results in MATLAB–Simulink 

environment revealed the highest efficiency of the suggested HWGO technique compared 

to the other methods in terms of settling and rise time, overshoot, as well as steady-state 

error. Finally, a star trajectory is made to illustrate the capability of the mentioned 

controller.  
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1. INTRODUCTION

Nowadays, wheeled mobile robots (WMRs) are well-

known for their ability to be used in both civilian and military 

tasks such as reconnaissance, agriculture, rescue, space 

exploration, surveillance, combat, materials transportation, etc. 

[1-9]. Recently, problems related to trajectory tracking of 

WMR still taking the remarkable attention of many 

researchers [10]. However, many research papers focusing 

only on enhancing the performance of the kinematic controller 

[11-13]. 

The reason behind choosing the previously mentioned 

controller is that the dynamic controller's design is more 

complex than the kinematic one since the dynamics depend on 

the robot parameters such as the moment of inertia, mass, 

frictions [14]. Defining the dynamics of robot vehicles is 

needed in some applications, such as high-speed motions and 

heavy transportation. For that purpose, a sliding mode 

dynamic controller was proposed by Esmaeili et al. [15, 16], 

an online physical parameters adaptation of the robot 

dynamics is proposed by Shanmugavel et al. [17], using 

adaptive neural network controller to handle unmodeled 

dynamics by Fierro et al. [18, 19], while Das & Kar [20] 

investigated an online training using an adaptive fuzzy logic 

controller to learn the complete dynamics. 

Typically, the PID control technique (traditional 

proportional integral derivative) is still employed in various 

industrial processes. This is mainly because of the simple 

structure and eases of design and implementation. When 

significant robustness and transient efficiency are required, the 

control effect is limited. To handle this kind of problems, the 

fractional order proportional integral derivative (FOPID) 

controller is adopted for this purpose. It is obtained by the 

combination of fractional calculus and the traditional PID 

controller, which introduces two new parameters λ and μ (the 

integral and derivative fractional-order, respectively) to the 

classic PID control. Those two added parameters have 

increased the performance and the robustness of the controller; 

several papers demonstrate the high efficiency and 

performance of FOPID controller compared to classic PID 

controller [21, 22]. 

In the last decade, the popularity of FOPID control has 

widely increased and attracted more attention in many 

engineering areas, including robotics engineering [1, 10, 23-

27]. Tuning the five parameters (Kp, Kd, KI, λ and μ) of the 

FOPID controller is a challenging task compared to 

conventional PID control. Also, because WMR is a high 

coupled nonlinear system, taking into account some particular 

constraints such as the gain margin and sensitivity conditions 

[28]. 
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Therefore, obtaining the optimal combination of these 

parameters can only be reached by using powerful 

optimizations methods. Meta-heuristic algorithms have 

proved their ability in turning the FOPID controller parameters 

and improving the controller’s performance in various studies. 

We distingue, particle swarm optimizer (PSO) [10, 28, 29], 

whale optimizer (WOA), grey wolf optimizer (GWO), and 

sine-cosine algorithm (SCA) [30-32]. 

So far, there is no optimization technique that could out-

perform the rest in every aspect; researchers are always 

obligate to develop new algorithms with the aim to receive 

better results. One of the standard solutions is to realize 

various hybrid algorithms to combine the powerful points of 

the approaches [33]. Like, using the hybrid particle swarm 

grey wolf optimizer (HPSOGWO) [34] and the hybrid whale 

grey wolf optimizer (HWGO) [35]. 

The objective of this research is to design a back-stepping 

fractional order PID to control the WMR motion. Two blocs 

of the FOPID controller are used in the internal loop as a 

dynamic controller to guarantee that the linear and angular 

speeds of robot mobile follow their reference values. In 

addition, a back-stepping controller located in the external 

loop for controlling the kinematics, in the context of designing 

a robust controller, a powerful optimization technique is 

needed for the parameters tuning, as a consequence, a 

comparative study of different nature-inspired algorithms has 

been invested in selecting the best optimum method. In the 

same context, this paper proposes the HWGO algorithms to 

solve this kind of problem. The simulation results in 

MATLAB highlight the over efficiency of the HWGO 

algorithm compared to those of PSO, GWO, HPSOGWO, and 

WOA approaches. The performance criteria used for the 

minimization of the error are obtained using the cost functions, 

namely integral square error ISE. The study is presented as 

follows: The wheeled mobile robot is modeled and presented 

in Section 2. The controller design and strategy are described 

in Section 3. The algorithms used for tuning parameters, as 

well as the simulation findings and analysis are summarized in 

Sections 4 and 5, respectively. 

 

 

2. MATERIAL AND METHODS 
 

2.1 Modeling the wheeled mobile robot 

 

The WMR in Figure 1 contains two pairs of DC motors with 

driving wheels of radius R, where φL and φR are the left and 

right rotating angles of wheels, respectively. θ is the robot 

orientation and L is the width of the robot body. At the distance 

d from the mind-point A, where (Xa, Ya) is the coordinate of 

A in the inertial frame (X,Y), and the coordinates of any point 

in the robot frame are defined by (Xr, Yr). 

Three steps are necessary to obtain the mathematical model 

of the robot mobile: kinematic modeling, dynamic modeling, 

and actuator modeling, which are defined as follows:  

 

2.1.1 Kinematic model 

This section aims to define a relationship between the linear 

and angular speeds of the mechanical systems without taking 

into account the forces affecting the motion [10, 11]. The 

linear speed of each driving wheel is: 

 

{
𝑣𝑅 = 𝑅𝜑̇𝑅
𝑣𝐿 = 𝑅𝜑̇𝑅

 (1) 

 
 

Figure 1. Schematic design of the WMR 

 

The linear and angular velocities of the WMR are given by 

Eqns. (2) and (3), respectively: 

 

𝑣 =
𝑣𝑅 + 𝑣𝐿
2

= 𝑅
(𝜑̇𝑅 + 𝜑̇𝐿)

2
 (2) 

 

ɷ =
𝑣𝑅 − 𝑣𝐿
2𝐿

= 𝑅
(𝜑̇𝑅 − 𝜑̇𝐿)

2𝐿
 (3) 

 

The kinematic constraint can express by the following 

equations [36]: 

No slip constraint: 

 

−𝑥̇𝑎 𝑠𝑖𝑛 𝜃 + 𝑦̇𝑎 𝑐𝑜𝑠 𝜃 = 0 (4) 

 

Pur rolling constraint: 

 

𝑥̇𝑎 𝑐𝑜𝑠 𝜃 + 𝑦̇𝑎 𝑠𝑖𝑛 𝜃 + 𝐿𝜃̇ = 𝑅𝜑̇𝑅
𝑥̇𝑎 𝑐𝑜𝑠 𝜃 + 𝑦̇𝑎 𝑠𝑖𝑛 𝜃 − 𝐿𝜃̇ =  𝑅𝜑̇𝐿

 (5) 

 

The three constraint equations are: 

 

𝛬(𝑞)𝑞̇ = 0 (6) 

 

where: 

 

(𝑞) = [
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃     0        0 0
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃𝐿 − 𝑅 0
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃  − 𝐿      0 −𝑅

] (7) 

 

and 

 

𝑞̇ = [𝑥̇𝑎𝑦̇𝑎𝜃̇𝜑̇𝑅𝜑̇𝐿]
𝑇
 (8) 

 

So, the kinematic model obtained is: 

 

[
 
 
 
 
𝑥̇𝑎
𝑦̇𝑎
𝜃̇
𝜑̇𝑅
𝜑̇𝐿 ]
 
 
 
 

=

[
 
 
 
 
 
 
𝑐𝑜𝑠 𝜃   
𝑠𝑖𝑛 𝜃   
0 
1

𝑅
1

𝑅

0
0
1
−𝐿

𝑅
−𝐿

𝑅 ]
 
 
 
 
 
 

[
𝑣
ɷ
] =

1

2

[
 
 
 
 
 
 
𝑐𝑜𝑠 𝜃   
𝑠𝑖𝑛 𝜃   
0 
1

𝑅
1

𝑅

0
0
1
−𝐿

𝑅
−𝐿

𝑅 ]
 
 
 
 
 
 

[
𝜑̇𝑅
𝜑̇𝐿
] (9) 

 

which may be written as: 

 

𝑞̇ = 𝑆(𝑞)η (10) 
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where, η = [
φ̇R
φ̇L
]

̇
 is the vector of the angular velocities of two 

wheels. 
 

2.1.2 Dynamical model 

The purpose of dynamic modeling is to take into account all 

the different forces and energies that affect the mechanical 

system motion. The motion equation of the WMRs is given by 

[36, 37]: 
 

𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) + 𝜏 𝑑
= 𝐵(𝑞)𝜏 − 𝛬𝑇(𝑞)𝜆 

(11) 

 

For simulation purposes and control, Eq. (11) should be 

transformed into an alternative form, using the kinematic 

model (10): 
 

𝑆𝑇(𝑞)𝛬𝑇(𝑞) = 0  (12) 
 

The new matrices are express as follows: 
 

{

𝑀̅(𝑞) = 𝑆𝑇(𝑞) 𝑀(𝑞)𝑆(𝑞)

𝑉̅ = 𝑆𝑇(𝑞)𝑀(𝑞)𝑆̇(𝑞) + 𝑆𝑇(𝑞)𝑉(𝑞, 𝑞̇)𝑆(𝑞)

𝐵̅ = 𝑆𝑇(𝑞)𝐵(𝑞)

  (13) 

 

The reduced form of the dynamic equations is expressed as: 
 

{𝑀̅(𝑞)𝜂̇ + 𝑉̅(𝑞, 𝑞̇)𝜂 = 𝐵̅(𝑞)𝜏  (14) 
 

where, 
 

𝑀̅(𝑞) = [
𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼) 𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

]  (14a) 

 

and 
 

𝑉̅(𝑞, 𝑞)̇ =

[
 
 
 0

𝑅2

2𝐿
𝑚𝑐𝑑𝜃̇

−
𝑅2

2𝐿
𝑚𝑐𝑑𝜃̇ 0 ]

 
 
 

,   

 𝐵̅(𝑞) = [
1 0
0 1

]  

(14b) 

 

Eq. (14) may be rewritten in a compact form: 
 

{
(𝑚 +

2𝐼𝑤

𝑅2
) 𝑣̇ − 𝑚𝑐𝑑𝜔

2 =
1

𝑅
(𝜏𝑅 + 𝜏𝐿)

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤)𝜔 + 𝑚𝑐𝑑𝜔𝑣 =

𝐿

𝑅
(𝜏𝑅 − 𝜏𝐿)

̇   (15) 

 

where, 𝑚 = 𝑚𝑐 + 2𝑚𝑤  is the total mass of the robot, and 𝐼 =
𝐼𝑐 +𝑚𝑐𝑑

2 + 2𝑚𝑤𝐿
2 + 2𝐼𝑚  represents the total equivalent 

inertia. 
 

2.1.3 Actuator modeling 

Two pairs of dc motors are considered as actuators for 

producing the torque to control the inputs for driving the 

wheels of the WMR as presented by Figure 2. The dynamic 

model of the actuators can be represented as [38]: 
 

{
 
 

 
 𝑣𝑎 = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎

𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑒𝑎(𝑡)

𝑒𝑎(𝑡) = 𝐾𝑏𝜔𝑚(𝑡)

𝜏𝑚 = 𝑗
𝑑𝑤𝑚(𝑡)

𝑑𝑡
+ 𝑓𝑤𝑚(𝑡) + 𝐾𝑡𝑖𝑎(𝑡)

𝜏 = 𝑁𝜏𝑚

  (16) 

where, ia is the armature current, (Ra, La) is the resistance and 

inductance of the armature winding, respectively, ea is the back 

emf, ωm is the rotor angular speed, τm is the motor torque, (Kt, 

Kb) are the torque constant and back emf constant, respectively, 

N is the gear ratio, and τ is the output torque applied to the 

wheel Since the robot motors are mechanically coupled to 

wheels through the gears. 

 

 
 

Figure 2. Equivalent electrical schema of the dc motor 

 

Therefore, each dc motor will have: 

 

{
𝜔𝑚𝑅 = 𝑁𝜑̇𝑤𝑅         𝑎𝑛𝑑 𝜏𝑅 = 𝑁𝜏𝑚𝑅
𝜔𝑚𝐿 = 𝑁𝜑̇𝑤𝐿        𝑎𝑛𝑑 𝜏𝐿 = 𝑁𝜏𝑚𝐿

  (17) 

 

For the two motors, the dynamic model is expressed as: 

 

{

1

(𝑅+𝐿𝑎𝑃)
(𝑒𝑎𝑟 − 𝐾𝑏𝑁𝜑̇𝑤𝑅) = 𝑖𝑅    𝑤𝑖𝑡ℎ 𝜏𝑅 = 𝑁𝑘𝑡𝑖𝑅

1

(𝑅+𝐿𝑎𝑃)
(𝑒𝑎𝑙 − 𝐾𝑏𝑁𝜑̇𝑤𝐿) = 𝑖𝐿     𝑤𝑖𝑡ℎ  𝜏𝐿 = 𝑁𝑘𝑡𝑖𝐿

  (18) 

 

The robot physical parameters are provided in Table 1 [38]. 

 

Table 1. Physical parameter of the robot 

 

Parameters 
Value and 

Unit 

Distance between two wheels, 2 L 0.75 m 

Distance of point Pc from point Po, D 0.3 m 

Driving wheels radius, R 0.15 m 

Mass of the mobile robot without the driving 

wheels and DC motors, mc 
30 kg 

Mass of each driving wheel (with actuator), mw 1 kg 

Moment of inertia of the mobile robot about the 

vertical axis through the center of mass, Ic 

15.625 

kg∙m2 

Moment of inertia of each driving wheel with a 

motor about the Wheel axis, Iw 

0.005 

kg∙m2 

Moment of inertia of each driving wheel with a 

motor about the Wheel diameter, Im 

0.0025 

kg∙m2 

Armature winding resistance, Ra 1.6 Ω 

Armature winding inductance, La 0.048 H 

Torque constant, Kt 
0.2613 

N.m/A 

Back emf constant, Kb 0.19 rad/s 

Gear ratio, N 62.55 

 

2.2 Controller design and strategy 

 

Figure 3 presents the schematic design of the control 

strategy based on the dynamic and kinematic of the wheeled 

mobile robot. The trajectory generator produces the reference 

coordinate x, y and θ, a back-stepping kinematic controller is 

located in the external loop, here the controller experiences the 

difference between the reference data received from the bloc 

trajectory generator and actual value from the robot then 

generate his own angular and linear speeds that are sent into 
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the internal loop where two blocs of FOPID controller are used 

as a dynamic controller. Here the two FOPID controllers yield 

their own signals of angular and linear speeds based on the 

reference values obtained from the kinematic controller. 

 

 
 

Figure 3. Control scheme of WMR 

 

2.2.1 Kinematic controller design 

One of the goals here is to realize path tracking. The back-

stepping technique has been widely used and is well known as 

a stable tracking control rule which makes it adopted for this 

purpose [11, 14]. The controller structure is highlighted in 

Figure 3, where the input error and velocity vector (vc) are: 

 

[

𝑒𝑥
𝑒𝑦
𝑒𝜃
] = ⌊

𝑐𝑜𝑠 𝜃   𝑠𝑖𝑛 𝜃   0
− 𝑠𝑖𝑛 𝜃   𝑐𝑜𝑠 𝜃   0

0 0 1
⌋ [

𝑋𝑟 − 𝑋
𝑌𝑟 − 𝑌
𝜃𝑟 − 𝜃

] = 𝑇𝑒𝑒𝑟   (19) 

 

𝑣𝑐 = ⌊
𝑣𝑟𝑐𝑜𝑠(𝑒𝜃) + 𝑘𝑥𝑒𝑥

𝑤𝑟 + 𝑘𝑦𝑣𝑟𝑒𝑦 + 𝑘𝜃𝑣𝑟𝑠𝑖𝑛(𝑒𝜃)
⌋  (20) 

 

where, kx, ky and kθ are the tuning parameters. 

 

2.2.2 Dynamic controller description 

The fractional proportional integral derivative FOPID was 

first proposed in 1999 by Podlubny [39]. Introducing the two 

new fractional components λ and μ to the classic PID 

controller under the name of Fractional integrator and 

differentiator respectively, the operator of non-integer-order is 

provided in Eq. (21) [40]. 

 

𝐷𝑛
𝑡 = {

𝑑𝑛

𝑑𝑡𝑛
       𝑛 > 0

1            𝑛 = 0

∫ 𝑑𝑡𝑛   𝑛 < 0
𝑎

𝑡

  (21) 

 

where, a and t are the lower limit and upper limit of the process 

and 𝑛 ∈ ℝ the constant integral differential operator. 

The fractional calculus has three main definitions Riemann 

Liouville (RL), Grünwald Letnikov (GL), and Caputo. The 

most common definition utilized in engineering applications is 

the Caputo method [30, 40] given in Eq. (22). 

 

𝐷𝑛
𝑡𝑓(𝑡) =

1

𝛤(𝛼−𝑛)
∫

𝑓𝑛(𝜏)

(𝑡−𝜏)𝑛−𝛼+1
𝑑𝜏   

𝑡

𝑎
  (22) 

 

for 𝑛 − 1 ≤ 𝑛 ≤ 𝛼 . The term sα doesn’t have an analytical 

solution, but it has a fractional order, which is hard to 

implement. Therefore, numerical solutions such as Oustaloup 

approximation are adopted [40]. 

𝑠𝛼 ≈ 𝐾∏
1+

𝑠

𝜔𝑧,𝑛

1+
𝑠

𝜔𝑝,𝑛

𝑁
𝑛=−𝑁       𝛼 > 0  (23) 

 

where, N is the number of poles/zeros. Figure 4 presents the 

parallel structure of the FOPID controller block diagram. 

Where E(S) distinguishes for the input and errors (E(S) and 

U(S)). 

 

 
 

Figure 4. Block diagram of fractional order 

 

 
 

Figure 5. Generalized FOPID controller 

 

The representation of the transfer function for the Fractional 

Order PID (FOPID) in the time domain (Eq. (24)) and the 

transfer function corresponds to the fractional order in the 

Laplace domain (Eq. (25)). 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑘𝑖𝐷𝑡
−𝜆𝑒(𝑡) + 𝐾𝑑𝐷𝑡

𝜇
𝑒(𝑡)  (24) 
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𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑆𝜆
+ 𝐾𝑑𝑆

𝜇
  (25) 

 

where, Kp, Ki and Kd are proportional, integral and derivative 

gains constants, respectively, λ and μ are factional order of the 

integral and derivative term. All type of the classic PID may 

be obtained by taking (𝜆, 𝜇) = {(1, 1), (1, 0), (0, 1), (0, 0)}, as 

shown in Figure 5. 

 

2.2.3 Tuning parameters for FOPID 

The WMR block diagram for tuning parameters of the Two 

FOPID controllers is highlighted in Figure 6. The first 

controller receives the difference between the reference and 

actual velocity from the right wheel as an input where the 

desired velocity is constant: Ur =1 m/s. 

 

 
 

Figure 6. Bloc diagram for parameters tuning 

 

The second controller in the left wheel experiences the 

difference between the actual and desired orientations as input. 

Where the reference angle was represented by a constant value: 

θr = 0.785 rad. The following Eq. (26) represent the relation 

between the input voltage of the right and left DC actuators, 

respectively UR, UL with the outputs of the first and second 

controller, respectively UV, Uθ: 

 

{
𝑈𝑅 =

𝑈𝑉+ 𝑈𝜃
2

𝑈𝐿 =
𝑈𝑉− 𝑈𝜃
2

 (26) 

 

The cost function used in the study is the integral square 

error (ISE) which is demonstrated by Eq. (27):  

 

𝐼𝑆𝐸 = (∫ [𝑒𝑣(𝑡)]
2𝑑𝑡 + ∫ [𝑒𝜃(𝑡)]

2𝑑𝑡
∞

0

∞

0

) (27) 

 

where: 

 

{
𝑒𝑣 = 𝑈𝑟 − 𝑈𝑚
𝑒𝜃 = 𝜃𝑟 − 𝜃𝑚

 (28) 

 

Ur is the desired velocity, Um the actual velocity, ev the velocity 

error, θr the desired orientation, θm the measured orientation, 

and eθ is the orientation error. The optimization algorithms 

used to tune the parameters (Kp, KI, Kd, λ, µ) are described in 

the next section. 

 

2.3 Meta-heuristic algorithms 

 

2.3.1 Particle swarm optimization (PSO) 

In this method and for each iteration, all of the particles in 

the swarm update their positions with the use of the following 

equations [34, 41]: 

 

𝑉𝑖
𝑘+1 = 𝑤 𝑉𝑖

𝑘 + 𝐶1𝑅1(𝑝𝑖
𝑘 + 𝑥𝑖

𝑘)

+ 𝐶2𝑅2(𝑔𝑏𝑒𝑠𝑡𝑖 + 𝑥𝑖
𝑘) 

(29) 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (30) 

 

Here, R1 and R2 are random numbers in the range [0, 1]. i 

refer to the particle in the swarm. k is the iteration step carried 

out, while w is the inertia weight parameter. The coefficients 

C1 and C2 are the optimization parameters, X: position vector, 

and 𝑝𝑖
𝑘: best position information achieved by the ith particle, 

𝑔𝑏𝑒𝑠𝑡𝑖: best position information available in the swarm [33]. 

 

2.3.2 Grey wolf optimizer (GWO) 

The mathematical models of GWO consist of social 

hierarchy, enriching prey, search for prey, attacking prey, and 

hunting [42-44]. Social hierarchy: The leader of wolves is 

called alpha (𝛼), Beta () and delta (𝛿) are the second and 

third levels in the group, respectively. 

 

𝑑 = |𝑐 ∙ 𝑥𝑝(𝑛) − 𝑥(𝑛)| (31) 

 
(𝑛 + 1) = 𝑥𝑝(𝑛) − 𝑎 ∙ 𝑑 (32) 

 

where, xp: position vector of the prey, n: current iteration, and 

x: position vector of a grey wolf. The vectors 𝑎  and c are 

mathematically formulated as follows: 

 

𝑎⃗(.) = 2𝑙 ∙ 𝑟1 − 𝑙 (33) 

 

𝑐(.) = 2 ∙ 𝑟2 (34) 

 

where, r1 and r2 are random numbers in [0, 1]. The following 

equations for hunting are used: 

 

{

𝑑𝛼 = |𝑐1 ∙ 𝑥⃗𝛼 − 𝑥⃗|

𝑑𝛽 = |𝑐2 ∙ 𝑥⃗𝛽 − 𝑥⃗|

𝑑𝛿 = |𝑐3 ∙ 𝑥⃗𝛿 − 𝑥⃗|

 (35a) 

 

{

𝑥⃗1 = 𝑥⃗𝛼 − 𝑎⃗1 ∙ (𝑑𝛼)

𝑥⃗2 = 𝑥⃗𝛽 − 𝑎⃗2 ∙ (𝑑𝛽)

𝑥⃗3 = 𝑥⃗𝛿 − 𝑎⃗3 ∙ (𝑑𝛿)

 (35b) 

 

𝑥(𝑛 + 1) =
𝑥⃗1 + 𝑥⃗2 + 𝑥⃗3

3
 (35c) 

 

2.3.3 Hybrid PSO-GWO algorithm 

HPSOGWO is the hybridize Particle Swarm Optimization 

with the Grey Wolf Optimizer algorithm that uses the 

functionalities of both variants to enhance exploitation in PSO 

and GWO and to generated both variants’ strength [34]. 

In this algorithm, the position of the first three agents is 

updated in the search space using Eq. (34). The control of the 

grey wolf exploration and exploitation is conducted with the 

inertia constant. Using the following modified equations: 
 

𝑑𝛼 = |𝑐1 ∙ 𝑥⃗𝛼 − 𝜔 ∗ 𝑥⃗|

𝑑𝛽 = |𝑐1 ∙ 𝑥⃗𝛽 − 𝜔 ∗ 𝑥⃗|

𝑑𝛿 = |𝑐1 ∙ 𝑥⃗𝛿 − 𝜔 ∗ 𝑥⃗|

 (36) 
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The following equation is for combining the variants of 

PSO and GWO:    

 

𝑣𝑖
𝑘+1 = 𝜔 ∗ (

𝑣𝑖
𝑘 + 𝑐1𝑟1(𝑥1 − 𝑥1

𝑘) + 𝑐2𝑟2(𝑥2 − 𝑥𝑖
𝑘)

+𝑐3𝑟3(𝑥3 − 𝑥𝑖
𝑘)

)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1

 (37) 

 

2.3.4 Whale optimization algorithm 

This Algorithm consists of three stages [45-47]: 

 

Bubble-net attacking method: 

Using the bubble-net strategy, the humpback whales attack 

the prey. This is shown in the following two methods [45]: 

▪ Shrinking encircling mechanism: it is applicable by 

reducing the amount of l in Eq. (33). 

▪ Spiral updating position: the mathematical 

description of the helix-shape motion of humpback 

whales is: 

 

𝑋⃗(𝑛 + 1) = 𝐷⃗⃗⃗′ ∙ 𝑒𝑏𝑣 ∙ 𝑐𝑜𝑠(2𝜋𝑣) + 𝑋⃗∗(𝑛) (38) 

 

𝐷⃗⃗⃗′ = |𝑋⃗∗(𝑛) − 𝑋(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | (39) 

 

A probability of 50% to choose either a shrinking 

mechanism or a helical path down below the mathematical 

formula: 

 

𝑋⃗(𝑛 + 1)

= {
𝑋⃗∗(𝑛) − 𝐴 ∙ 𝐷⃗⃗⃗ 𝑖𝑓 𝑝 < 0.5

𝐷⃗⃗⃗′ ∙ 𝑒𝑏𝑣 ∙ 𝑐𝑜𝑠(2𝜋𝑣) + 𝑋⃗∗(𝑛) 𝑖𝑓 𝑝 > 0.5
 

(40) 

 

where, p is a random number in [0, 1]. 

 

Search for prey: 

The humpback whales search randomly for prey. 

Exploitation phase fellow those rules [45]: 

 

𝐷⃗⃗⃗ = |𝐶 ∙ 𝑋⃗𝑟𝑎𝑛𝑑 − 𝑋⃗| (41) 

 

𝑋⃗(𝑛 + 1) = 𝑋⃗𝑟𝑎𝑛𝑑 − 𝐴 ∙ 𝐷⃗⃗⃗ (42) 

 

2.3.5 Hybrid WOA-GWO algorithm 

The HWGO algorithm aims to enhance the efficiency of the 

WOA algorithm by applying the leadership hierarchy of GWO. 

The next step is to apply the outcome to the WOA attacking 

strategy. The HWGO selected the three best candidate 

solutions: the 1st, 2nd, and 3rd levels in the group are alpha (a), 

beta (b), and delta (d). 

The mathematical model for updating the position of whales 

using the leadership hierarchy of GWO during optimization is 

given as: 

 

▪ The updating of the position of whales using the 

hierarchy leadership of GWO is expressed by Eq. 

(35). 

▪ The updating of the position along of a spiral-shape 

path of humpback whales is as follows: 

 

{

𝐷⃗⃗⃗𝛼
′ = |𝑋⃗𝛼(𝑛) − 𝑋⃗|

𝐷⃗⃗⃗𝛽
′ = |𝑋⃗𝛽(𝑛) − 𝑋⃗|

𝐷⃗⃗⃗𝛿
′ = |𝑋⃗𝛿(𝑛) − 𝑋⃗|

 (43) 

 

{
 
 

 
 

{

𝑋⃗1(𝑛) = 𝑋⃗𝛼(𝑛) + 𝐷⃗⃗⃗𝛼 ∙ 𝑒
𝑏𝑣 ∙ 𝑐𝑜𝑠(2𝜋𝑣)

𝑋⃗2(𝑛) = 𝑋⃗𝛽(𝑛) + 𝐷⃗⃗⃗𝛽 ∙ 𝑒
𝑏𝑣 ∙ 𝑐𝑜𝑠(2𝜋𝑣)

𝑋⃗3(𝑛) = 𝑋⃗𝛿(𝑛) + 𝐷⃗⃗⃗𝛿 ∙ 𝑒
𝑏𝑣 ∙ 𝑐𝑜𝑠(2𝜋𝑣)

 (44) 

  

{𝑋⃗(𝑛 + 1) =
𝑋⃗1 + 𝑋⃗2 + 𝑋⃗3

3
 (45) 

 

 

3. RESULTS AND DISCUSSION 
 

This investigation adopted the use of various analyses such 

as convergence curve, the step response of linear velocity and 

orientation, and trajectory tracking in order to validate the 

performance and robustness of the suggested HWGO 

algorithm. In comparison to four optimization algorithms 

under the name of PSO, GWO, WOA, and HPSOGWO. 

All simulation experiments of this study were performed on 

a PC independently, which had the following configuration: 

operating system, 64-bit Windows 10; CPU, Intel Core i5-

4200 2.30 GHz, and simulation software, MATLAB R2019. 

To measure the robustness of the compared meta-heuristics in 

solving this problem we run more than 30 simulation 

experiments for each algorithm. Moreover, in order to study 

the convergence behavior of the algorithms, the maximum 

number iterations and the population size are set to 100 and 20, 

respectively.  

 

3.1 Convergence curve of the algorithms 

 

Figure 7 presents the convergence curve of the five selected 

optimizations algorithms. That’s proved the over-performance 

of the HWGO algorithm.  

The obtained value of ISE for all algorithms used in the 

study is shown in Table 2. From Figure 7 and Table 2, it quite 

obvious that the PSO fells easy in local minimum, with a cost 

value (0.0504) compare to GWO that has obtained a better 

object function value (0.0477). The HPSOGWO could solve 

the problem by avoiding the local minimum related to PSO, 

and could reach a better precision than the GWO (0.0464). The 

WOA optimizer also as the PSO optimizer fells in the local 

minimum with the worst ISE value obtained (0.0533).  

 

 
 

Figure 7. Convergence curve of five algorithms 
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Table 2. ISE values of the five algorithms 
 
Algorithms PSO GWO HPSOGWO WOA HWGO 

ISE 0.0504 0.0477 0.0464 0.0533 0.0452 

 

However, this algorithm takes the smaller number of 

iterations (need only 10 iteration) compare to the previous 

mentioned approached. Lastly, the proposed HWGO 

algorithm that benefited from the rapidity of the WOA 

algorithm, and the precision of the GWO algorithm, could 

obtain the best cost value (0.0452). In summary, the HWGO 

algorithm has the lowest ISE amount with the highest rapidity 

in terms of convergence. It is noted that the algorithm only 

took 50 iterations to obtain the best optimal values. 
 

3.2 Step response performance of speed controller 
 

Figure 8 presents the comparative findings for velocity step 

responses that were designed with various techniques. As 

illustrated, the HWGO is characterized by a significant time 

response, as mentioned below. 

 

 

 
 

Figure 8. Comparison of velocity step response for all 

algorithms 

 

Table 3 shows the gain details of the FOPID1 controller, for 

the speed control of the WMR, for all chosen algorithms. 

While Table 4 shows the characteristics obtained in the time 

domain.   

From Figure 8, and Tables 3 and 4, we can say that the best 

overshoot belongs to HWGO followed by HPSOGWO, GWO, 

PSO, and WOA by an overshoot of 14.514%, 16.211%, 

16.689%, 17.366%, and 19.982%, respectively. The 

algorithms can classify from worst rise time to the best rise 

time as follows: PSO (0.0034s), GWO (0.0032s), HPSOGWO 

(0.0031s), WOA (0.0027s), and HWGO (0.0026s). Based on 

the settling time the algorithm can be classified as follows: 

PSO (0.4944s), GWO (0.4924s), WOA (0.3994s), 

HPSOGWO (0.3655s), and HWGO (0.3168s).  

Table 3. The tuned gain details of FOPID1 Controller for all 

algorithms 
 

Methods 
FOPID 1 for speed control 

𝐾𝑝 𝐾𝑖 𝐾𝑑 λ µ 

PSO 400 100 100 0.96 0.66 

GWO 500 10.975 100 0.96 0.66 

HPSOGWO 500 99.69 100 0.11 0.65 

WOA 500 100 28.15 0.87 0.94 

HWGO 500 145 149 0.10 0.56 

 

Table 4. Performance characteristic for FOPID1 
 

Methods 
FOPID 1 for speed control 

𝑡𝑟 Mp% Peak 𝑡𝑝 𝑡𝑠 

PSO 0.0034 17.366 1.1737 0.0890 0.4944 

GWO 0.0032 16.689 1.1669 0.0761 0.4924 

HPSOGWO 0.0031 16.211 1.1621 0.0509 0.3655 

WOA 0.0027 19.982 1.1998 0.0926 0.3994 

HWGO 0.0026 14.514 1.1451 0.0479 0.3168 

 

3.3 Step response performance of angle controller 
 

Figure 9 presents the comparative findings for angle step 

responses that were designed by applying the five optimization 

techniques. As illustrated, the HWGO has a significant time 

response. 

Table 5 reveals the gain details of the FOPID2 controller for 

the orientation control of the WMR selected. In contrast, the 

comparative results of transient response are highlighted in 

Table 6. 

From Figure 9, Tables 5 and 6, we can say that the best 

overshoot belongs to HWGO followed by GWO, HPSOGWO, 

WOA, and PSO by an overshoot of 0.8464%, 1.6377%, 

2.3653%, 3.2358%, and 3.8347%, respectively. 

The algorithms can classify from worst rise time to the best 

rise time as follows: GWO (0.5235s), WOA (0.4033s), 

HPSOGWO (0.4017s), PSO (0.3994s), and HWGO (0.225s). 

Based on the settling time the algorithm can be classified as 

follows: HPSOGWO (4.9513s), PSO (1.9409s), WOA 

(1.4563s), GWO (0.9705s), and HWGO (0.4914s). 
 

 
 

Figure 9. Comparison of step response for the orientation 
 

Table 5. The tuned main parameters of FOPID2 controller 

for all algorithms 
 

Methods 
FOPID 2 for Angle control 

𝐾𝑝 𝐾𝑖 𝐾𝑑 λ µ 

PSO 1 100 69.55 0.1 0.96 

GWO 1.21 57.22 74.18 0.15 0.96 

HPSOGWO 67.9 6.52 75.17 0.74 0.96 

WOA 93.48 3.17 63.46 0.60 0.96 

HWGO 63.97 26.4 81.95 0.36 0.95 

1 
A 

Detail A 
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Table 6. Performance characteristic for FOPID2 

 

Methods 
FOPID 2 for speed control 

𝑡𝑟 Mp% Peak 𝑡𝑝 𝑡𝑠 

PSO 0.3994 3.8347 0.8151 1.0770 1.9409 

GWO 0.5235 1.6377 0.7979 2.6191 0.9705 

HPSOGWO 0.4017 2.3653 0.8036 3.2517 4.9513 

WOA 0.4033 3.2358 0.8104 0.9832 1.4563 

HWGO 0.2825 0.8464 0.7916 2.2696 0.4914 

 

In summary, the lowest amounts of peak percentage, 

overshoot (Mp%), rise time (tr for 10% → 90%), and settling 

time (ts for ±2% tolerance) were also observed for the 

suggested HWGO-FOPID2 controller. 

 

3.4 Path tracking 

 

To illustrate the robustness of the Back-stepping - HWGO -

FOPID controller, a star trajectory was selected using [48]: 

 

𝑥𝑅(𝑛) = −2.5 ∗ 𝑠𝑖𝑛 (2 ∗ 𝜋 ∗
𝑡

30
) (46) 

 

𝑦𝑅(𝑛) = 2.5 ∗ 𝑠𝑖𝑛 (2 ∗ 𝜋 ∗
𝑡

20
) (47) 

 

𝜃𝑅(𝑛) = 𝑎 𝑡𝑎𝑛2

[
 
 
 
 (
𝑦𝑅(𝑛) − 𝑦𝑅(𝑛 − 1)

𝑡 + 𝜖
)

(𝑥𝑅(𝑛) − 𝑥𝑅(𝑛 − 1))

𝑡 + 𝜖 ]
 
 
 
 

 (48) 

 

where, the gains are chosen as: kx = 10, ky = 80 and kθ =15. The 

reference and actual trajectories of the star path are shown in 

Figure 10, where blue and red lines, respectively, represent 

them.  

Figures 11(a)-11(c) display the desired and actual tracks for 

x, y, and 𝜃, respectively. The reference and actual amounts of 

the linear and angular speeds (v and w) are presented in 

Figures 12(a) and 12(b). However, Figures 13(a)-13(f) reveal 

the errors of the v, w, x, y, θ, and the tracking trajectory, 

respectively.  

The HWGO-FOPID controller was designed to handle with 

the dynamics, which means a kinematic controller is necessary, 

therefore a back-stepping controller was proposed to guarantee 

a minimum of distance error that already has been proved in 

Figure 13(f) (error less than 0.004 m), this result demonstrate 

the reason behind the supposition of actual with the reference 

trajectories in Figures 10-12.  

 

 
 

Figure 10. Star trajectory 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. Response of the (a) X; (b) Y; (c) θ variable 

 

The addition of this controller in the external loop had 

influenced by decreasing the error of linear and angler velocity 

(the ISE of the HWGO) of the dynamic controller from 0.0452 

to less than 0.002 as shown in Figures 13(a) and 13(b).  

 

 
(a) 
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(b) 

 

Figure 12. Response of (a) linear; and (b) angular Velocities 

(for star shape) 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 13. Error corresponding to (a) linear and (b) angular 

velocities; (c) x, (d) y and (e) theta variables; (f) the 

trajectory tracking 

 

 

4. CONCLUSIONS 

 

This paper presents an advanced optimization method to 

obtain the turning parameters of fractional order proportional 

integral derivative controller (FOPID controller). A 

comparison study was performed for the first time in the 

robotics field, where several tuning methods have been 

employed to set the details of two FOPID controllers, which 

are designed to make sure that the linear and angular speeds of 

the WMR follow the input reference. Those five meta-

heuristics approached namely particle swarm optimizer (PSO), 

grey wolf optimizer (GWO), hybrid particle swarm grey wolf 

optimizer (HPSOGWO), whale optimizer (WOA) and hybrid 

grey wolf whale optimizer (HWGO) were found to be all 

statistically and graphically approved, by considering integral 

square error ISE as a cost function. A back-stepping kinematic 

controller was adopted to guarantee that tracking errors 

convergence to zero to achieve the trajectory tracking. A 

transient response in the time domain has been made to 

examine the performance of selected algorithms. Simulation 

results have successfully confirmed the over performance of 

HWGO in comparison to PSO, GWO, HPSOGWO, and WOA 

in terms of lowest error value obtained, convergence rapidity, 

with the minimum overshoot, received rise time, peak, peak 

time, and settling. Finally, a star trajectory demonstrated the 

robustness of the mentioned controller.  
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