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This paper presents a high performance squirrel-cage asynchronous motor (ASM) drive, 

proposed for high-speed electric vehicle (EV) propulsion. This is an indirect space vector 

control (IDSVC) scheme in the rotor flux frame of reference, in which the modeling is 

based on synchronously rotating coordinate system transformation. Space vector pulse 

width modulation (SVPWM) inverter fetches the controlled stator direct and quadrature 

axis responses from the speed and current controllers and supply necessary voltages to 

stator of ASM. The output voltage waveforms of SVPWM inverter are not sinusoidal in 

nature, which allows undesired harmonics at high frequency of operation. This due to 

inconsistent switching frequency. A second-order low-pass (SOLP) RLC filter with 

Butterworth approximation and was designed and connected in series with SVPWM 

inverter to grab harmonic free speed and torque profile during high speed operations. 

Similarly, another SOLP with a quality factor equal to 2 is designed and speed profiles of 

both filters are compared. The system is developed and simulated in 

MATLAB/SIMULINK to observe the speed and torque tracking capabilities. Simulation 

results show that the performance of drive under steady and dynamic states were good 

with Butterworth filter approximation with robust IDSVC scheme adopted over wide 

range speed-drive curve. 
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1. INTRODUCTION

Vehicle propulsion system now-a -days mainly concern to 

the eco-friendly and green transportation. The depletion of 

fossil fuels, carbon dioxide (CO2) emission and ever- growing 

energy demand are the leading contributors of climatic change 

and environmental pollution [1], which paid attention to the 

EV. EV’s are the promising technology for the energy efficient 

and pollution free environment compared to internal 

combustion engine vehicle (ICEV) [2, 3]. 

Advances in power converter design for renewable energy 

sources and charging electric vehicles made EV’s more 

reliable [4]. In EV’s, numerous types of machines are 

employed, out of them synchronous motors with permanent 

magnet (PMSM) and ASMs are used for propelling. ASM is 

widely preferred because it gives best compliance in 

manufacturing cost and power density. It is also simple in 

construction, high reliable, minimum torque ripple, easy in 

control, low noise and a robust machine. Moreover, it is highly 

efficient at medium and high frequencies with minimum iron 

losses [5, 6]. The control schemes mainly applied to ASM are 

V/F control, adaptive control, direct torque control and fuzzy 

logic control [7-10]. The IDSVC of ASM is the basic closed 

loop control scheme with less complexity in design and 

operation and could achieve the requirements of high-

performance speed regulation. 

In this paper, the indirect space vector control scheme 

implementation for asynchronous motor involves the 

conversion of the actual stator and rotor three phase windings 

by an equivalent set of orthogonal di-phasic windings and 

further to d-q orthogonal windings, which produces same 

MMF in the air gap, without direct consideration of Park’s 

transformation matrix [11]. Nevertheless, transformation 

matrix is derived by physical approach. The indirect space 

vector control strategy for torque and speed regulation is 

exercised and then finally the SVPWM inverter in association 

with SOLP RLC filter with Butterworth approximation is 

employed to achieve harmonic free speed and torque curve in 

high speed traction. 

2. ELECTRIC VEHICLE DESIGN

The architecture of battery powered plug-in EV is shown in 

Figure 1. The pure electric vehicle basically constitutes of an 

asynchronous motor, inverter, charge/discharge DC-DC 

converter, battery for energy storage, control unit and plug-in 

electric charger [12]. The double line represents the DC supply 

connections and triple line the represents three phase supply 

connections. The bidirectional arrows represent the power 

flow in either direction. The battery is charged with a plug-in 

electric charger. The control unit gives the necessary 

commands to DC-DC converter and battery, which enables the 

charging or discharging modes of battery. To achieve 

motoring of EV either during acceleration or constant speed 

operations, the power flow is from battery to inverter and then 

to electric motor. The type of braking adopted in an EV is the 

regenerative braking. During deceleration of EV, the power 

flows in counter direction to charge the battery. 

The DC-DC charge/discharge converter in association with 
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control unit takes care of voltage diverseness during motoring 

and braking operations. Unlike internal combustion vehicles, 

EV’s are more flexible in operation and maintenance as they 

are more advanced in transmission and conversion of energy. 

 

 
 

Figure 1. Electric vehicle architecture 

 

The DC-DC charge/discharge converter in association with 

control unit takes care of voltage diverseness during motoring 

and braking operations. Unlike internal combustion vehicles, 

EV’s are more flexible in operation and maintenance as they 

are more advanced in transmission and conversion of energy. 

 

 

3. MATHEMATICAL MODELING OF ASM MOTOR 

WITH IDSVC 

 

For dynamic analysis of ASM, we need two orthogonal 

windings by which the flux and torque can alone be governed. 

The stator and rotor have equal number of turns (Ns). Assume 

the stator windings be wye-connected where neutral not 

accessible and the number of turns of orthogonal windings as 

√3 2⁄  Ns such that d-q windings have same stator resistance 

and leakage reactance similar to three phase windings. 

 

 
 

Figure 2. d-q winding representation of stator and rotor 

currents 

 

us
a⃗⃗  ⃗(t)=ua(t)e

j0+ub(t)e
j2π

3 +uc(t)e
j4π

3 = uˆ(t)ejθus(t) (1) 

 

is
a⃗⃗ (t)=ia(t)e

j0+ib(t)e
j2π

3 +ic(t)e
j4π

3 = iˆ(t)ejθis(t) (2) 

 

ψ
s
a⃗⃗⃗⃗ (t)=ψ

a
(t)ej0+ψ

b
(t)e

j2π

3 +ψ
c
(t)e

j4π

3 = ψˆ(t)e
jθψs

(t)
 (3) 

 

where, us
a⃗⃗  ⃗(t), is

d⃗⃗ (t) and ψ
s
a⃗⃗⃗⃗ (t)  are stator three phase space 

vectors and uˆ(t)e
jθus

(t)
, iˆ(t)ejθis(t)and ψˆ(t)e

jθψs
(t)

are stator three 

phase phasors referred to stator a-axis. The MMF distribution 

produced by the hypothetical d-q winding in the air gap is 

same, similar to three phase stator windings [Appendix 1]. The 

stator current space vector with reference d-axis is given in Eq. 

(4), (5) [13]. 

 

𝑖𝑠
𝑑⃗⃗  ⃗(t)=ia(t)e

-jθdsa+ib(t)e
-j(θdsa - 

2π
3
)
+ic(t)e

-j(θdsa  - 
4π
3
)
 (4) 

 

is
d⃗⃗ (t)=√

3

2
(isd(t)+jisq(t))  (5) 

 

From Figure 2 it is observed 

 

isd(t)=√
2

3
(Projection of is(t) along d-axis)  

=√
2

3
. (

3

2
îs) cos θdsa  

(6) 

 

isq(t)=√
2

3
(Projection of is(t) along q-axis)  

=√
2

3
. (

3

2
îs) sin θdsa  

(7) 

 

Equating the real and imaginary parts of Eq. (4) and Eq. (5). 

In the situation of an isolated neutral, the sum of all 3-phase 

currents is always zero. The dq0 winding variables can be 

determined in terms of abc winding variables. The bottom 

third row of ones in the matrix shows the situation where the 

total of all 3-phase currents is zero, is0(t)=ia(t)+ib(t)+ic(t)=0 

Therefore, we omit the third row and consider a 2x3 matrix 

instead of 3x3 matrix as shown in Eq. (8.2). 

 

(

isd(t)

𝑖𝑠𝑞(𝑡)

𝑖𝑠0(𝑡)

)= 

√
2

3
(

cos(θdsa) cos (θdsa-
2π

3
) cos (θdsa-

4π

3
)

-sin(θdsa) -sin (θdsa-
2π

3
) -sin (θdsa-

4π

3
)

1 1 1

) 

(

ia(t)

ib(t)

ic(t)

) 

(8.1) 

 

(
isd(t)

isq(t)
)= 

√
2

3
(
cos(θdsa) cos (θdsa-

2π

3
) cos (θdsa-

4π

3
)

-sin(θdsa) -sin (θdsa-
2π

3
) -sin (θdsa-

4π

3
)
) 

(

ia(t)

ib(t)

ic(t)

)  

(8.2) 

 

The 2×3 matrix is called state transformation matrix [Zs]abc-

dq0 given in Eq. (8.2). Similarly, we apply the same 

transformation matrix for stator voltages and flux linkages. 

Consider Eq. (8.1) and solve for abc phase currents in terms of 

dq0 winding currents. The inverse 3x3 matrix in Eq. (8.1) is 

given in Eq. (9.1). We get the necessary relationship by 

removing the third column of ones which has no contribution 
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as shown in Eq. (9.2). 

 

(

ia(t)

ib(t)

ic(t)

)=√
2

3

(

 
 

cos(θ
dsa
) -sin(θdsa) 1

cos (θdsa+
4π

3
) -sin (θdsa+

4π

3
) 1

cos (θdsa+
2π

3
) -sin (θdsa+

2π

3
) 1

)

 
 

  

(

isd(t)

isq(t)

is0(t)

)  

(9.1) 

 

(

ia(t)

ib(t)

ic(t)

)=√
2

3

(

 
 

cos(θ
dsa
) -sin(θdsa)

cos (θdsa+
4π

3
) -sin (θdsa+

4π

3
)

cos (θdsa+
2π

3
) -sin (θdsa+

2π

3
)
)

 
 

  

(
isd(t)

isq(t)
) 

(9.2) 

 

Here, the 3×2 matrix is also called state transformation 

matrix [Zs]dq-abc in reverse direction. The same procedure is 

adopted to derive the rotor d-q quantities, assuming the rotor 

is wound with three phase winding similar to stator three phase 

winding and replacing θdsa with θdra. To derive the Stator 

winding equations, consider a pair of orthogonal α-β windings 

lined up to stator which is shown in Figure 3. That is α-axis 

lined up to stator a-axis. Similarly, we can derive rotor 

winding equations by considering Figure 4. 

 

 
 

Figure 3. α-β and d-q equivalent windings of stator 

 

 
 

Figure 4. α-β and d-q equivalent windings of rotor 

usα = Rsisα + 
d

dt
 ψ sα (10) 

 

usβ = Rsisβ + 
d

dt
 ψsβ (11) 

 

Since α and β components are orthogonal combine Eq. (10) 

and Eq. (11) with j operator for space vector representation. 

 

us_αβ
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =Rsis_αβ

α⃗⃗ ⃗⃗ ⃗⃗  ⃗+
d

dt
ψ
s_αβ
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (12) 

 

where, us_αβ
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =uα+juβ. 

The α-axis reference orthogonal α and β space vector 

components can be related to d-axis reference orthogonal d-q 

components. The function of this representation is to convert 

orthogonal α- β components in stationary frame of reference 

into d-q components in rotating frame of reference. This is 

how the Park’s transformation can be achieved.  

 

us_αβ
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =us_dq

α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ejθdsa  (13) 

 

is_αβ
α⃗⃗ ⃗⃗ ⃗⃗  ⃗=is_dq

α⃗⃗ ⃗⃗ ⃗⃗  ⃗ ejθdsa  (14) 

 

Substituting Eq. (13), (14) in Eq. (12), 

 

us_dq
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = Rsis_dq

α⃗⃗ ⃗⃗ ⃗⃗  ⃗+
d

dt
ψ
s_dq
α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+jωdψs_dq

α⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (15) 

 

where, 
d

dt
θdsa= ωdsa, instantaneous speed (rad.s-1). 

 

usd = Rsisd + 
d

dt
 ψsd - ψsqωdsa (16) 

 

usq = Rsisq + 
d

dt
 ψsq + ψsdωdsa (17) 

 

[
usd
usq
]= Rs [

isd
isq
] +
d

dt
[
ψ
sd

ψ
sq
] + ωdsa

[
0 -1

1 0
] [
ψ
sd

ψ
sq
] (18) 

 

To obtain the rotor equations, we assume the rotor was 

wound with 3-phase windings and follow the same approach 

as was used to obtain the stator windings earlier. Simply 

replace the suffix s (stator) with r (rotor) and dsa with dra in 

Eq. (18) instead of going through the overall process. 

 

[
urd
urq
]= Rr [

ird
irq
] +
d

dt
[
ψ
rd

ψ
rq
] + ωdra

[
0 -1

1 0
] [
ψ
rd

ψ
rq
] (19) 

 

Note that for squirrel cage rotor with short circuited rotor 

bars [
urd
urq
]= [

0

0
] . Flux linkages in terms of input voltages and 

currents are obtained from Eq. (18), (19). 
 

d

dt
[
ψ
sd

ψ
sq
] = [

usd
usq
] -Rs [

isd
isq
] - ωdsa

[
0 -1

1 0
] [
ψ
sd

ψ
sq
] (20) 

 
d

dt
[
ψ
rd

ψ
rq
] = [

urd
urq
] - Rr [

ird
irq
] - ωdra

[
0 -1

1 0
] [
ψ
sd

ψ
sq
] (21) 

 

Eq. (20), (21) can be rewritten as 

 
d

dt
[ψ

s_dq
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]=[us_dq] - Rs[is_dq] - ωdsa

[Arotate] [ψs_dq] (22) 

 
d

dt
[ψ

r_dq
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]=[ur_dq] - Rr[ir_dq] - ωdra

[Arotate] [ψr_dq] (23) 
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Space vector ψ
s_dq
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is rotated by an angle of π/2 with the 

matrix [Arotate] =  [
0 -1

1 0
] . On rotor d-axis and q-axis winding, 

electromagnetic torque is given in Eq. (24), (25) [13]. 

 

Td(rotor)= 
p

2
(Lmisq+Lrirq)irq= 

p

2
(ψ

rq
) ird (24) 

 

Tq(rotor)= -
p

2
(Lmisd+Lrird)=  -

p

2
(ψ

rd
)irq  (25) 

 

The constraints for the establishment of flux linkages are (1) 

The d-axis windings and q-axis windings have zero mutual 

coupling. (2) The flux that links any winding is caused by its 

self current as well as the current of the other winding on the 

same axis. One could write flux expressions for all four 

windings using this logic. The flux linkages in terms of their 

direct and quadrature currents in stator and rotor are given in 

Eq. (26), (27), (28) and (29). 

 

ψ
sd
=Lsisd+Lmird (26) 

 

ψ
sq
=Lsisq+Lmirq (27) 

 

ψ
rd
=Lrird+Lmisd (28) 

 

ψ
rq
=Lrirq+Lmisq (29) 

 

where, Rs and Rr are per phase stator and rotor resistances in 

ohm respectively. Ls, Lr and Lm are per phase stator, rotor and 

magnetizing inductances in Henry respectively. Total 

electromagnetic torque TE =Td(rotor)+Tq(rotor) (N-m). 

 

TE = 
p

2
(ψ

rq
ird - ψrdirq) (30) 

 

TE = 
p

2
Lm(isqird - isdirq) (31) 

 

ωMech = 
2

p
(ωm) (32) 

 
d

dt
ωMech=

(TE-TL)

J
 (33) 

 

where, ωMech is mechanical speed of motor (rad-s-1), TL is the 

load torque (N-m), Representing the Eq. (26, 27, 28, 29) in 

matrix form. Let the M stands for 4x4 matrix [Appendix 2]. 

 

[

ψ
sd

ψ
sq

ψ
rd

ψ
rq

]= [

Ls
0

0 Lm 0

Ls 0 Lm

Lm
0

0 Lr 0

Lm 0 Lr

]  [

isd
isq
ird
irq

] (34) 

 

[isd isq ird irq] T= M-1[ψsd ψ
sq

ψ
rd

ψ
rq] T (35) 

 

In Figure 2 each alone stator and rotor d-axis windings are 

aligned to rotor flux (ψ
r
⃗⃗  ⃗) to draw simplified equations. We will 

represent ωdra and electromagnetic torque in terms of isq and 

ψ
rd

. Under vector-controlled operation, ψ
rd

 is kept invariable 

and 𝑖sq  steer the electromagnetic torque generation. The 

dynamics for ψ
rd

 are built. In the alignment of d-axis of both 

stator and rotor to rotor flux (ψ
r
⃗⃗  ⃗), which that means that the q-

axis of both stator and rotor windings will be orthogonal to the 

rotor flux. So, q-axis rotor winding will not have any flux 

linking with the rotor flux. Hence q-axis rotor flux linkages are 

zero as given in Eq. (36). The absence of q- axis rotor flux 

linkages indicates that the rate of change of their flux linkage 

will definitely be equals to zero. 

 

ψ
rq
= 0,⇒ 

d

dt
(ψ

rq
)  = 0 (36) 

 

For a squirrel cage rotor [
urd
urq
]= [

0

0
] (37) 

 

Substituting Eq. (36) in Eq. (29). 

 

 irq = - (
Lm

Lr
) isq (38) 

 

On substitution of Eq. (36), (37) in Eq. (19) for ωdra. 

 

ωdra= - Rr (
irq

ψ
rd

) (39) 

 

Let rotor time constant from Figure 5, τr= (
Lr

Rr
) (40) 

 

Substituting Eq. (38), (40) in Eq. (39). 

 

ωdra = (
Lm

τrψrd
) isq (41) 

 

Then substituting Eq. (36) in Eq. (30) for TE. 

 

TE = - 
p

2
(ψ

rd
 irq  ) (42) 

 

Substitute Eq. (38) in Eq. (42), 

 

 TE = 
p

2
ψ
rd
(
Lm

Lr
isq) (43) 

 

 
 

Figure 5. A simplified d-axis circuitry with current excitation 

 

Figure 5 is the d-axis circuit for short-circuited squirrel cage 

rotor with current excitation. Where Llr  is per phase rotor 

leakage inductance and Lr=Llr+Lm. Solve the circuit for ird in 

Laplace domain. 

 

ird(s)= -
sLm

(Rr+sLr)
isd(s) (44) 

 

Substituting Eq. (44) in Eq. (28) and using Eq. (40) 

 

ψ
rd
(s) = 

Lm

(1+sτr)
isd(s) (45) 
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Figure 6 presents the block diagram of actual ASM, which 

was developed employing Eq. (41), (43, (45). Here stator 

direct and quadrature currents along with mechanical speed of 

rotation are given as input and electromagnetic torque, d-axis 

rotor flux linkages and rotor position are output quantities. 

Where ωdsa is the instantaneous speed of stator d-q winding 

pair with reference to stator a-axis and ωdsa= ωdra+ωm. The 

Simulink model ASM corresponding to Figure 6 is shown in 

Figure 7. 

In Figure 8, utilizing the computed values of isd, isq and ψrd 

for an any value of ωdsa measured, the reference voltages 

usd
ref and usq

refare generated. The direct and quadrature stator 

voltages with the estimated value of θdsa undergo dq to abc 

transformation and reference voltage signals ua
ref,ub

ref and 
uc
ref  are produced. The reference voltage signals are fed to 

SVPWM converter to the operating three phase voltages 

ua, ub and uc to ASM to acquire desired operation. The three 

phase stator currents of actual motor undergo abc to dq and are 

driven to estimated motor model to achieve the estimated 

values of torque TE(est) ,  ψrd(est)  and θdsa(est) . The direct and 

quadrature stator currents of actual motor model are compared 

with their corresponding reference values to generate an error 

signal. Each alone d-axis and q-axis error signals are given 

respective PI torque controllers as shown in Figure 9. To 

design PI torque controller the following procedure is 

implemented. 

 

 
 

Figure 6. Actual ASM model d-axis oriented with (ψ
r
⃗⃗  ⃗) 

 

 
 

Figure 7. Simulink model of actual ASM 
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Figure 8. A block diagram of indirect space vector control of ASM accompanied by applied voltages 

 

Firstly, we have to compute the required reference stator 

voltages that SVPWM power processing unit that have to 

supply ASM as shown in Figure 8. Let leakage factor (σ) of 

ASM is given in Eq. (46) [13]. 

 

σ =
LsLr - Ls

2

LsLr
 (46) 

 

Solve for ird in Eq. (28) and then substituting in Eq. (26). 

 

 ψ
sd
=σLsisd+

Lm

Lr
ψ
rd

 (47) 

 

Substituting Eq. (38) in Eq. (27) for ψ
sq

. 

 

ψ
sq
 = σLsisq (48) 

 

Substituting Eq. (46), (47) in Eq. (16), (17) respectively. 

 

usd = (Rsisd + σLs
d

dt
isd)+ (

Lm

Lr

d

dt
ψ
rd
 - ωdsaσLsisq) (49) 

 

usq= (Rsisq+σLs
d

dt
isq)+ (ωdsa

Lm

Lr

d

dt
ψ
rd
 + ωdsaσLsisd) (50) 

 

In Eq. (49) for d-axis stator voltage, on RHS only the initial 

two terms in the first set of brackets rely on d-axis stator 

current, while the other two terms are treated as disturbances 

and can be ignored. Similarly, disturbances for q-axis stator 

voltage in Eq. (50) are omitted. The error caused by the 

disturbances in stator d-axis and q-axis voltages is only about 

two to three percent of the sum of initial two terms in the first 

set of brackets in Eq. (49) and Eq. (50) respectively. These 

disturbance terms are treated as compensated terms. They 

could be compensated by considering these compensation 

terms. In this analysis, they have been ignored. 

u'sd = (Rsisd + σLs
d

dt
isd) (51) 

 

u'sq = (Rsisq + σLs
d

dt
isq) (52) 

 

Applying Laplace transformation to Eq. (51), (52). 

 

u'sd(s) = (Rs + sσLs)isd(s) (53) 

 

u'sq(s )= (Rs + sσLs)isq(s) (54) 

 

Figure 9 show the block diagram current control loop on d-

axis winding, designed from Eq. (53). Similarly speed control 

loop on q-axis winding is designed from Eq. (54). 

 

 
 

Figure 9. A d-axis current control loop schematic 

 

In steady state under vector control ψ
rd

 is constant, which 

implies 
dψrd

dt
 = 0, from Eq. (36), ψ

rq
= 0 , 

dψrq

dt
=0 , and for 

squirrel-cage rotor urd=0.  Substituting above values in Eq. 

(19). 

 

ird = 0 (55) 

 

On substitution of Eq. (55) in Eq. (28) 

 

ψ
rd
 = Lmisd (56) 

 

On substitution of Eq. (56) in Eq. (43) 

 

40



 

TE=
p

2
(
Lm

2

Lr
) isd

refisq (57) 

 

where, KT=
p

2
(
Lm

2

Lr
) isd

ref (58) 

 

ωMech=
1

J
∫ (T

E
-TL) (59) 

 

 
 

Figure 10. A speed loop controller schematic 

 

Figure 10 is the block diagram of speed control loop, where 

ωMech
ref 

 is reference speed and ωMech actual mechanical speed of 

ASM. The error in the position is fed to PI controller. The 

proportionality constants for current and speed loop 

controllers for particular values of crossover frequency and 

phase margin are derived. In the control scheme of ASM, at 

initial start-up before zero speed the electromagnetic torque is 

zero, where ψ
rd

 builds up to its rated value which is dependent 

on isd  evident from Eq. (56). Once the core gets full 

magnetized, ψ
rd

 remain unchanged and then the torque varies 

according to isq from Eq. (57). There after the drive follows 

the speed, torque and position commands. 

 

 

4. DESIGN OF SVPWM INVERTER  

 

The SVPWM scheme is used mostly in vector controlled 

drives. Space vector stator voltage in terms of instantaneous 

phase voltages of stator can be represented in Eq. (60) [13]. 

The stator winding is star connected, assume hypothetically 

neutral of stator and negative of DC as reference ground as 

shown in Figure 11. 

 

us
a(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=ua(t)e

j0+ub(t)e
j2π

3 +uc(t)e
j4π

3  (60) 

 

ua=uan+un, ub=ubn+un, uc=ucn+un (61) 

 

 
 

Figure 11. A switching power inverter (PPU) 

 

On Substitution of Eq. (61) in Eq. (60) 

 

 us
a⃗⃗  ⃗(t)=uan(t)e

j0+ubn(t)e
j2π

3 +ucn(t)e
j4π

3  (62) 

 

At any instant, space vector stator voltage is written as: 

 

us
a(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=Udc (qa(t)e

j0+q
b
(t)e

j2π

3 +q
c
(t)e

j4π

3 ) (63) 

 

Let us consider pole-a, if the switch is in up position q
a
 is 

taken as logic ‘1’ otherwise ‘0’. Likewise, we assign the 1’s 

and 0’s for q
b

 and q
c

 corresponding to pole-b and pole-c 

respectively. Here q
c

, q
b

 and  q
a
 forms 3-bit digital 

representation and eight combinations are achieved. On 

substitution all the possible combinations in Eq. (63), we get 

eight stator space vectors starting from u0⃗⃗  ⃗ to u7⃗⃗ ⃗⃗  . u0⃗⃗  ⃗ and u7⃗⃗  ⃗ are 

treated as zero vectors and u1⃗⃗  ⃗ to u6⃗⃗  ⃗ are considered as basic 

vectors. This results in six sectors formation from basic six 

vectors. 

 

 
 

Figure 12. Six basic stator phase voltage space vectors 

 

The six basic vectors with an interval of π/3 radian in the 

absence of zero vectors are shown in Figure 12. In this scheme, 

the main aim is to generate the stator output phase voltages in 

appropriation to reference signals from a current and speed 

controller. In order to acquire constant switching frequency 

and finest harmonic response from SVPWM, in one switching 

period each pole must change its state only one time. This is 

realized by employing zero state vector accompanied by two 

adjacent basic space vectors and then followed by zero space 

vector in one half of switching period. The other half will be 

the mirror image of first. Let us analyze for sector-I. 

 

 
 

Figure 13. A voltage space vector in sector I 

 

In Figure 13, over a switching period Ts, u1⃗⃗  ⃗  and u3⃗⃗  ⃗  are 

applied for time intervals of lTs and mTs respectively. u0⃗⃗  ⃗ and 

u7⃗⃗  ⃗ are the zero vectors applied for n0Ts and n7Ts respectively. 

Where n=n0+n7, and l+m+n =1. 

 

us
a⃗⃗  ⃗ = 

1

Ts
(lTsu1⃗⃗  ⃗ + mTsu3⃗⃗  ⃗ + nTs.0) (64) 
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us
a⃗⃗  ⃗ = lu1⃗⃗  ⃗ + mu3⃗⃗  ⃗ (65) 

 

Expressing Eq. (65) in polar form, 

 

Ûse
jθs  = lUdce

j0 + mUdce
jπ

3  (66) 

 

Solve Eq. (66) for time intervals by equating real and 

imaginary parts. 

 

 
 

Figure 14. Sector-I pole voltages over time period (Ts) 

 

In Figure 14, it was observed that pole-a have the prolonged 

time interval for ‘up’ position, following pole-b and then pole-

c. Likewise, the switching can be done for any other sectors. 

Generation of the stator output voltage vector us
a⃗⃗  ⃗ with phase 

voltages ua, ub and uc , for specified Udc  include, the 

comparison of control voltages with reference triangular signal 

Ûtri . For ASM, the stator winding is star connected with 

isolated neutral. So, ua(t)+ub(t)+uc(t)=0. 

 
Ucontrol(a) 

Ûtri
 =

ua-uk

(
Udc

2
⁄ )

; 
Ucontrol(b) 

Ûtri
=

ub-uk

(
Udc

2
⁄ )

;
Ucontrol(c)

Ûtri
 =

uc-uk

(
Udc

2
⁄ )

 

where uk =
max(ua,ub,uc) + min(ua,ub,uc)

2

}  (67) 

 

To set up largest magnitude in output voltage of stator 

voltage space vector us
a⃗⃗  ⃗, join the extreme points of the basic 

vectors to form a hexagon. Then inscribe a largest circle in 

hexagon. The inscribed circle radius is the maximum value of 

us
a⃗⃗  ⃗. The maximum value that us

a⃗⃗  ⃗ can accomplished from Figure 

15. 

 

 
 

Figure 15. Limit for maximum value output voltage 

| us(max)
a⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

ph
=
2

3
Udc cos (

π

3
)=

1

√3
Udc  (68) 

 

| us(max)
a⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

L-L(rms)
= √3

| us(max)
a⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

ph

√2
=
Udc

√2
=0.707Udc  (69) 

 

In sinusoidal PWM inverter [14]. 

 

| us(max)
a⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

L-L(rms)
=
√3Udc

2√2
 = 0.612Udc (70) 

 

On comparing SVPWM and SPWM from Eq. (69) and Eq. 

(70) the accessible output voltage is approximately 15% higher 

for SVPWM scheme. The Simulink model of SVPWM 

inverter is shown in Figure 18. 

 

 

5. DESIGN OF SOLP FILTER 

 

To illustrate the design of low pass filter, Butterworth filter 

approximation was considered because it advantages 

maximum flat response in magnitude, good roll-off to high 

frequencies, minimum phase and perfect bandwidth limitation 

[15]. Here second-order low-pass passive filter was designed. 

SOLP’s can also be structured by cascading of two first-order 

low- pass filters, but the cut-off frequency doesn’t remain 

same as cut-off frequency of first-order filter. For nth order 

filter the cut-off frequency varies as ωnco=ωco√2
1 n⁄ -1 . In 

Butterworth approximation the cascading of any order filters 

doesn’t affect the cut-off frequency. The circuit of SOLP 

passive filter is shown in Figure 16. Substitute s=jω  and 

observe the behaviour of the filter for zero and infinite 

frequencies. 

 

 
 

Figure 16. RLC second-order low-pass filter 

 

For ω = 0, the inductor will be short-circuited, while 

capacitor is open-circuited. The output voltage is nearly equal 

to the input voltage, and the voltage gain is close to unity. For 

ω = ∞, inductor will be open-circuited while capacitor is short-

circuited and voltage gain is zero. The filter admits all the 

signals for lower frequencies beneath cut-off frequency and 

attenuates for higher frequencies upon cut-off frequency. Thus, 

it acts as low-pass filter. The transfer function of the above 

filter circuit is shown in Figure 16 is given in Eq. (71). 

 
Uout(s)

Uin(s)
 = 

1 LC⁄

(s2+
R
L
s+

1
LC
)
 (71) 

 

The transfer function of SOLP filter is given in Eq. (72). 

 

Uout(s)

Uin(s)
 = 

ωco
2

(s2+
ωcs
Q
+ωco

2)
 (72) 
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where, ωco is cut-off or resonant frequency in rad.s-1 and Q is 

quality factor. ωco=
1

2π√LC
 , and Q=

1

ωcoRC
=
ωcoL

R
. In Figure 17, 

we observe the roll-off rate is 40 dB per decade and the amount 

of peaking was decided by the value of quality factor (Q). 

Maximally flat response was observed for Q = 0.707, which is 

Butterworth response. The Butterworth SOLP filter transfer 

function is given in Eq. (73). Similarly, one can design a SOLP 

with the quality factor (Q) equal to 2 and the transfer function 

of such SOLP filter with quality factor is given in Eq. (74) [15].  

 

 
 

Figure 17. A Magnitude Vs frequency plot for SOLP filter 

 

Uout(s)

Uin(s)
 = 

ωc
2

s2+1.414ωcs+ωc
2
 (73) 

 

Uout(s)

Uin(s)
 = 

ωc
2

s2+0.5ωcs+ωc
2
 (74) 

 

The switching frequency ( f
sw

) of SVPWM inverter is 

selected 10 kHz and it would be the cut-off frequency (fco). 

Substituting the value of ωco, in Eq. (73), for ωco=2πfco, and 

compared with Eq. (71). For a selected value capacitor (C) = 

0.01µF, the values of resistance (R) and inductance (L) was 

determined. The corresponding values of R and L were found 

to be 2.25kΩ and 25.3mH respectively. Thus, the passive filter 

was developed by Butterworth approximation. Finally, the 

filtering is implemented by placing a transfer function per 

phase in the proposed Simulink model. 

 

 

6. SIMULATION 

 

Simulation is performed in MATLAB for SVPWM inverter 

and IDSVC of ASM of electric vehicle as shown in Figure 18 

and Figure 19 respectively. 

The output voltages of SVPWM inverter are not pure 

sinusoidal in nature and also at high speed operation of motor, 

the switching frequency of inverter does not remain constant. 

So, in order to reshape the output voltages and reject the 

wanted high frequency voltage signals a SOLP RLC filter is 

accommodated in conjunction with inverter. This is realized 

by placing a transfer function in the propounded Simulink 

model as shown in Figure 19. To simulate the model shown in 

Figure 19, it is required to run a program to calculate initial 

conditions and the algorithm 1 is implemented. 
 

 
Figure 18. A SVPWM inverter Simulink model 

 

 
Figure 19. A Simulink model of IDSVC of ASM 

43



Algorithm 1. To determine initial conditions of drive  

 

1. 

Consider the test motor specifications for Electric 

vehicle. Frequency (f) = 60 Hz, uL-L(rms) = 460 V, 

slip(s) = 0.0172, Rs = 1.77 Ω, Rr = 1.34 Ω, Xs = 144.25 

Ω, Xr = 143.57 Ω, Xm = 139 Ω, J = 0.025 kg.m2, p = 4, 

Udc = 700 V, Utri = 5 V and fsw = 104 Hz.[13] 

2. 

Consider the equivalent circuit of ASM referred to 

primary, calculate ua ,⃗⃗ ⃗⃗  ⃗ ia⃗⃗ , and ir⃗⃗  = -ira
⃗⃗׀  ⃗ , using phasor 

analysis. 

3. 
Calculate is

a⃗⃗  and ir
a⃗⃗  by considering a-axis as reference 

at time t=0 using dq analysis. 

4. 
Calculate machine inductances Ls, Lr, Lm and τr. find 

matrix [M]. 

5. 

For d-axis lined up to a-axis of stator at t = 0 (θdsa = 0), 

calculate isd(0), isq(0), ird(0) and irq(0)  from Eq. (6) 

and Eq. (7), and then evaluate for TE(0) and actual 

rotor speed ωMech(0) from Eq. (31) and Eq. (33). 

6. 
Calculate the flux linkages ψ

sd
(0), ψ

sq
(0), ψ

rd
(0) and 

ψ
rq
(0) from Eq. (34). 

7. 
In steady state, for ωdsa = ωsyn, all variables of d-q 

windings are dc in nature, then 
d

dt
ωsd = 

d

dt
ωsq=0, where ωsyn=2πf. Calculate usd(0) and usq(0) 

from Eq. (16) and Eq. (17). 

8. 

For d-axis aligned to rotor flux, ψ
rq
= 0. Calculate new 

values of ψ
rd
(0), ψ

sd
(0),ψ

sq
(0), isd(0), isq(0), 

usd(0) and usq(0). 

9. 

Calculate the constants Kp and Ki of speed controller 

from Figure 10 [14]. Consider cross over frequency = 

25 rad.s-1 and phase margin = 75 rad s-1. 

10. 
Calculate the constants Kpi and Kii of current 

controller from Figure 9 [13]. 

 

 

7. RESULTS AND DISCUSSION 

 

The ASM Simulink model shown in Figure 7 is simulated 

over a time period of 0.5 s and load torque is reduced to 50% 

of initial value at 0.1s. The electromechanical torque (TE) and 

mechanical speed (ωMech) plots are figured in Figure 20. It was 

observed that when the load torque is reduced, the speed is 

increased by a proper value. The Simulink model of SVPWM 

inverter shown in Figure 18 is simulated for a time period of 

0.05 s. The 3-Փ voltage waveforms generated by SVPWM 

inverter is shown in Figure 21. 
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Figure 20. Torque and Speed plot when torque is reduced to half of its value at 0.1 sec of actual ASM 
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Figure 21. 3-Փ Phase voltages generated by SVPWM inverter 
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Figure 22. Unfiltered stator voltages  
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Figure 23. Filtered stator voltages 
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Figure 24. Torque and speed plots for IDSVC of ASM without SOLP RLC filter 
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Figure 25. Torque and speed plots for IDSVC of ASM with both SOLP RLC filters wih Q = 0.707 and Q = 2 

 

The block diagram shown in Figure 8 is modelled in Matlab 

/ simulink as shown in Figure 19. A reference speed drive 

curve is considered over a time period of 3s and system is 

simulated. The stator voltage waveforms of SVPWM inverter 

connected without and with SOLP filter is shown in Figure 22 

and Figure 23 respectively. In Figure 22, non-uniformity in 

waveforms is observed at higher amplitudes of stator voltages 

generated by SVPWM inverter in each of the three phases 

when operated without SOLP filter. Figure 24 and Figure 25 

shows electromechanical torque and output mechanical speed 

plots when SVPWM inverter is connected without and with 

filter respectively. Actually, the SVPWM inverter injects 

required phase voltages into the stator windings. At high–

speed (≥126 rad.s-1) operation of vehicle, the switching 

frequency (f
sw

) of SVPWM inverter is inconsistent, which 

injects distorted voltages into stator windings of ASM. Spikes 

are observed in torque and speed plots during this high-speed 

range as shown in Figure 24. The adversity was mastered by 

placing a SOLP RLC filter with Butterworth approximation in 

conjunction with SVPWM inverter as shown in Figure 25. 

The speed profile of the vehicle model with Butterworth 

approximation with quality factor equal to 0.707 is compared 

with another SOLP filter with quality factor equal to 2 as 

depicted in Figure 25. It was noticed that the speed profile with 

Butterworth approximation tracks the reference speed with in 

short period of time compared to other filter. This is because; 

in Butterworth approximation the magnitude of the speed has 

flat response without peaking. As the quality factor increases 

the peaking increases which require more time to settle and 

does not track the speed response perfectly. 

 

 

8. CONCLUSIONS 

 

In this paper, indirect space vector control of ASM for EV 

is modelled and simulated in Matlab / Simulink environment. 

The SVPWM power processing unit along with SOLP filter 

with Butterworth approximation was designed and modelled 

for high-speed functioning of the vehicle. The drive is tested 

for wide speed range with and without SOLC filter. Excellent 

torque and speed tolerant capabilities were found over the 

entire speed range, when connected with Butterworth 

approximated SOLP filter compared to SOLP filter with 

quality factor 2. Fluctuations occur in torque and speed 

profiles are obliterated. Uniformity in stator voltages 

generated by the SVPWM inverter is achieved. The vehicle 

speed follows the speed reference rapidly with improved 

transient performance and minimum speed regulation. 

Moreover, the viability of adopting the propounded scheme to 

high speed EV was met. 
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NOMENCLATURE 

 

u, U voltage, V 

i current, A 

t time, s 

N dimensionless winding number 

T torque, N.m 

p dimensionless pole number, p ≥ 2 

J  combined inertia of load and motor, Kg.m2 

a,b,c three phases of 3-Phase windings 

f frequency, Hz 

q switch logic position, 1or 0 

K constant 

Q dimensionless quality factor 

Z dimensionless state transformation matrix 

MMF magneto motive force 

DC direct current 

PI proportional integral 

PM phase margin 

PPU power processing unit 

 

Greek symbols 

 

Փ phase 

α orthogonal α winding axis 

β orthogonal β winding axis 

σ dimensionless, leakage factor 

ϴ phase angle, (electrical) rad 

ω angular speed, ( ωdsa, ωdra, ωm and ωsyn  ) in 

electrical rad.s-1 

τ time constant, s 

ψ flux linkages, Wb  

 

Subscripts 

 

d-q direct and quadrature winding axis 

s Stator winding 

r Rotor winding 

L load 

E Electromagnetic 

m magnetizing 

m mechanical (for ϴm or ωm) 

Mech mechanical 

l leakage 

n neutral 

tri triangular 

ph phase 

nco nth order cut-off 

co cut-off 

in input 

out output 

sw switching 

syn  synchronous 

 

Superscripts 

 

a reference phase –a 

T transpose of matrix 

→ Space vector 

˄ phasor 

ref reference 

est estimated 

 

 

APPENDIX 

 

(1) The MMF produced by stator 3-phase winding is 

defined as the ratio of number of stator winding turns per phase 

to pole number and multiplied by stator current. The space 

vector MMF produced by stator winding is with reference a-

axis given by 𝑀𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑠
𝑎(𝑡) =

𝑁𝑠

𝑃
𝑖𝑠
𝑎⃗⃗  ⃗(𝑡) , where 𝑖𝑠

𝑎⃗⃗  ⃗(𝑡) is space 

vector stator current, 𝑁𝑠 is number of turns per phase, 𝑝 is pole 

number.  

from Eq.(5) is
d⃗⃗ (t)=√

3

2
(isd(t)+jisq(t) 

 

Multiplying both sides by 
𝑁𝑠

𝑝
 

 

 
Ns

p
is
d⃗⃗ (t)=

Ns

p
√
3

2
(𝑖𝑠𝑑(𝑡) + 𝑗𝑖𝑠𝑞(𝑡)) 

 

The space vector stator current produced by three phase abc 

windings is independent of reference axis. On substituting 

is
d⃗⃗ (t) = is

a⃗⃗ (t) in the above equation. 

 

⇒
Ns

P
is
a⃗⃗ (t)  =

√3
2
(𝑁𝑠)

𝑃
(𝑖𝑠𝑑(𝑡) + 𝑗𝑖𝑠𝑞(𝑡)) ⇒ 𝑀𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑠
𝑎(𝑡)

= 𝑀𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑠
𝑑(𝑡) 

 

We have chosen the number of turns per phase of d-axis and 

q-axis winding to be √
3

2
(Ns). By definition of MMF it was 
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proved that MMF produced by stator three phase abc windings 

is same as that of MMF produced by orthogonal stator d-q 

windings. 

(2) The matrix M is invertible because, firstly it is a 

square matrix with the order 4X4 and secondly it is a non-

singular matrix. The determinant of the matrix is non zero. For 

checking the non-singularity, calculate the determinant of the 

matrix, which is given by  

 

 𝐿𝑠
2𝐿𝑟
2 + 𝐿𝑚

4 − 𝐿𝑠𝐿𝑟𝐿𝑚
2 − 𝐿𝑠𝐿𝑟

2𝐿𝑚 

 

In the present model we have considered 𝑋𝑠 =
144.25Ω, 𝑋𝑟 = 143.57Ω 𝑎𝑛𝑑 𝑋𝑚 = 139Ω  [13]. From the 

formula 𝑋 = 2𝜋𝑓𝐿,  calculate the values of inductances and 

substitute in the above formula. We can find that the 

determinant of the matrix is non zero and hence it can be said 

that the matrix is invertible. 
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