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This paper deals with multi-objective stochastic linear programming problem. The 

problem is considered by introducing the coefficients of the decision variables and the 

right-hand-side parameters in the constraints as normal random variables. A method for 

converting the problem into its deterministic problem is proposed and hence two- phase 

approach with equal weights is proposed for finding an efficient solution. The 

advantages of the approach are: as weights which is positive, not necessarily equal and 

generate an efficient solution. A numerical example is given to illustrate the suggested 

methodology.  
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1. INTRODUCTION

Stochastic programming deals with the theory and methods 

of incorporating stochastic variations into a mathematical 

programming problem [1]. In most of the real life problems in 

mathematical programming, the parameters are considered as 

random variables. The branch of mathematical programming 

which deals with the theory and methods for the solution of 

conditional extremum problems under incomplete information 

about the random parameters is called "Stochastic 

programming". Most of the problems in applied mathematics 

may be considered as belonging to any one of the following 

classes [2]: 

1. Descriptive Problems, in which, with the help of

mathematical methods, information is processed about the

investigated event some laws of the event being included

by others.

2. Optimization Problems in which from a set of feasible

solutions, an optimal solution is chosen.

Beside the above division of applied mathematics problems, 

they may be further classified as deterministic and stochastic 

problems. In the process of the solution of the stochastic 

problem, several mathematical methods have been developed. 

However, probabilistic methods were for a long time applied 

exclusively to the solution of the descriptive type of problems. 

Research on the theoretical development of stochastic 

programming is going on for the last four decades. To the 

several real-life problems in management science, it has been 

applied successfully [3]. The basic idea of all stochastic 

programming models is converting the probabilistic nature of 

the problem into an equivalent deterministic situation [4]. 

There are several discussions about fuzzy methods; 

information is approaches for solving multi-objective 

optimization problems. Mcadansky [5] studied the inequalities 

for stochastic linear programming problem. Zimmerman [6] 

applied the min- operator for these problems. Guu and Wu [7] 

proposed two- phase approach for solving multi-objective 

linear programming. While, some other authors, like 

Hulsurkar et al. [8], Caballero et al. [9], etc., studied the fuzzy 

programming methodology to solve the multi- objective 

stochastic linear programs. They considered the stochastic 

approach versus multi objective approach. Lai and Ng [10] 

studied some applications of stochastic approach to hotel 

revenue optimization. Stanch-Minasian [11] present a review 

paper on stochastic single objective linear programming. 

Santoso et al. [12] studied the supply chain network design 

with uncertainty, and proposed a stochastic programming 

approach.  

Three approaches for stochastic programming are 

developed (Goicoechea et al. [13]).  

Two major approaches are as follows: 

(i) Chance constrained programming which can be used to

solve problems having finite probability of violated by

Charnes and Cooper [14];

(ii) Two-stage programming which has suggested by Dantzig

and Infanger [15] and does not allow any constraints to be

violated.

For several years, stochastic model has applied to deal the 

probabilistic uncertainty in parameters. Abbas and Bellahcene 

[16] introduced a cutting plane method to solve the multi

objective stochastic integer linear program. Goh et al. [17] and

Azaron et al. [18] investigated the stochastic model

applications to the area of risk management in supply chain

networks. Sakawa and Matsui [19] addressed a fuzzy solution

technique to multi objective stochastic integer programming

problem. They considered the simple recourse model in their

proposed study. Han et al. [20] studied the interval-parameter

multi-stage stochastic mixed integer programming model.

They considered the probabilistic-constraints to cope with the

uncertainty, and presented an application to inter-basin water
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resources management system. Körpeoğlu et al. [21] studied 

the production scheduling problem. They used the multi-stage 

stochastic programming approach to solve the scheduling 

problem. Birge and Louveaux [22] presented several 

applications of stochastic programming approach in the field 

of logistics, production scheduling and inventory management. 

Wang and Watada [23] studied the fuzzy stochastic 

programming with two-stages under the criteria of value-at-

risk. 

The researchers studied various applications of stochastic 

models in last few decades. Barik et al. [24] introduced the 

interval discrete random variables. They used these variables 

to solve the Multi objective stochastic program with two-

stages. Abdelaziz [25] and developed some solution methods 

to multi objective stochastic programming. Gutjahr and 

Pichler [26] presented a detailed survey on the methods of 

stochastic multi-objective optimization. Housh et al. [27] 

applied the stochastic programming to deal the water supply 

system management. Kumar and Dutta [28] studied the fuzzy 

approaches to inventory management systems. Kiliç and 

Tuzkaya [29] proposed a two-stage stochastic mixed-integer 

programming model. They used this model to study the 

physical distribution network design problem. Dutta and 

Kumar [30] studied the inventory management problem with 

time-varying demand. Yu and Solvang [31] studied a scenario-

based solution method to solve the stochastic programming 

problem with improved multi-criteria. They presented an 

application to sustainable reverse logistics design of waste 

equipment. Khalifa et al. [32] applied fuzzy programming 

approach for solving multi-objective quadratic programming 

with all the parameters in all of objective functions and 

constraints are normally distributed. Yu and Solvang [33] 

formulated a new fuzzy- stochastic multi- objective 

mathematical model for sustainable closed- loop supply chain 

network design aims at balancing the trade- off between cost 

effectiveness and environmental performance under different 

types of uncertainty. Caglayan and Satoglu [34] used the 

multi- objective two- stage stochastic programming model to 

minimize the numbers of unserved casualties, ambulances and 

the total transportation time by creating scenarios based on 

uncertain factors.  

In the past few decades, several researches presented their 

work on stochastic programming with various application to 

diverse fields of study. Mohamadi and Yaghoubi [35] 

presented an earthquake case study with an application of bi-

objective stochastic model under disruptions. They 

investigated the stochastic model for emergency medical 

services network design. The assumed the backup services for 

disasters. Restrepo et al. [36] and Floyd et al. [37] studied the 

tour scheduling problem and project management with an 

application of two stage stochastic programming technique. 

Farrokh et al. [38] studied the closed loop supply chain 

network design under hybrid uncertainty with the use of fuzzy 

stochastic programming. Rahmanniyay and Yu [39] 

introduced a new multi-objective mathematical model in 

which objective functions optimize cost and competency 

simultaneously to develop a project team for multi- 

disciplinary projects under uncertainty.  

An integrated chance-constrained stochastic model was 

proposed to supply chain network problem for a mobile phone 

by Ahmadi and Amin [40]. Khalifa and Kumar [41] presented 

a multi-objective optimization problem to solve the 

cooperative continuous static games. They used the Karush-

Kuhn-Tucker conditions. Waliv et al. [42] studied the 

stochastic multi objective inventory model with uncertain 

nature of parameters. They used the nonlinear programming 

approach to solve the stochastic problem. Yu and Li [43] 

formulated the logistic problem as a stochastic problem. They 

used the robust optimization model to solve the stochastic 

problem. Yenice and Samanlioglu [44] studied the earthquake 

relief network problem with applications to multi-objective 

stochastic approach. Very recently, Khalifa et al. [45] studied 

the multi objective programming in fuzzy environment with 

an application to transportation problem.  

In this paper, stochastic multi-objective programming 

problem is considered, where the right and left-hand side 

values of the constraints are random variables with known 

distribution. Firstly, the problem is converted into an 

equivalent deterministic form and then solved using the two-

phase weighted coefficients approach.   

The remainder of the paper is organized as follows: In 

Section 2, stochastic multi-objective programming problem is 

formulated. Section 3 introduced solution procedure for 

obtaining a pareto optimal solution. Section 4 introduces some 

of basic results related to the problem solution. In Section 5, 

numerical example is introduced for illustrate the 

methodology. Finally, some concluding remarks are reported 

in Section 6. 
 

 

2. PROBLEM FORMULATION AND SOLUTION 

CONCEPTS 
 

A multi-objective stochastic programming with some 

chance- constrains can be stated as: 

 

Max Zk(x) = ∑cj
(k)xj, k = 1, 2, … , K

n

j=1

 (1) 

 

Subject to 

 

P(∑aijxj

n

j=1

≤ bi) ≥ 1 − γi, i = 1,m, (2) 

 

xj, j = 1, n,0 < γi < 1, i = 1,m, (3) 

 

where, Zk = (Z1, Z2, … , ZK), C is the cost coefficient matrix, 𝑥 

is the decision vector, 𝐴 = (aij)m×n
 is the coefficient matrix, 

and 𝑏  is the right hand side vector, aij and bi are random 

normal variables and 0 < γi < 1 are specific probabilities. Eq. 

(2) indicates that the 𝑖𝑡ℎ constraints ∑ aijxj
n
j=1 ≤ bi has to be 

satisfied with a probability of at least (1 − γi) , where 0 <
γi < 1.  Let us consider the problem with aij and bi are 

normally distributed with known means and variances. 

 

2.1 When aij are only random variables 

 

Let the mean and variance of aij  denoted by μ(aij)  and 

V(aij), respectively. Also, assume that the covariance between 

aij and arl is known. Now, let us define:  

 

ei =∑aij

n

j=1

≤ bi, i = 1,m (4) 
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Then, we obtain 

 

μ(ei) = μ(∑aij

n

j=1

xj ≤ bi) =∑μ(aij

n

j=1

xj) ≤ bi, i

= 1,m 

(5) 

 

Also, 

 

V(ei) = X
Tσij,rl

2 X, i = 1,m. (6) 

 

Here, σij,rl
2  is the covariance matrix, which is defined as 

follows: 

 

σi1,i2
2 =

(

 
 

𝑉(ai1) V(ai1, ai2) … V(ai1, ain)

 V(ai2, ai1) V(ai2)…  V(ai2, ain)
…                      ….                       … .

                       
V(ain, ai1)       V(ain, ai2)           …  V(ain))

 
 

  

 

Hence, the constraints in (2) becomes as follows: 

 

P(ei ≤ bi) ≥ 1 − δi, i.e.,  

 

P (
ei − μ(ei)

√V(ei)
≤
bi − μ(bi)

√V(bi)
) ≥ 1 − δi, i = 1,m (7) 

 

It is observed that 
ei−μ(ei)

√V(ei)
 is the standard normal variables. 

In view of this, inequality (7) can be rewritten as: 

 

P(ei ≤ bi) = ϕ(
bi − μ(bi)

√V(bi)
) (8) 

 

Here, ϕ(z)  in the cumulative density function of the 

standard normal variables at z. 
Also,  

 

ϕ(Ψδi) = 1 − δi, (9) 

 

where, Ψδi is standard normal variable value, and by referring 

to the inequality (6), we obtain, 

 

ϕ(
bi − μ(bi)

√V(bi)
) ≥ ϕ(Ψδi), i = 1,m (10) 

 

Inequality (10) is satisfied only if, 

 
bi−μ(bi)

√V(bi)
≥ Ψδi , (11) 

 

which can be written as follows: 

 

μ(bi) + Ψδi√V(bi) ≤ bi, i = 1,m (12) 

 

From (5), (6) and (12), we have: 

 

μ(∑aij

n

j=1

xj ≤ bi) + Ψδi√X
Tσij,rl

2 X ≤ bi, i = 1,m (13) 

 

Thus, problem (1)-(3) become 

 

Max Zk(x) = ∑ cj
(k)xj, k = 1, 2, … , K

n
j=1  Subject 

toμ(∑ aij
n
j=1 xj ≤ bi) + Ψδi√X

Tσij,rl
2 X ≤ bi, i =

1,m, xj, j = 1,m,0 < 𝛿i < 1. 

(14) 

 

Remark 1. The covariance will be vanished if all aij are 

independent. 

 

2.2 When 𝐛𝐢 are only random variables 

 

Let the mean and variance of bi are denoted by 𝜇(bi) and 

𝑉(bi); respectively. Then, constraints (3) can be rewritten as: 

 

P(
bi − μ(bi)

√V(bi)
) ≥

∑ aij
n
j=1 xj − μ(bi)

√V(bi)
≥ 1 − δi, i

= 1,m 

(15) 

 

Inequality (15) can be expressed as follows:  

 

P(
bi − μ(bi)

√V(bi)
) ≤

∑ aij
n
j=1 xj − μ(bi)

√V(bi)
≤ 1 − δi, i

= 1,m 

(16) 

 

In the case of ϕ(Ψδi) is the standard normal variable value 

at ϕ(Ψδi) = 1 − δi, i = 1,m , then inequality (16) can be 

rewritten as: 

 

ϕ(
∑ aij
n
j=1 xj − μ(bi)

√V(bi)
) ≤ ϕ(Ψδi) (17) 

 

Inequality (17) can be satisfied if: 

 
∑ aij
n
j=1 xj−μ(bi)

√V(bi)
≤ Ψδi , i = 1,m       i.e., (18) 

 

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m (19) 

 

Thus, problem (1)- (3) is equivalent to the following 

deterministic problem: 

 

Max Zk(x) = ∑ cj
(k)xj, k = 1, 2, … , K

n
j=1      Subject to  

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m 

xj ≥ 0; ∀ 𝑗. 

(20) 

 

Using min-operator proposed by Zimmermann [6], problem 

(20) can be rewritten as follows: 

 

Max 𝜃    Subject to 

𝜃 ≤
Zk(x) − Zk

L

Zk
U − Zk

L
, 𝑘 = 1, 2, … , 𝐾, 

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m, 

xj ≥ 0; ∀ 𝑗, 

(21) 
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where, Zk
L  and Zk

U  are the lower and upper bounds for each 

objective functions. 

Let us assume that the membership function for each 

objective of problem (20) is equally important. Using the 

average operator, problem (2) can be viewed as: 

 

Max𝜃 =
1

𝐾
∑ 𝜃𝑘
𝐾
𝑘=1      Subject to 

𝜃𝑘 ≤
Zk(x) − Zk

L

Zk
U − Zk

L
, 𝑘 = 1, 2, … , 𝐾, 

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m, 

xj ≥ 0; ∀ 𝑗. 

(22) 

 

The two-phase approach is the combination of the minimum 

operator and the average operator. So, problem (20) with the 

two-phase approach becomes as presented in problem (23) 

below: 

 

Max 𝜃̂ =
1

𝐾
∑ 𝜃𝑘
𝐾
𝑘=1      Subject to 

𝜃∗ ≤ 𝜃𝑘 ≤
Zk(x) − Zk

L

Zk
U − Zk

L
, 𝑘 = 1, 2, … , 𝐾, 

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m, 

xj ≥ 0; ∀ 𝑗. 

(23) 

 

 

3. BASIC RESULTS 

 

Definition 1. (Guu and Wu [7]). Let 𝑥∘  and 𝑥∗  be two 

feasible solutions of problem (20). 𝑥∗ is more efficient than 𝑥∘ 
which is denoted by if (𝑥∗ ≻ 𝑥∘), Zk(𝑥

∗) ≥ Zk(𝑥
∘);  ∀ k and 

Zq(𝑥
∗) > Zq(𝑥

∘), for some q. 

Definition 2. (Guu and Wu [7]). For a feasible solution 𝑥∗, 
𝑥∗ is said to be a pareto optimal solution if there does not exist 

a 𝑥∘ such that 𝑥∘ ≻ 𝑥∗. 
For a given 𝜖𝑘, let us consider: 

 

Max 𝜃𝑥
∗
=

1

𝐾
∑ 𝜖𝑘𝜃𝑘
𝐾
𝑘=1      Subject to 

𝜃∗ ≤ 𝜃𝑘 ≤
Zk(x) − Zk

L

Zk
U − Zk

L
, 𝑘 = 1, 2, … , 𝐾, 

∑aij

n

j=1

xj ≤ μ(bi) + Ψδi√V(bi), i = 1,m, 

xj ≥ 0; ∀ 𝑗. 

(24) 

 

Theorem 1. If (𝑥∗, 𝜃𝑥
∗
) is an optimal solution of problem 

(24), then 𝑥∗ is a pareto optimal solution for problem (20). 

Proof. Suppose that there exists a solution (𝑥∗, 𝜃𝑥
∗
) such 

that 𝑥∘ ≻ 𝑥∗. This means that 

Zk(𝑥
∗) ≥ Zk(𝑥

∘);  ∀ k  and Zq(𝑥
∗) > Zq(𝑥

∘),  for some q 

(Definition 1). If Zq(𝑥
∗) > Zq(𝑥

∘), for some q . Then, 

 

𝜃∗ ≤ 𝜃𝑘
𝑥∗ ≤

Zk(𝑥
∗) − Zk

L

Zk
U − Zk

L
≤
Zk(𝑥

∘) − Zk
L

Zk
U − Zk

L
; ∀𝑘

= 1, 2, … , 𝐾, 

 

 

and 

 

θ∗ ≤ θq
x∗ ≤

Zq(x
∗)−Zk

L

Zk
U−Zk

L ≤
Zq(x

∘)−Zk
L

Zk
U−Zk

L ; for some q.  

 

Since, 

 

θq
x∗ ≤

Zq(x
∗)−Zk

L

Zk
U−Zk

L ≤ θq
x∘ ≤

Zq(x
∘)−Zk

L

Zk
U−Zk

L ; for some q.  Then, 

∑ ϵkθk
K
k=1 = ∑ ϵiθi

x∗ + ϵjθj
x∗ < ∑ ϵiθi

x∗ + ϵjθj
x∘ .K

i=1,i≠j
K
i=1,i≠j   

Thus (𝑥∗, 𝜃𝑥
∗
) is not an optimal solution to problem (24), 

which is contradiction.  

 

 

4. SOLUTION PROCEDURE 

 

In this Section, a method for solving a multi-objective 

stochastic programming problem is developed by using the 

two- phase approach. We summarized the above developed 

method as a solution procedure, which provides the step-by-

step procedure to solve a multi-objective stochastic 

programming problem. 

The following steps are needed to solve the proposed 

stochastic model by developed methodology: 

Step 1: Transform the problems (1)-(3) into its 

deterministic version as represented by problem (20). Using 

the chance constrained programming. 

Step 2: Solve problem (20) to determine the individual 

solutions. 

Step 3: Determine the lower and upper bounds (Zk
L  and 

Zk
U, 𝑘 = 1, 2,… , 𝐾). 

Step 4: Construct the membership functions for fuzzy 

parameters.  

Step 5: Formulate the problems (21), (22), and (23). 

Step 6: Solve each of problems (21), (22), and (23) using 

any optimization software package such as Lingo, MATLAB, 

Mathematica, etc. Here, we preferred to use MATLAB 2020a.  

 

 

5. NUMERICAL EXAMPLE 

 

Consider the following stochastic multi-objective 

programming problem: 

 

Max𝑍1 = 5𝑥 + 6𝑦 + 3𝑧  

Max𝑍2 = 7𝑥 + 2𝑦 + 4𝑧 
Max𝑍3 = 2𝑥 + 3𝑦 + 8𝑧 

Subject to 

P(a11x + a12y + a13z ≤ 8) ≥ 0.95, 
P(5x + y + 6z ≤ b2) ≥ 0.1, 

𝑥, 𝑦, 𝑧 ≥ 0, 

(25) 

 

where, 𝑎𝑖𝑗  and 𝑏2  are normally distributed random variables 

with the parameter values as presented below:  

 

𝜇(a11) = 1, 
𝜇(a12) = 3, 
𝜇(a13) = 9, 

𝑉(a11) = 25, 
𝑉(a12) = 16, 
𝑉(a13) = 4, 
𝜇(b2) = 7, 
𝑉(b2) = 9. 
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Step 1: The deterministic problem for problem (25) is 

formulated as follows: 

 

Max𝑍1 = 5𝑥 + 6𝑦 + 3𝑧  

Max𝑍2 = 7𝑥 + 2𝑦 + 4𝑧 
Max𝑍3 = 2𝑥 + 3𝑦 + 8𝑧 

Subject to 

x + 3y + 9z ≤ 8 + 1.645u ≤ 8, 
25x2 + 16y2 + 4z3 − u2 = 0, 
5x + y + 6z ≤ 10.855, 

x, y, z, u ≥ 0. 

(26) 

 

Step 2, 3: The individual maximum solutions are illustrated 

in Table 1, below. 

 

Table 1. The individual maximum solutions 

 

𝑥 𝑦 𝑧 𝑢 𝑍𝐾
𝑈 

0.4625 0.6327 0 3.4282 6.1087 

0.8672 0 0 4.3360 6.0705 

0.05976 0.07558 0.6502 1.1315 5.5481 

 

The individual minimum is: ZK
L = 0, for k = 1, 2, 3.  

Step 4: Solving problem (26) by min- operator. 
 

Max 𝜃     Subject to 

5𝑥 + 6𝑦 + 3𝑧 − 6.1087𝜃 ≥ 0; 
7𝑥 + 2𝑦 + 4𝑧 − 6.0705𝜃 ≥ 0; 
2𝑥 + 3𝑦 + 8𝑧 − 5.5481𝜃 ≥ 0; 
𝑥 + 3𝑦 + 9𝑧 ≤ 8 + 1.645𝑢 ≤ 8; 
25𝑥2 + 16𝑦2 + 4𝑧3 − 𝑢2 = 0; 
5𝑥 + 𝑦 + 6𝑧 ≤ 10.855, 

𝑥, 𝑦, 𝑧, 𝑢 ≥ 0, and 𝜃 ∈ [0,1]. 

(27) 

 

The optimal compromise solution is as follows: 
 

θ∗ = 0.652126,  
x∗ = 0.468,   
y∗ = 0.264, 
z∗ =  0.270, 
u = 2.623,   
Z1
∗ = 4.731, 
Z2
∗ = 4.883, 
Z3
∗ = 3.883. 

 

 

The solution by average operator: 

 

Max 𝜃 =
1

3
(𝜃1 + 𝜃2 + 𝜃3)     Subject to 

5𝑥 + 6𝑦 + 3𝑧 − 6.1087𝜃1 ≥ 0; 
7𝑥 + 2𝑦 + 4𝑧 − 6.0705𝜃2 ≥ 0; 
2𝑥 + 3𝑦 + 8𝑧 − 5.5481𝜃3 ≥ 0; 
𝑥 + 3𝑦 + 9𝑧 ≤ 8 + 1.645𝑢 ≤ 8, 
25𝑥2 + 16𝑦2 + 4𝑧3 − 𝑢2 = 0; 
5𝑥 + 𝑦 + 6𝑧 ≤ 10.855, 

𝑥, 𝑦, 𝑧, 𝑢 ≥ 0, 𝜃1, 𝜃2, 𝜃3 ∈ [0,1]. 

(28) 

 

The solution is as follows:  

 

θ∗ = 0.629,  
𝜃1 = 1, 
𝜃2 = 1,  
 𝜃3 = 0,  
x∗ = 0.146, 

y∗ = 0.000001614735,  

 

Z1
∗ = 4.731, 
Z2
∗ = 4.883, 
Z3
∗ = 3.883, 
u = 0, 

 

Now, let us take ϵ1 = 0, and consider the two- phase 

method, and then we obtain:  

 

Max 𝜃̂ = 0.5𝜃2 + 0.5𝜃3      Subject to  

0.002416188 ≤ 𝜃1 ≤
1

6.1087
(5𝑥 + 6𝑦 + 3𝑧), 

0.002416188 ≤ 𝜃2 ≤
1

6.0705
(7𝑥 + 2𝑦 + 4𝑧), 

0.002416188 ≤ 𝜃3 ≤
1

5.5481
(52𝑥 + 3𝑦 + 8𝑧) 

𝑥 + 3𝑦 + 9𝑧 ≤ 8 + 1.645𝑢 ≤ 8; 
25𝑥2 + 16𝑦2 + 4𝑧3 − 𝑢2 = 0, 
5𝑥 + 𝑦 + 6𝑧 ≤ 10.855;  

𝑥, 𝑦, 𝑧, 𝑢 ≥ 0, 𝜃1, 𝜃2, 𝜃3 ∈ [0,1]. 

(29) 

 

The solution of problem (29) is as follows: 

 

𝜃̂ = 0.589,   
x∗ = 0, 
y∗ = 0, 

z∗ = 0.005088730, 
𝜃1 = 0.559, 
𝜃2 =  0.813, 
𝜃3 =  0.537, 
Z1
∗ = 4.731, 
Z2
∗ = 4.883, 
Z3
∗ = 3.883 

 

 

It is observed that the solution resulted from the proposed 

approach is the same as given by Hulsurkar et al. [8]. 

After solving the problem using the two-phase approach, 

the sensitivity analysis on 𝜃 is as follows: 

 

Z1
∗ = 4.731 − θ∗, 

Z2
∗ = 4.883 − 3.883θ∗, 
Z3
∗ = 3.883 + 4.731θ∗, 

𝜃1 =  0.629 − 0.081θ
∗,  

𝜃2 =  1 − 0.88θ
∗,   

𝜃3 =  1 − 0.375 θ
∗, 

0 ≤ θ∗ ≤ 0.5. 

 

 

Obviously, the degree of satisfaction of each individual can 

be represented by his/ her membership function and the 

highest degree is θ∗ = 0.5. 
 

 

6. CONCLUSIONS 

 

Studying stochastic multiobjective optimization due to its 

close connection with human life has considered to be great 

important. In this paper, we have shown that by applying the 

two- phase approach with equal weights and positively 

achieved an efficient solution for the stochastic multi- 

objective programming problem. The same has been 

illustrated through a numerical example. It is quite evident that 

these results more benefits to the decision maker who need to 

allocate the resources efficiently, and who needs to treat each 

of them with equal weights. It has shown that the two- phase 

technique having positive weighted coefficients, not 
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necessarily equal to solve multi-objective programming 

problem gives an efficient solution. For the further research, 

one may elaborate the multi-objective optimization in 

linguistic environment by characterizing with fuzzy random 

numbers. These results provide contributions for planner try to 

allocate resources efficiently. The planner needs to take care 

of each interest individually not treating each individual with 

equally importance. 
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NOMENCLATURE 

 

μ Mean 

V Variance 

σij,rl
2  Covariance 

z Standard normal variable 

ϕ(z) Cumulative density function of z 

Ψδi Standard normal variable value 

Zk
L Lower bounds for each objective function 

Zk
U Upper bounds for each objective function 
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