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 This numerical investigation reports the unsteady MHD pulsatile flow of couple stress 

Non-Newtonian fluid. In the fluid, the effect of non-uniform wall temperature and 

concentration as a result of periodic heat and mass input at the heated wall was taken into 

consideration. Also, the influence of a uniform external magnetic field between two 

parallel plates was considered. The pressure driven fluid was analysed using Eyring-

Powell Non-Newtonian fluid model. The non-linear dimensional partial differential 

equations, under some assumptions, are transformed into a set of dimensionless equations. 

The solution to the dimensionless equations is obtained using spectral relaxation 

techniques (SRM). Graphical results are provided for different values of fluid parameters. 
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1. INTRODUCTION 

 

Study of Oscillatory fluid have several applications in 

pulsatile blood flow through the arteries, movement of fluid in 

the intestine, etcetera. Research on Non-Newtonian fluid is 

gradually finding its way towards that direction due to the 

failure of Newtonian model to predict the rheological 

behaviour of complex fluids. Over the years, there have been 

many models to study the behaviour of many non-Newtonian 

fluids. One of these is the Eyring-Powell model. 

Investigations of transient MHD Non-Newtonian fluid flow 

has been established for fluids involving zero-acceptance 

approximation and for planar porous walls. MHD fluid flows 

needs more time to acquire uniform velocity distribution. 

Couple stress is the consequence of the assumption that 

mechanical action of one part of a body on another across a 

surface is equivalent to a force and moment distribution. The 

noticeable feature of couple stress fluid is the addition of the 

size dependent effect that is generally disregarded in the 

established continuum mechanics. 

Several works have been done on the transfer of heat to fluid 

flow having the effect of couple stress using Eyring-Powell 

rheological model. Some of these studies include Adesanya et 

al. [1] in their investigation on the heat transfer to the transient 

pulsatile hydromagnetic flow under couple stresses through 

porous channel. Effect of couple stresses on the MHD of a 

non-Newtonian unsteady flow between two parallel porous 

plates was considered by Eldabe et al. [2]. The incompressible 

couple stress flow of fluid between parallel disks was 

considered by Srinivasacharya and Kaladhar [3]. 

Using Adomian decomposition approach and Eyring-

Powell non-Newtonian fluid model, existence and uniqueness 

of the solution to the pulsatile couple stress was proved by 

Adesanya and Ayeni [4]. Adesanya and Makinde [5] 

investigated the heat transfer to magnetohydrodynamic non-

Newtonian couple stress pulsatile flow between two parallel 

porous plates using Eyring-Powell model. Using network 

numerical simulation, Zueco and B’eg [6] studied pulsatile 

non-Newtonian flow through a channel having the effects of 

couple stress and wall mass flux. 

In recent years, colossal accomplishments have been made 

on the radiative heat transfer to flow of oscillatory flows and 

different mathematical descriptions of these flows have been 

developed by several authors. Some of the study include Tsai 

and Hsu [7], who applied meshless numerical approach to 

investigate oscillatory Stokes flows in convection and 

convective flows in porous media by using the method of 

fundamental solutions. Zakaria [8] studied the effects of free 

convection currents on the oscillatory flow of a viscoelastic 

fluid with thermal relaxation in the presence of a transverse 

magnetic field bounded by a vertical plane surface. Effects of 

radiative heat transfer and magnetohydrodynamics on an 

oscillatory flow in a channel filled with a porous medium 

using an analytical approach is considered by Makinde and 

Mhone [9]. For a two-dimensional oscillatory flow, Hakeem 

and Sathiyanathan [10] studied analytical solutions on free 

convective radiation of an incompressible viscous fluid 

through a highly porous medium bounded by an infinite 

vertical plate. Mahmoud and Ali [11] examined an unsteady 

oscillatory flow of an incompressible viscous fluid in a planar 

channel filled with a porous medium in the presence of a 

transverse magnetic field.  

In all the above studies, the combined effects of heat and 

mass transfer to the fluid flow was not given attention. 

Whereas, several industrial processes which includes cooling 

of nuclear reactors, plasma studies and petroleum industries 

involve flows that occur at a very high temperature and 

concentration which makes the effect of thermal radiation and 

chemical reaction very important for enhanced cooling of the 

system. 

The purpose of this paper is to examine the effect of 

radiative heat and mass transfer on magnetohydrodynamic 
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non-Newtonian couple stress fluid flow through parallel 

porous plates with non-uniform wall temperature and 

concentration using the Erying–Powel rheological model, 

which has not been considered in literature. To achieve this, 

the governing boundary layer equations were transformed into 

a non-dimensional form and the dimensionless equations 

together with the boundary conditions are solved using 

spectral relaxation techniques (SRM). To apply this method, 

iterations at the current level is assumed to be evaluated at 

(𝑟 + 1)  while other terms such as linear and nonlinear are 

assumed to be known at the previous iteration denoted by (𝑟). 

The method has been applied to different mathematical 

problems some of which are carried out by Idowu and Falodun 

[12], Alao et. al [13]. 

 

 

2. PROBLEM FORMULATION 

 

Consider a non-Newtonian transient incompressible, 

electrically conducting fluid between two parallel porous 

plates at distance ℎ apart under the influence of couple stress 

and externally applied magnetic field. The 𝑥 − 𝑎𝑥𝑖𝑠 lies along 

the centre of the channel while the 𝑦 − 𝑎𝑥𝑖𝑠  represent the 

distance measured normal to it. The fluid is injected into the 

lower wall at 𝑦 = 0 and absorbed in with the same constant 

velocity 𝑉0 through the upper wall at 𝑦 = 𝑙. Assuming all fluid 

properties are constant with small electrical conductivity 

except that of fluid density that varies with temperature and 

the electromagnetic force produced is very small. The 

governing equations, assuming Boussinesq incompressible 

fluid model are given as 

 
𝜕𝑢∗

𝜕𝑡∗ + 𝑉0
𝜕𝑢∗

𝜕𝑦∗= −
1

𝜌

𝜕𝑃∗

𝜕𝑥∗ +
1

𝜌

𝜕

𝜕𝑦∗ (𝜏𝑥𝑦) −
𝜎𝐵0

2𝑢∗

𝜌
−

𝜂

𝜌

𝜕4𝑢∗

𝜕𝑦∗4+ 

g𝛽𝑇(𝑇
∗ − 𝑇0

∗) + 𝑔𝛽𝑐(𝐶
∗ − 𝐶0

∗) 
(1) 

 

𝜕𝑇∗

𝜕𝑡∗
+ 𝑉0

𝜕𝑇∗

𝜕𝑦∗
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇∗

𝜕𝑦∗2 −
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦∗
 (2) 

 

𝜕𝐶∗

 𝜕𝑡∗
+ 𝑉0

𝜕𝐶∗

𝜕𝑦∗
= 𝐷

𝜕2𝐶∗

𝜕𝑦∗2  (3) 

 

with the following boundary conditions 

 

𝑢∗ = 0,
𝜕2𝑢∗

𝜕𝑦∗2
= 0, 𝑇∗ = 𝑇0, 𝐶

∗ = 𝐶0   𝑎𝑡 𝑦∗ = 0 (4) 

 

𝑢∗ = 0,
𝜕2𝑢∗

𝜕𝑦∗2
= 0, 𝑇∗ = 𝑇1 + (𝑇1 − 𝑇0)𝑐𝑜𝑠𝜔𝑡, 𝐶∗

= 𝐶1 + (𝐶1 − 𝐶0)𝑐𝑜𝑠𝜔𝑡   𝑎𝑡 𝑦∗

= 𝑙 

(5) 

 

where, 𝑢∗ is the velocity, 𝑡∗ the time, 𝑃∗is the pressure, 𝑇∗the 

fluid temperature,𝐶∗ the fluid concentration, 𝜌  is the fluid 

density, 𝜏𝑥𝑦 the stress tensor, 𝜎 the conductivity of the fluid, 

𝐵0  the electromagnetic induction, 𝜂  the couple stress 

parameter, 𝑉0  the suction/injection parameter, 𝑔  the 

gravitational force, 𝛽𝐶  the coefficient of volume expansion 

due to  concentration, 𝛽𝑇 the coefficient of volume expansion 

due to temperature,𝐷 is the chemical molecular diffusivity,𝐶𝑝 

the specific heat at constant pressure, 𝑘  the thermal 

conductivity and 𝑞𝑟 the radiative heat flux.  

For fluid in optically thin limit, there is no self-absorption, 

but rather, fluid only absorbs radiations from the boundaries. 

The radiative heat flux in the energy equation, approximated 

in the optically thin limit according to Oyelami and Dada [14] 

is given as 

 
𝜕𝑞𝑟

𝜕𝑦∗
= 4(𝑇∗ − 𝑇0

∗)𝐿 (6) 

 

where, 𝐿 is the mean absorption coefficient. 

Also, the stress tensor for Eyring-Powell visco-elastic 

model is modified according to Oyelami and Dada [14] as 

follows: 

 

𝑇𝑥𝑦 = 𝜇
𝜕𝑢∗

𝜕𝑦∗
+

1

𝛼
𝑠𝑖𝑛ℎ−1 (

1

𝑐

𝜕𝑢∗

𝜕𝑦∗
) (7) 

 

where, 𝜇  is the coefficient of dynamic viscosity, 𝛼  and 𝑐 

characterizes the Eyring-Powell fluid model. 

The expansion of the elastic part in Eq. (6), neglecting 

higher-order terms gives 

 

sin ℎ−1 (
1

𝑐

𝜕𝑢∗

𝜕𝑦∗
) ≅

1

𝑐

𝜕𝑢∗

𝜕𝑦∗
+ 𝑂(. )3, |

1

𝑐

𝜕𝑢∗

𝜕𝑦∗
| < 1 (8) 

 

Hence the stress tensor for Eyring-Powell model becomes 

 

𝑇𝑥𝑦 =  𝜇
𝜕𝑢∗

𝜕𝑦∗
+

1

𝛼𝑐

𝜕𝑢∗

𝜕𝑦∗
 (9) 

 

The following dimensionless parameters and variables are 

introduced 

 

𝑋 =
𝑥∗

𝑙
, 𝑌 =

𝑦∗

𝑙
, 𝑈 =

𝑢∗

𝑉0
, 𝑡 =

𝑡∗𝑉0

𝑙
, 𝑃 =

𝑃∗

𝜌𝑉0
2 , 𝑇 =

𝑇∗−𝑇0
∗

𝑇𝑤
∗ −𝑇0

∗  , 𝐶 =
𝐶∗−𝐶0

∗

𝐶𝑤
∗ −𝐶0

∗  , 𝑅𝑒 =
𝑙𝑉0

𝜈
, 𝑆𝑐 =

𝑉0𝑙

𝐷
  

𝑁 =
4𝐿

𝜌𝐶𝑝𝑉0
, 𝑃𝑒 =

𝜌𝐶𝑝𝑉0𝑙

𝑘
, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤
∗ −𝑇0

∗)

𝜈𝑉0
, 𝐺𝑚 =

𝑔𝛽𝐶(𝐶𝑤
∗ −𝐶0

∗)ℎ2

𝜈𝑉0
𝐻2 =

𝜎𝐵0
2𝑙2

𝜇
, M =

1

𝛼𝜇𝑐
  

(10) 

 

where, 𝑎2 is the inverse of the couple stress parameter, 𝑃𝑒 is 

the Peclet number, 𝐻2  is the Hartmann number, 𝑀  is the 

Eyring-Powell parameter, 𝐺𝑚 the Grashof number, 𝐺𝑐 is the 

modified Grashof number, 𝑅𝑒 is the Reynolds number, 𝑙 is the 

characteristic length of the channel, 𝑇  is the dimensionless 

temperature, 𝐶 is the dimensionless concentration and 𝑁 is the 

thermal radiation parameter.  

Applying Eqns. (5), (8) and (9) in (1), (2) and (4), we obtain 

the following dimensionless equations 

 
𝜕𝑈

𝜕𝑡
+

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

(1 + 𝑀)

𝑅𝑒

𝜕2𝑈

𝜕𝑌2 −
𝐻2

𝑅𝑒
𝑈 −

1

𝑎2𝑅𝑒

𝜕4𝑈

𝜕𝑌4

+ 𝐺𝑟𝑇 + 𝐺𝑚𝐶 
(11) 

 

𝜕𝑇

𝜕𝑡
+

𝜕𝑇

𝜕𝑌
=

1

𝑃𝑒

𝜕2𝑇

𝜕𝑌2
− 𝑁𝑇 (12) 

 
𝜕𝐶

𝜕𝑡
+

𝜕𝐶

𝜕𝑌
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑌2  (13) 

 

With these dimensionless boundary conditions 

 

𝑈 = 0,
𝜕2𝑈

𝜕𝑌2
= 0, 𝑇 = 0, 𝐶 = 0   𝑎𝑡 𝑌 = 0 (14) 
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𝑈 = 0,
𝜕2𝑈

𝜕𝑌2
= 0, 𝑇 = 1 + 𝑐𝑜𝑠𝜔𝑡, 𝐶 = 1 + 𝑐𝑜𝑠𝜔𝑡   𝑎𝑡 𝑌 = 1 (15) 

 

 

3. SPECTRAL RELAXATION TECHNIQUE 

 

This section gives detailed explanation of an iterative 

method called spectral relaxation techniques (SRM). To apply 

this method, iterations at the current level is assumed to be 

evaluated at (𝑟 + 1)  while other terms such as linear and 

nonlinear are assumed to be known at the previous iteration 

denoted by (𝑟). The above description on SRM is in line with 

the idea of Gauss-seidel of decoupling linear system of 

equation. This work uses the Chebyshev spectral collocation 

methods to discretize the differential equations. To apply the 

spectral methods, the domain on which the governing equation 

is defined is transformed to the interval [−1,1]. It is on this 

transformed domain that the spectral method can be 

implemented. The transformation 𝜂 =
𝐿(𝜏+1)

2
 is used to map 

the interval [0, 𝐿] to [−1,1] where 𝐿 is the scalling parameter 

approximated its conditions at infinity. As a result of the SRM 

scheme procedure described above, equations (11)-(13) 

becomes  

 

𝜕𝑢𝑟+1

𝜕𝑡
= 𝑎0,𝑟

𝜕2𝑢𝑟+1

𝜕𝑌2
−

𝜕𝑢𝑟+1

𝜕𝑌
+ 𝑎𝑟+1

𝜕4𝑢𝑟+1

𝜕𝑌4

−
𝐻2

𝑅𝑒
𝑢𝑟+1 + 𝑎2,𝑟  

(16) 

 

𝜕𝑇𝑟+1

𝜕𝑡
= 𝑏0,𝑟

𝜕2𝑇𝑟+1

𝜕𝑌2
−

𝜕𝑇𝑟+1

𝜕𝑌
− 𝑁𝑇𝑟+1 (17) 

 

𝜕𝐶𝑟+1

𝜕𝑡
= 𝑐0,𝑟

𝜕2𝐶𝑟+1

𝜕𝑌2
−

𝜕𝐶𝑟+1

𝜕𝑌
 (18) 

 

Subject to the boundary conditions  

 

𝑢𝑟+1(0, 𝑡) = 0, 𝑢′′𝑟+1(0, 𝑡) = 0  𝑇𝑟+1 = 0,
𝐶𝑟+1 = 0 

(19) 

 

𝑢𝑟+1(𝑙, 𝑡) = 0, 𝑢′′𝑟+1(𝑙, 𝑡) = 0,
𝑇𝑟+1(𝑙, 𝑡) = 1 + cos(𝜔𝑡),
𝐶𝑟+1(𝑙, 𝑡) = 1 + cos(𝜔𝑡) 

(20) 

 

The basic concept of spectral collocation method is the 

introduction of Chebyshev differentiation matrix 𝐷. It is used 

to approximate the derivatives of the unknown variables at the 

points of collocation matrix vector product of the form  

 

𝑑𝑢𝑟

𝑑𝑦
= ∑

𝑁

𝑘=0

𝐷𝑖𝑘𝑢𝑟(𝜏𝑘) = 𝐷𝑢𝑟 , 𝑖 = 0,1, . . . , 𝑁 (21) 

 

𝑑𝑇𝑟

𝑑𝑦
= ∑

𝑁

𝑘=0

𝐷𝑖𝑘𝑇𝑟(𝜏𝑘) = 𝐷𝑇𝑟 , 𝑖 = 0,1, . . . , 𝑁 (22) 

 

𝑑𝐶𝑟

𝑑𝑦
= ∑

𝑁

𝑘=0

𝐷𝑖𝑘𝐶𝑟(𝜏𝑘) = 𝐷𝐶𝑟 , 𝑖 = 0,1, . . . , 𝑁 (23) 

 

where, 𝑁 + 1 is the number of grid points 𝐷 =
2𝐷

𝜂
 and 𝑢 =

[𝑢(𝑌0), 𝑢(𝑌1), . . . , 𝑢(𝑌𝑁𝑥)]
𝑇 , 𝑇 = [𝑇(𝑌0), 𝑇(𝑌1), . . . , 𝑇(𝑌𝑁𝑥)]

𝑇 ,

𝑎𝑛𝑑 𝐶 = [𝐶(𝑌0), 𝐶(𝑌1), . . . , 𝐶(𝑌𝑁𝑥)]
𝑇. 

The initial approximation for solving (11)-(13) with due 

consideration of the boundary conditions (14) and (15) when 

𝑦 = 0 is given as  

 

𝑢0 = (𝑦, 𝑡) = 1 − 𝑒−𝑦 ,
𝑇0(𝑦, 𝑡) = 𝑒−𝑦 + cos(𝜔𝑡) ,
𝐶0(𝑦, 𝑡) = 𝑒−𝑦 + cos(𝜔𝑡) 

(24) 

 

Starting from the above initial approximations (24), the 

schemes in equations (16)-(18) subject to (19) and (20) can be 

solved iteratively for 𝑢𝑟+1(𝑦, 𝑡), 𝑇𝑟+1(𝑦, 𝑡)  and C𝑟+1(𝑦, 𝑡) 

when 𝑟 = 0,1,2, . .. . Following Motsa et al.[?], the Gauss-

Lobatto collocation points is used to define the nodes in 

[−1,1] as  

 

𝑌𝑗 = 𝑐𝑜𝑠 (
𝜋𝑗

𝑁𝑥
) , 𝑗 = 0,1, . . . , 𝑁𝑥 (25) 

 

The finite difference method with centering about a 

midpoint between 𝑡𝑛+1  and 𝑡𝑛  is applied on the iteration 

schemes (16)-(18). The centering about 𝑡𝑛+
1

2  to any of the 

unknown function, say 𝑢(𝑦, 𝑡) and its associated derivative 

leads to  

 

𝑢(𝑦𝑗 , 𝑡
𝑛+

1
2) = 𝑢

𝑗

𝑛+
1
2 =

𝑢𝑗
𝑛+1 + 𝑢𝑗

𝑛

2
,

(
𝜕𝑢

𝜕𝑡
)

𝑛+
1
2

=
𝑢𝑗

𝑛+1 − 𝑢𝑗
𝑛

Δ𝑡
 

(26) 

 

𝑇(𝑦𝑗 , 𝑡
𝑛+

1
2) = 𝑇

𝑗

𝑛+
1
2 =

𝑇𝑗
𝑛+1 + 𝑇𝑗

𝑛

2
,

(
𝜕𝑇

𝜕𝑡
)

𝑛+
1
2

=
𝑇𝑗

𝑛+1 − 𝑇𝑗
𝑛

Δ𝑡
 

(27) 

 

𝐶(𝑦𝑗 , 𝑡
𝑛+

1
2) = 𝐶

𝑗

𝑛+
1
2 =

C𝑗
𝑛+1 + C𝑗

𝑛

2
,

(
𝜕𝐶

𝜕𝑡
)

𝑛+
1
2

=
𝐶𝑗

𝑛+1 − 𝐶𝑗
𝑛

Δ𝑡
 

(28) 

 

The spectral method is first applied on (16)-(18) before 

applying the finite difference method to give  

 

𝑑𝑢𝑟+1

𝑑𝑡
= (𝑎0,𝑟𝐷

2 − 𝐷 + 𝑎1,𝑟𝐷
4 −

𝐻2

𝑅𝑒
)𝑢𝑟+1 + 𝑎2,𝑟 (29) 

 
𝑑𝑇𝑟+1

𝑑𝑡
= (𝑏0,𝑟𝐷

2 − 𝐷 − 𝑁)𝑇𝑟+1 (30) 

 
𝑑𝐶𝑟+1

𝑑𝑡
= (𝑐0,𝑟𝐷

2 − 𝐷)𝐶𝑟+1 (31) 

 

subject to (19) and (20) where  

 

𝑢𝑟+1 =

[
 
 
 
 
 
𝑢𝑟+1(𝑥0, 𝑡)

𝑢𝑟+1(𝑥1, 𝑡)
⋮
𝑢𝑟+1(𝑥𝑁𝑥−1

, 𝑡)

𝑢𝑟+1(𝑥𝑁𝑥
, 𝑡) ]

 
 
 
 
 

, (32) 
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𝑇𝑟+1 =

[
 
 
 
 
𝑇𝑟+1(𝑥0, 𝑡)
𝑇𝑟+1(𝑥1, 𝑡)
⋮
𝑇𝑟+1(𝑥𝑁𝑥−1

, 𝑡)

𝑇𝑟+1(𝑥𝑁𝑥
, 𝑡) ]

 
 
 
 

 

𝐶𝑟+1 =

[
 
 
 
 
𝐶𝑟+1(𝑥0, 𝑡)
𝐶𝑟+1(𝑥1, 𝑡)
⋮
𝐶𝑟+1(𝑥𝑁𝑥−1

, 𝑡)

𝐶𝑟+1(𝑥𝑁𝑥
, 𝑡) ]

 
 
 
 

 

 

𝑎0,𝑟

=

[
 
 
 
 
 
𝑎0,𝑟(𝑥0, 𝑡)

𝑎0,𝑟(𝑥1, 𝑡)

⋱
⋱

𝑎0,𝑟(𝑥𝑁𝑥
, 𝑡)]

 
 
 
 
 

 

 

𝑎1,𝑟

=

[
 
 
 
 
 
𝑎1,𝑟(𝑥0, 𝑡)

𝑎1,𝑟(𝑥1, 𝑡)

⋱
⋱

𝑎1,𝑟(𝑥𝑁𝑥
, 𝑡)]

 
 
 
 
 

 

 

𝑏0,𝑟

=

[
 
 
 
 
 
𝑏0,𝑟(𝑥1, 𝑡)

𝑏0,𝑟(𝑥2, 𝑡)

⋱
⋱

𝑏0,𝑟(𝑥𝑁𝑥
, 𝑡)]

 
 
 
 
 

 

 

𝑐0,𝑟

=

[
 
 
 
 
 
𝑐0,𝑟(𝑥1, 𝑡)

𝑐0,𝑟(𝑥2, 𝑡)

⋱
⋱

𝑐0,𝑟(𝑥𝑁𝑥
, 𝑡)]

 
 
 
 
 

 

(33) 

 

We now proceed to apply the finite difference scheme on 

Eqns. (29)-(31) in the 𝑡 − direction with the mid-point 𝑡𝑛+
1

2 to 

yield  

 

𝐴1𝑢𝑟+1
𝑛+1 = 𝐴2𝑢𝑟+1

𝑛 + 𝐾1 (34) 

 

𝐵1𝑇𝑟+1
𝑛+1 = 𝐵2𝑇𝑟+1

𝑛 + 𝐾2 (35) 

 

𝑀1𝐶𝑟+1
𝑛+1 = 𝑀2𝐶𝑟+1

𝑛 + 𝐾3 (36) 

 

Subject to the boundary conditions  

 
𝑢𝑟+1(𝑥𝑁𝑥, 𝑡𝑛) = 𝑇𝑟+1(𝑥𝑁𝑥, 𝑡𝑛) = 𝐶𝑟+1(𝑥𝑁𝑥, 𝑡𝑛) = 0 (37) 

 

𝑢𝑟+1(𝑥0, 𝑡
𝑛) = 0, 𝑢′′𝑟+1(𝑥0, 𝑡

𝑛)
= 0  𝑇𝑟+1(𝑥0, 𝑡

𝑛) = 1 + cos(𝜔𝑡),
𝐶𝑟+1(𝑥0, 𝑡

𝑛) = 1 + cos(𝜔𝑡) 

(38) 

 

where  

𝐴1 =
1

𝛿𝑡
−

1

2
(𝑎0,𝑟𝐷

2 − 𝐷 + 𝑎1,𝑟𝐷
4 −

𝐻2

𝑅𝑒
), 

𝐴2 =
1

𝛿𝑡
+

1

2
(𝑎0,𝑟𝐷

2 − 𝐷 + 𝑎1,𝑟𝐷
4 −

𝐻2

𝑅𝑒
), 

 

𝐵1 =
1

𝛿𝑡
−

1

2
(𝑏0,𝑟𝐷

2 − 𝐷 − 𝑁), 

𝐵2 =
1

𝛿𝑡
+

1

2
(𝑏0,𝑟𝐷

2 − 𝐷 − 𝑁), 

 

𝑀1 =
1

𝛿𝑡
−

𝑐0,𝑟𝐷
2 − 𝐷

2
, 𝑀2 =

1

𝛿𝑡
+

𝑐0,𝑟𝐷
2 − 𝐷

2
, 

𝐾1 = 𝑎2,𝑟
𝑛+1, 𝐾2 = 𝐼, 𝐾3 = 𝐼 

 

 

4. DISCUSSION OF RESULTS 

 

An efficient method called spectral relaxation method 

(SRM) has been used to solve the transformed Eqns. (11)-(13) 

along with the boundary conditions (14) and (15) numerically. 

The present paper examined the effect of pertinent flow 

parameters on the velocity, temperature and concentration 

profiles.  

Figure 1 represents the effect of the thermal Grashof 

number on the velocity profile. Obviously from the Figure 1, 

when Gr=0, the flow attains minimum value and as it increases 

the flow attains maximum value. Physically, the thermal 

buoyancy force gives rise to buoyancy force which enhances 

the hydrodynamics within the boundary layer. The result in 

Figure 1 implies that the buoyancy force has a great significant 

effect on the flow. 

The effect of an increase in the mass Grashof number is 

represented in Figure 2. The result shows that increase in mass 

buoyancy enhances the concentration effects. 

Figure 3 shows the effect of Peclet number on the velocity 

and temperature profiles. Increasing Peclet number is seen to 

bring increase to both velocity and temperature profile. Peclet 

number represents the ratio of heat transfer by fluid motion to 

the one by thermal conduction. Increase in the fluid thermal 

boundary layer means that the heat transferred by fluid motion 

is more than that of thermal (M) conduction.  

Figure 4 represents the effect of Erying-Powell parameter 

on the velocity profile. The result shows that decrease in M 

enhances the velocity profile. This implies that, increase in M 

decreases the profile. 

 

 
Figure 1. Effect of the thermal Grashof number on the 

velocity profile 
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Figure 2. Effect of mass Grashof number on the velocity 

profile 

 

 
Figure 3. Effect of Peclet number on the velocity and 

temperature profile 

 

Figure 5 depicts the effect of the Hartmann number on the 

velocity profile. It is noticed that increase in the value of the 

Hartmann number decreases the velocity. Thus, this satisfies 

the fact that increasing Hartmann number decreases the 

velocity profile due to the production of the resistive force 

(Lorentz force) which slows down fluid motion within the 

hydrodynamics boundary layer. Physically, the effect of this 

resistive force is due to increase in Hartmann number. This 

established fact is applicable when controlling hot fluid flow 

during metal processing.  

 
Figure 4. Effect of Eyring-Powell parameter on the velocity 

profile 

 

 
Figure 5. Effect of Hartmann number on the velocity profile 

 

 
Figure 6. Effect of couple stress parameter on the velocity 

profile 

 

Figure 6 represents the effect of couple stress parameter on 

the velocity profile. It is noticed that increase in the couple 

stress inverse drastically increases the velocity profile. 

Physically, couple stress inverse on a flow decreases the 

maximum flow. 
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Figure 7. Effect of Reynolds number on the velocity, 

temperature, and concentration 

 

Figure 7 represents the effect of the inverse Reynolds 

number on the velocity, temperature and concentration 

profiles. Obviously, increasing the Reynolds number enhances 

the velocity profile. This is due to the fact, the viscous force in 

the non-Newtonian fluid filled up the inertia force. This 

explains the reason why the velocity is maximum where the 

inertial force keeps growing and leads to disturbance in the 

fluid flow, it will result to break down in the laminar flow due 

to higher Reynolds number. As seen in Figure 7, higher 

Reynolds number brings increase to the fluid temperature. 

With increase in the Reynolds number, the concentration 

profile decreases very close to the wall and continues to 

behave in an irregular manner as the Reynolds number 

continues to increase.  

 

 
 

Figure 8. Effect of radiation parameter on the temperature 

profile 
 

Figure 8 represents the effect of radiation parameter on the 

temperature profile. Very close to the wall, the temperature 

profile drastically increases with increase in radiation 

parameter. Due to the presence of Reynolds number within the 

fluid the thermal boundary layer enhances with increase in the 

radiation parameter.  
 

 
Figure 9. Effect of Schmidt number on the concentration 

profile 
 

Figure 9 depicts the effect of the Schmidt number on the 

concentration profile. Schmidt number is the ratio of 

momentum, to the mass diffusivity. It explains the 

effectiveness of momentum and mass transport with the 

hydrodynamics and mass boundary layer. It is observed in 

Figure 9 that decreasing the values of the Schmidt number 

increases the concentration profile. Hence, increasing Sc will 

decrease the mass transport of fluid. It worth mentioning that 

when Sc=0, it shows the absence of mass transfer. 

 

 

5. CONCLUSION 

 

This investigation considered a non-Newtonian transient 
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incompressible, electrically conducting fluid between two 

parallel porous plates. The Parallel plates are at distance ℎ 

apart under the influence of couple stress and externally 

applied magnetic field. The pressure driven fluid was analysed 

using Eyring-Powell Non-Newtonian fluid model. The non-linear 

dimensional partial differential equations, under some assumptions, 

were transformed into a set of dimensionless equations. The solution 

to the dimensionless equations were obtained using spectral 

relaxation techniques (SRM). From this study, it was found that  

(i). The magnitude of the velocity increases with increase in 

the inverse couple stress parameter  

(ii). increase in the value of the Hartmann number decreases 

the velocity 

(iii). Flow attains maximum values as thermal Grashof 

number increases 

(iv). increasing the Reynolds number enhances the velocity 

profile, higher Reynolds number brings increase to the fluid 

temperature and the concentration profile decreases very close 

to the wall. 
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