An Experimental Study on Silicon Carbide-water Nanofluids for Heat Transfer Applications

Sneha Ponnada¹*, Tunuguntla Subrahmanya², Sureddy Vishveshwara Naidu³

¹ Centre for Nanotechnology, AUCE (A), Andhra University, Visakhapatnam 530003, India
² Department of Mechanical Engineering, AUCE (A), Andhra University, Visakhapatnam 530003, India
³ Department of Chemical Engineering, AUCE (A), Andhra University, Visakhapatnam 530003, India

Corresponding Author Email: p.sneha@ymail.com

https://doi.org/10.18280/ijht.370216

Received: 8 May 2018
Accepted: 20 June 2019

Keywords:
friction factor, heat transfer, Nusselt number, SiC nanofluid, twisted tapes, twist ratio

1. INTRODUCTION

The heat transfer enhancement of the fluids has been developed and applied for many heat exchange systems. There are many ways in which the heat transfer can be enhanced and among them, the use of nanofluids and the use of passive elements in the heat pipes and heat exchangers are of prime importance as they have reported a reasonable improvement in the heat transfer coefficient.

Nanofluids are the fluids containing nanoparticles of higher thermal conductivity and they reported a greater enhancement in the thermal properties when compared to the conventional heat transfer fluids like water, ethylene glycol and a combination of both. The heat transfer rates obtained by the different combinations of nanoparticles and the base fluids are being studied by many researchers. Hence, the conventional fluids for cooling and heating purposes are replaced by many newer fluids. Among the various nanoparticles, Silicon Carbide (SiC) is one of the promising materials employed to fabricate effective nanofluids as SiC is easily available and has a higher thermal conductivity. Not much research is done on the SiC/water for analysing the heat transfer coefficient of the nanofluid. Yu et al., have reported results for 3.7 % concentration of 170 nm SiC particles suspended in water at constant Reynolds number [1]. Timofeeva et al., have stated that the use of a SiC/water nanofluid will be beneficial in the laminar flow regime when particles are larger than ~50 nm, while for turbulent flow average particle sizes should be larger than ~90 nm [2]. In their later work, Timofeeva et al., have also reported investigations on SiC/water nanofluid over the base fluid with 90 nm SiC particle at 4 vol.% [3]. Nader et al. have stated results for the enhancement in the heat transfer coefficient at constant Reynolds number for SiC at 9 wt. % in water-ethylene glycol base fluid [4].

The researchers have investigated on many passive elements i.e., inserts and have reported their investigations. Among them, different types of twisted tapes are employed and studied as they are easy manufacture due to their non-complex configuration and will result in a relatively lower pressure drop. For the heat transfer improvement some modifications are done on the conventional tapes. Farhadi et al. found that counter-swirl twisted tapes have greater Nusselt number enhancement ratios and friction factors when compared to co-swirl twisted tapes and also did a review study on TT for turbulent flows [5]. The butterfly inserts with different inclined angles in a heat exchanger are considered in the study of Shabanian et al. [6]. Eiamsa-ard et al., have reported on multiple TT vortex generators [7], full-length dual TT elements [8] in tandem at y/w =3.0, 4.0 and 5.0, regularly-spaced dual TT, the oblique delta winglet TT and straight delta winglet TT [9], the short length twisted tape inserts and full-length tapes [10], TT consisting of centre wings and alternate axis [11], serrated TT [12] and peripherally-cut TT [13]. Eiamsa-ard et al., then stated results for the peripherally-cut TT [14], the peripherally cut TT with alternate axis. Eiamsa-ard et al., also examined alternate clockwise and counterclockwise TT [15]. The trapezoidal cut TT in a double pipe U-tube heat exchanger was investigated by Prasad et al. [16]. The thermal analysis of fluid flows and different approaches for applications in thermal engineering are studied by Kashif Ali
Abro et al. [17-20].

Figure 1. XRD patterns of the particles obtained after different times of ball milling

There is a modification of the conventional twisted tape inserts, with the use of a heat pipe as a heat transport device operating in the flow regime with Reynolds number range of 3000-16000 in the current work. The thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis is reported by Ponnada et al. [21]. And the enhancement of heat transfer and friction factor of SiC nanofluid at 0.1 wt. % concentration containing particles ball milled after 5 h is circulated in a plain tube containing twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis are then compared.

2. CHARACTERIZATION AND THERMO-PHYSICAL PROPERTIES OF THE NANOFLUID

A detailed study on the thermal phenomena of the nanofluids along with the characterization of Silicon carbide (SiC) nanoparticles before and after dispersing in distilled water (DIW) is done. The pH of the fluids is adjusted to be between 9 – 10 before and after sonication. The sonication of the nanofluid is done by using a probe sonicator.

The stability of the suspensions is measured and analysed. The crystallite size of SiC particles obtained after 5 h, 10 h and 15 h ball milling are 27 nm, 39 nm and 62 nm respectively from XRD analysis. The particles are mostly indexed for a hexagonal crystal structure. The powder XRD patterns of the SiC nanoparticles at different ball milled times shown in the Figure 1. The nanofluids are prepared at different concentrations of 0.04 wt. %, 0.08 wt. % and 0.1 wt. % as they have reported a better stability from the zeta potential analysis and a relatively lesser particle size from dynamic light scattering (DLS) results. The stability of the nanofluids is measured from a zetasizer Nano ZS90. The visual inspection technique is employed to study the sedimentation behavior of the nanofluids. The SiC nanofluids are then tested for thermal conductivity (TC) in a KD2Pro thermal conductivity analyzer and viscosity in a Physica MCR 51 rheometer.

The maximum increase in thermal conductivity (TC) and viscosity of the nanofluids with that of the base fluid at 0.1 wt. % is 19 % and 94 % respectively at 30 °C is observed for the particles ball milled for 5 h. The density and specific heat of the SiC nanofluids are determined from the mixture equations.

The thermo-physical properties of SiC nanoparticles with crystalline size of 62 nm and SiC-water nanofluid with a weight concentration of 0.1 % are tabulated in the Table 1.

<table>
<thead>
<tr>
<th>Fluid/ nanofluid</th>
<th>Density (in kg/m³)</th>
<th>Specific heat (in J/kg-K)</th>
<th>Thermal Conductivity (in W/m-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC nanoparticles</td>
<td>3220</td>
<td>511.6</td>
<td>120</td>
</tr>
<tr>
<td>Base fluid (water)</td>
<td>1000</td>
<td>4185.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SiC-water nanofluid</td>
<td>1222</td>
<td>3818.11</td>
<td>0.714</td>
</tr>
</tbody>
</table>

3. TECHNICAL DETAILS OF TAPES

The aluminium twisted tapes used in the work are of 12.5 mm width (D) and 0.8 mm thickness (δ). The twisted tapes (TT) with different twist ratios (TR) i.e., p/D = 3, 4, 5 are made by twisting the aluminium strips of above-mentioned dimensions; where p is the pitch as shown in the Figure 2. Some of the other aluminium strips are perforated at every 12.5 mm distance on the strip. The perforated strips are again twisted to obtain perforated twisted tapes (PTT). The twisted perforated strips are again bent to 90° to obtain an alternate axis for every 100 mm distance for different twist ratios (TR) i.e., p/D=3, 4, 5. The twisted tape (TT), the perforated twisted tape (PTT) and the perforated twisted tape with alternate axis (PATT) are shown in the Figure 3. The pitch (p) and the width (D) are depicted in the Figure 4. showing PTT and PATT.
4. TEST FACILITY

The copper tube in the test section is of 2600 mm in length with outer diameter of 31.8 mm and inner diameter of 28.6 mm. A Nichrome heating wire of 21-gauge and resistance of 46 Ohms is wound all over the length of the tube. The heater wire is wound with ceramic beads, which acts as electrical insulation. A constant heat flux condition is considered in the present work. The schematic representation of the experimental setup used for the present study is shown in the Figure 5.

5. HEAT TRANSFER AND FRICTION FACTOR CALCULATIONS

At steady state, according to the heat balance, the heat loss was found to be in between 5 % and 10 % of the electrical power input.

The heat transfer coefficient \(h \) is calculated from the following equation:

\[
 h = \frac{mc_p(T_o - T_i) / (T_S - T_B)}\\
\]

where, \(T_B = \frac{(T_o + T_i)}{2} \)

An average of the twelve wall temperatures considered all along the pipe and \(T_S = \frac{(T_1 + T_2 + \cdots + T_{12}}{12} \)

The heat transfer rate in terms of Nusselt number \((Nu) \) can be written as,

\[
 Nu = \frac{hD}{k} \]

The friction factor is calculated from pressure drop \((\Delta p) \) across the tube length and is defined as,

\[
 f = \frac{2\Delta pD}{U^2L} \]

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Validation tests on the base fluid in the plain tube

Under constant heat flux condition, the base fluid DIW is run in the test section at Reynolds number range of 3000 – 16000. Thereby, the temperature and pressures are recorded for calculating the Nusselt number and friction factor. Hence, to test the reliability of the test section, the obtained values are compared with the theoretical correlations available from the literature as shown in the Figure 6.

Dittus-Boelter equation (4) is employed to compare the Nusselt number as given below i.e.,

\[
 Dittus-Boelter correlation:\n Nu = 0.023 Re^{0.8}Pr^{0.3} \] (4)

Whereas, Blasius equation (5) is used to compare the friction factor as given below i.e.,

\[
 Blasius correlation:\n f = \frac{0.3164}{Re^{0.25}} \] (5)

where \(3000 < Re < 5 \times 10^6 \)

The Nusselt number and friction factor have maximum deviations of ±9.8 % and ±12 % respectively.
6.2 Heat transfer and friction factor results

The heat transfer rate for PATT of different twist ratio (TR)=3, 4 and 5 is shown in the Figure 9, and it can be clearly seen that the Nusselt number is increasing with a decrease in TR. The heat transfer improvement observed is around 1 % - 9.59 % in the TT with TR=3 than that of the plain tube with nanofluid. The Nusselt number enhancement for perforated TT (PTT) and perforated TT with alternate axis (PATT) is more when compared to the regular TT as demonstrated in the Figure 7. The heat transfer increase of PTT at a TR=3 is around 1 % - 9.3 % when compared to regular TT and is 1 % - 18 % than that of the plain tube with nanofluid. Similarly, the heat transfer augmentation of PATT at a TR=3 is around 9.69 % - 16.13 % when compared to regular TT and is 9.7 % - 19.51 % than that of the plain tube with nanofluid. This increase in PTT and PATT can be attributed to the swirl flow due to the TT, high turbulence created due to the holes in TT for perforated TT and a change in the swirl direction periodically at each alternate axis for PATT.

Likewise, the friction factor observed is around 1.29 % - 22.5 % in the TT with TR=3 than that of the plain tube with nanofluid. The maximum friction factor enhancement for PTT and PATT is slightly more when compared to the regular TT. The friction factor in PTT at a TR=3 is around 1 % - 2 % more when compared to regular TT and is 1 % - 24 % more than that of the plain tube as shown in the Figure 8. Similarly, the friction factor in PATT at a TR=3 is around 1 % - 8.31 % more when compared to regular TT and is 1 % - 28.9 % more than that of the plain tube with nanofluid as demonstrated in the Figure 8. The friction factor for PATT of different twist ratio (TR)=3, 4 and 5 is shown in the Figure 10. The friction factor increase is observed in PTT and PATT as it offers flow resistance with greater pressure drop when compared to regular TT and that of the plain tube.

The fitted values of experimental data of PATT at different twist ratios in a plain tube with SiC nanofluid as in equations (6) & (7) are within ±1.5 % and ±2.28 % for Nusselt number and friction factor respectively.

\[Nu = 0.376 \, Re^{0.532} \, Pr^{0.415} \, TR^{-0.196} \] \hspace{1cm} (6)

\[f = 26.378 \, Re^{-0.73} \, TR^{-0.013} \] \hspace{1cm} (7)
nanofluid at 0.1 wt.% concentration containing SiC nanoparticles obtained after 5 h of ball milling at Reynolds number ranges between 3000 and 16000. The results obtained are summarized as below:

- The heat transfer rate and friction factor are more for PATT, PTT and TT in the decreasing order when compared with the plain tube with nanofluid.
- As the twist ratio decreases for PATT, the heat transfer rate and friction factor increase.
- The maximum heat transfer increase for PATT, PTT and TT at a TR of 3 is 19.51 %, 18 % and 9.59 % respectively, when compared to that of the plain tube with nanofluid. Similarly, the maximum friction factor increases for PATT, PTT and TT at a TR of 3 is 28.9 %, 24 % and 22.5 % respectively, compared to that of the plain tube. Hence, the heat transfer rate and friction factor are highest for PATT when compared to PTT and TT.
- The heat transfer enhancement is seen to be high in case of PATT, hence the regression equations are established for the Nusselt number and friction factor in case of SiC nanofluid flowing through the plain tube inserted with PATT and the attained equations are fitted with the experimental data.
- Hence, the inserts installed in the plain tube with the nanofluid flowing through it will save more energy when compared to the plain tube with water flowing through it.

ACKNOWLEDGMENT

The financial support given by TEQIP-II through Ministry of Human Resource and Development (MHRD), Government of India for the research project is highly appreciated.

REFERENCES

NOMENCLATURE

- **h** Heat transfer coefficient, W.m⁻².K⁻¹
- **𝑇_b** Bulk temperature, K
- **𝑇_s** Mean wall temperature, K
- **𝑇_i** Inlet temperature of the circular tube, K
- **𝑇_o** Outlet temperature of the circular tube, K
- **D** Diameter of the tube, m
- **L** Length of the tube, m
- **m** Mass flow rate of the fluid, kg.s⁻¹
- **U** Mean flow velocity of the fluid, m.s⁻²
- **𝑐_p** Specific heat, J.kg⁻¹.K⁻¹
- **Δp** Pressure drop (bar)
- **Nu** Nusselt number
- **f** Friction factor
- **Re** Reynolds number
<table>
<thead>
<tr>
<th>Pr</th>
<th>Prandtl number</th>
<th>Greek symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>Ohms</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>density of fluid, kg. m⁻³</td>
<td></td>
</tr>
</tbody>
</table>