
 

 
 
 

 
 
1. INTRODUCTION 

The physics of simultaneous heat and mass transfer has 
attracted various researchers because of its various ranges of 
applications in science and technology such as food 
processing, polymer solutions, wet-bulb thermometer and in 
various fluid flows related engineering problems [1-7]. As a 
result of this prime importance of heat and mass transfer 
involving chemical reaction in non-Newtonian fluids, the 
study has received considerable attention in recent years. 
Viscoelastic flows are prevalent in numerous processes 
employed by the chemical engineering systems. Such flow 
exhibits both viscous and elastic properties, normal stresses 
and relaxation effects. A wide range of mathematical models 
have been developed to simulate the diverse hydrodynamic 
and magnetohydrodynamic behaviours of these non-
Newtonian viscoelastic fluids [8-18]. 

The boundary layer flows of non-Newtonian fluids over a 
stretching sheet with heat and mass transfer are important in 
several areas such as paper production, glass fibber, extrusion 

process, wire drawing, crystal growing, hot rolling, food 
processing, electronic chips, movement of biological fluids, 
plastic manufacture and application of paints (Hayat and 
Qasim [19]). Bhargava et al. [20] studied the heat and mass 
transfer of boundary layer flow over a non-linear stretching 
sheet under the effects of different physical parameters. 
Analysis was carried out by Singh [21] to study heat source 
and radiation effects on an electrically conducting, two-
dimensional steady flow of an incompressible viscoelastic 
fluid past a stretching sheet in the presence of transverse 
uniform magnetic field. The hydromagnetic flow and heat 
transfer adjacent to a stretching vertical sheet with prescribed 
surface heat flux was investigated by Aman and Ishak [22]. 
Abbas and Hayat [23] considered the stagnation point with 
slip effects in heat transfer analysis for the boundary layer 
flow over a non-linear stretching sheet. The heat and mass 
transfer over a stretching sheet was further studied by several 
researchers including Pal and Mondal [24] who considered 
the effects of buoyancy and solutal buoyancy parameters.  
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ABSTRACT  
 
The paper carries out an analysis on the momentum, heat and mass transfer characteristics in an 
incompressible magnetohydrodynamic non-Newtonian boundary flow of a viscoelastic fluid over a stretching 
sheet in the presence of thermal diffusion and chemical reaction. The partial differential equations governing 
the flow as well as heat and mass transfer features are converted into highly non-linear coupled ordinary 
differential equations by similarity transformations. The resulting differential equations are solved by using a 
shooting technique with fifth-order Runge-Kutta-Fehlberg integration scheme. The influence of magnetic 
interaction, variable thermal conductivity, viscoelastic, variable fluid viscosity, heat source/sink rate of 
chemical reaction, themal radiation and thermal diffusion parameters as well as Prandtl and Schmidt numbers 
are analyzed for velocity, temperature and concentration profiles. The wall shear stress, wall temperature and 
concentration gradients are also investigated for the problem. The fluid viscosity varies as an inverse function 
of velocity while the thermal conductivity assumes a linear and an inverse function of temperature and 
concentration respectively. The study shows that the thermal diffusion and thermal radiation parameters have 
opposite effects on the skin friction coefficient and wall concentration gradient. However, the rate of chemical 
reaction has similar influence on the skin friction coefficient and wall temperature gradient. 
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Also, the interaction between the conducting fluid and the 
applied magnetic field basically modifies the flow with 
attendant effects on such flow properties. The detailed nature 
of this interaction strongly depends on the orientation of the 
magnetic field. Understanding the dynamics of such 
conducting fluids has relevant applications in the advent of 
technology that involves the MHD devices, MHD power 
generators, possibility of thermonuclear power, nuclear 
engineering, e.t.c. Malashestty and Umavathi [25] examined 
two-phase MHD flow and heat transfer in the presence of 
buoyancy effects in an inclined channel for the situation 
where only one of the phases is electrically conducting. 
Malashetty et al. [26] further investigated the magneto-
convection of two immiscible fluids in a vertical enclosure. 
Cortell [27] studied the flow and heat transfer of an 
electrically conducting second grade fluid subject to suction 
and a transverse magnetic field over a stretching sheet. 
Similarly, the heat and mass transfer in a viscoelastic fluid 
flow with magnetic field and heat source or sink through a 
porous medium on a stretching sheet was examined by 
Seddeek [28]. Emad and Mohamed [29] considered the effect 
of blowing/suction on hydromagnetic heat transfer by mixed 
convection with internal heat generation/absorption. 

The study of MHD with mass and heat transfer in the 
presence of thermal radiation and diffusion has attracted the 
attention of a large number of scholars due to its diverse 
applications. Grosan and Pop [30] examined the effect of 
thermal radiation in a vertical channel on fully developed 
mixed convection flow. Srinivas and Muthuraj [31] used the 
homotopy analysis method to investigate thermal radiation 
and space porosity effects on MHD mixed convection flow in 
a vertical channel. The combined influence of chemical 
reaction, radiation and MHD on mixed convection heat and 
mass transfer along a moving surface was considered by Joshi 
and Kumar [32]. Thermal diffusion or Soret effect 
corresponds to species differentiation developing in an initial 
homogeneous mixture submitted to a thermal gradient. 
Thermal diffusion arises when the mass flux contains a term 
that depends on the temperature gradient. Eldahe et al. [33] 
analyzed the thermal diffusion and diffusion-thermo effects 
on mixed free-convection and mass transfer boundary layer 
for non-Newtonian fluid with temperature-dependent 
viscosity. Anghel et al. [34] examined the effects of Dufour 
and Soret on free convection boundary layer over a vertical 
surface embedded in a porous medium. The combined effects 
of Soret and Dufour diffusion and porous impedance on 
laminar MHD mixed convection heat and mass transfer on an 
electrically conducting Boussinesq fluid from a vertical 
stretching surface in a Darcian porous medium under uniform 
transverse magnetic field was studied by Beg et al. [35].  

For most of the above investigations, the physical 
properties of the ambient fluid were assumed to be constant. 
However, it is obvious in [36-40] that these physical 
properties of the ambient fluid may change with temperature 
and so, the fluid viscosity may no longer be assumed 
constant. Pantokratoras [41] has presented some results on 
the variable viscosity of flow and heat transfer to a 
continuous moving flat plate. Mukhopadhayay and Layek 
[42] examined the thermal radiation and variable fluid 
viscosity effects on free convective and heat transfer past a 
porous stretching surface. Prasad et al. further carried out an 
analysis on the effect of variable viscosity on MHD 
viscoelastic fluid flow and heat transfer characteristics over a 
stretching sheet. Siddappa and Abel [43] also considered the 

variable fluid properties which depend on high temperature 
past a stretching sheet. 

Motivated by all these studies, the present work intends to 
investigate the heat and mass transfer on 
Magnetohydrodynamics and viscoelastic fluid flow over an 
impermeable long continuous stretching sheet with variable 
viscosity and thermal conductivity in the presence of thermal 
diffusion and chemical reaction. 

2. MATHEMATICAL MODEL 

2.1 Governing equations 
 

Consider a steady two-dimensional flow of an 
incompressible magnetohydrodynamic second grade 
viscoelastic fluid past an impermeable long continuous sheet 
with heat generation/absorption and thermal diffusion in the 
presence of thermal radiation and chemical reaction. The 
sheet which issues from a slot coincides with the plane 0y  

and the flow being confined to 0y . The moving of the 

continuous sheet is taken up by a wind-up roll. It is assumed 
that after the initiation of motion, a certain time has elapsed 
so that the steady conditions hold. Taking the x axis in the 

direction of the main flow along the sheet and y axis 

normal to it, the origin is located at the slit through which the 
sheet is drawn through the fluid medium. Two equal and 
opposite forces are applied along the x axis so that the sheet 

is stretched, while keeping the origin fixed. A magnetic field 

of strength 0B  is applied in the positive y direction. The 

continuous sheet varies with a velocity according to a linear 

form  wu u bx  and it is subjected to a prescribed surface 

temperature, i.e. at the solid surface. The fluid moves in the 
x direction with a velocity ( u component) equals to the 

velocity of the fluid surface, whereas at increasing distance 
from the surface, the velocity of the fluid in the x direction 

approaches to zero asymptotically.  
Assumptions: 

a. Any flow disturbance created by the roll is neglected; 
b. An observer fixed in space will notice that the boundary 

layer on the sheet originates at the slot and grows in the 
direction of the motion of the sheet; 

c. It is assumed that the flow approaches the sheet with zero 
angle of incidence and the sheet issues from a slot at the 
origin; 

d. The fluid viscosity is assumed to vary as a function of 
temperature; 

e. The magnetic Reynolds number is assumed to be small so 
that the induced magnetic field is neglected in comparison 
to the applied magnetic field; 

f. There is negligible applied electric field so that Hall effect 
and Joule heating are neglected. 
The fluid is thermodynamically compatible and the 

constitutive equation is given by Rivlin and Erickson [44]. 
Invoking the usual boundary layer approximation under the 
aforementioned assumptions, the governing equation for 
momentum, heat and mass transfer in Walters’ liquid B 
model in the presence of variable fluid viscosity and thermal 
conductivity can be taken as considered by [45]: 
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where u  and v  are the fluid velocity components in the 

streamwise x  and cross-stream y - directions respectively; 

0k  is the coefficient of viscoelasticity,   is the electrical 

conductivity, 0  is the magnetic field strength, pC  is specific 

heat at constant pressure. Here,   is the constant fluid 

density and   is the coefficient of viscosity which is 

considered to vary as an inverse function of temperature 
according to Lai and Kulacki [37] as follows: 
 

 
1 1

1 
 

    rT T  i.e.  
1


 a T T                     (5) 

 

where 




a , 
1


 rT T  and 0a  corresponds to 

liquids and 0a  is for gases. 

T  is the ambient temperature, T  and   are the constant 

values of the temperature and dynamic viscosity far away 
from the sheet respectively.  

This type of fluid variable viscosity has been used by [39, 
46] and is more appropriate for the present investigation as it 
is valid for wide temperature range. 

The temperature-dependent thermal conductivity  K T  

relationship considered in this study takes the form [47]: 
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where   wT T T , wT  is the sheet temperature,   is the 

small parameter and K  is the conductivity of the fluid far 

away from the sheet.  

Using Rosseland approximation, the third term rq  on the 

right hand side of equation (3) represents the radiative heat 
flux as given by [48]:  
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where    and K  are the Stefan-Boltzmann constant and the 

mean absorption coefficient respectively. 
It is assumed that the differences within the flow are such 

that the term 4T  may be expressed as a linear function of 

temperature by expanding 4T  in a Taylor series about T  as: 

 

   
24 4 3 24 6         T T T T T T T T                         (8) 

and neglecting the higher order terms beyond the first degree 

in  T T  to obtain 4 3 44 3  T T T . Substituting this 

expression of 4T  in equation (7) to get: 
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The term involving sQ  in equation (3) represents the 

temperature-dependent volumetric rate of heat source when 

0sQ  and heat sink when 0sQ  which correspond to the 

situation of exothermic and endothermic reactions 

respectively. In equation (4), the parameter 0r  represents the 

rate of chemical reaction, TK  stands for the thermal diffusion 

parameter, mT  is the mean fluid temperature and mD  is the 

coefficient of mass diffusivity. 
Substituting the equations (5), (6) and (9) in equations (2), 

(3) and (4), we have: 
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2.2 Boundary conditions 
 

Considering the effect of stretching of the momentum, 
thermal and species concentration boundary surface causing 
the flow along x - direction, the following appropriate 

boundary conditions on velocity, temperature and species 
concentration equations are employed:  
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l
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
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 
w

x
C C C B

l
 at 0y  

 

0u  , 0yu , T T , C C  as y      (12) 

 

where b  is a constant known as stretching rate, A  and B  

are constants, l  is the characteristic length.  

It is very important to note that equation (10) is a third-
order partial differential equation in u  whereas the number of 

prescribed conditions on u  is given by equation (12) are two. 

Augumenting the boundary conditions according to 
Rajagopal [49, 50] and Mahapatra and Gupta [41] to have a 
unique solution of the equation, the order of the governing 
equation now equals to the number of prescribed boundary 
conditions.  
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2.3 Non-Dimensionalization analysis  
 

The following transformations are employed to examine the 
flow regime adjacent to the plate:  
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Clearly, this implies that  
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 and that equation (6) which 

expresses the temperature-dependent thermal conductivity 
turns out to be x - independent. Using a scaled  - dependent 

temperature and species concentration in the form of 
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C
 respectively, the 

condition that the x - variation of T  and C  in the fluid is the 

same as that along the sheet is imposed. Thus, employing 
these transformations, equation (1) is identically satisfied and 
equations (2) – (4) reduce to: 
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The corresponding boundary conditions (12) are 

transformed into: 
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.  

Investigations of flow behaviour, heat and mass transfer 
would be carried out by analyzing the dimensionless local 

shear stress w  (skin friction coefficient), rates of heat and 

mass transfer coefficients at the wall which are Nusselt  Nu  

and Sherwood  Sh  numbers respectively. These quantities 

are defined as follows: 
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3. COMPUTATIONAL PROCEDURE 
 

Equations (14) - (16) constitute a highly non-linear coupled 

boundary value problem of fourth-order in f , second-orders 

in   and  . Since the exact solution does not seem to be 

feasible for complete set of equations (14) - (16), an effective 
numerical shooting technique with fifth-order Runge-Kutta-
Fehlberg integration algorithm is therefore developed. The 
highly coupled boundary value problem in equations (14) - 
(16) has been reduced to a system of eight simultaneous 
ordinary differential equations of first-order for eight 
unknowns following the method of superposition [51] by 

assuming 1f f , 2
 f f , 3

 f f , 4
 f f , 1  , 

2   , 1  , 2   . To solve this system of equations, 

eight initial conditions are required while only two initial 

conditions  0f ,  0f  on f , one initial condition  0  

on   and one initial condition on  0  on   are given. The 

third condition  0f  on f has been deduced by applying 

initial condition (17) in equation (14). Yet, there are three 

initial conditions  0f ,  0   and  0  which are not 

prescribed. However, the values of  f ,     and     

are known at   . Thus, the numerical shooting technique 

is applied whereby these three ending boundary conditions 
are employed to produce three known initial conditions at 

0  . In order to select  , we begin with some initial guess 

values and solve the problem with some particular set of 

parameters to obtain  0f ,  0   and  0 . Therefore, 

we start with the initial approximation as  3 00 f a , 
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 2 00  b  and  2 00  c . Let a , b  and c  be the correct 

values of  3 0f ,  2 0  and  2 0  respectively. The 

solution procedure is repeated with another larger value of 

  until two successive values of  0f ,  0   and  0  

only differ after desired digit satisfying the limit of the 

boundary along  . The last value of   is chosen as 

appropriate value for that particular set of parameters. 
Finally, the problem has been solved numerically utilizing 
fifth-order Runge-Kutta-Fehlberg integration scheme. It is 
important to note that convergence of the scheme largely 
depends on good guesses of the initial conditions in the 
shooting techniques.  

 
 

4. RESULTS AND DISCUSSION  
 

A numerical computation has been performed in order to 
analyze the influences of the various thermophysical 
parameters on the flow, heat and mass transfer of a 
viscoelastic fluid over a stretching sheet with variable fluid 
properties. The effects of various physical parameters on 
horizontal velocity, temperature and species concentration 
profiles for a linearly stretching sheet have been discussed 
and shown graphically in Figures (1) – (18). Figures (1 – 5), 
(6 – 12) and (13 – 20) show the velocity, temperature and 
species concentration fields respectively. Table 1 displays the 
local shear stress, rates of heat and mass transfer at the wall. 

 

4.1 Velocity profiles 

 

Figure 1 analyzes the effect of viscoelastic parameter 1k  

on the horizontal velocity profile  f  with  . It is 

noticeable that the horizontal velocity profiles decrease with 
increasing value of viscoelastic parameter in the boundary 
layer. This confirms the fact that the influence of an increase 
in viscoelastic parameter is to reduce the horizontal velocity 
and this reduces the boundary layer thickness. Hence, this 
induces an increase in the absolute value of the velocity 
gradient at the surface. Figure 2 shows the influence of 

magnetic interaction parameter Mn  on the horizontal 

velocity profile  f  with  . It is observed that an increase 

in the magnetic interaction parameter increases the horizontal 
velocity. This increases the boundary layer thickness and 
hence leads to a decrease in the absolute value of the velocity 
gradient at the surface. The effect of fluid viscosity parameter 

r  on horizontal velocity profiles  f  with   for different 

values of viscoelastic physical parameters is depicted in 
Figure 3. It is observed that the horizontal velocity profiles 

 f  decreases with an increasing values of fluid viscosity 

parameter r . This is due to the fact that with an increasing 

value of fluid viscosity parameter r , the horizontal boundary 

layer thickness decreases which in turn results in the decrease 
in the horizontal velocity profile. Figure 4 and 5 are drawn to 

display the velocity profile  f  with   for different values 

of variable thermal conductivity parameter and thermal 

radiation parameter 0R . It is observed that the effects of an 

increase in the value of thermal conductivity and thermal 
radiation parameters result in increase of the horizontal 

velocity profiles  f . This increases the horizontal 

boundary thickness. This is because of the fact that the 
viscoelastic fluid, with increasing variable thermal 
conductivity and high thermal radiation, is assumed to be less 
dense. 

 

 
 

Figure 1. Velocity profiles for various values of 1k  when 

0.5Mn , 0 0.2R , 1.0  r , 0.05   

 

 
 

Figure 2. Velocity profiles for various Mn  when 1 6.0k , 

0 0.2R , 1.0  r , 0.05   

 

 
 

Figure 3. Velocity profiles for various values of r  when 

1 6.0k , 0 0.2R , 0.5Mn , 0.05   
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Figure 4. Velocity profiles for various values of  when 

1 6.0k , 0 0.2R , 1.0  r , 0.5Mn  

 

 
 

Figure 5. Velocity profiles for various values of Ro  when 

1 6.0k , 0 0.2R , 1.0  r , 0.05   

 

4.2 Temperature profiles 

 

The temperature profile     with   for the flow field 

from the sheet for different values of controlling parameters 
are graphically shown in Figure 6 - 11. Figure 6 displays the 

influence of viscoelastic parameter 1k  on the temperature 

profile. It is observed that an increase in the viscoelastic 
parameter corresponds to an increase in the fluid temperature. 
However, the effect of increasing the magnetic interaction 

parameter Mn  decreases the fluid temperature as shown in 

Figure 7. The thermal radiation 0R  and variable thermal 

conductivity   parameters have the same effects on the 

temperature profiles which is similar to their effects on the 
horizontal velocity profiles. Hence, increases in the values of 
these parameters enhance the fluid temperature as exhibited 
in Figures 8 and 9. 

Observation from Figure 10 reveals the temperature profile 

    with   from the sheet for different values of heat 

source/sink parameter  . It is observed that the temperature 

profile is reduced in the boundary layer for negative values of 

  (heat sink) and is increased for positive values of   (heat 

source). The physical interpretation of 0   implies 

wT T , i.e. there will be a supply of heat to the flow region 

from the wall. Also, 0   implies wT T , and there will be 

heat transfer from the flow to the wall. Hence, the influence 
of increasing the value of heat source/sink parameter   

corresponds to an increase of the temperature profile    . 

Lastly, Figure 11 shows that an increase in the values of 

Prandtl number Pr  decreases the temperature profile    . 

An increase in the values of Prandtl number implies a 

decrease in thermal conductivity k . This is due to the fact 

that there would be a decrease of thermal boundary layer 
thickness with increasing values of Prandtl number. 
 

 
 

Figure 6. Temperature profiles for various values of 1k  

when 0.2  , 0 0.2R , Pr 1 , 0.5Mn  

 

 
 

Figure 7. Temperature profiles for various values of Mn  

when 0.2  , 0 0.2R , Pr 1 , 1 6k  
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Figure 8. Temperature profiles for various values of Ro  

when 0.2  , 0.5Mn , Pr 1 , 1 6k  

 

 
 

Figure 9. Temperature profiles for various values of   

when 0.2  , 0 0.2R , Pr 1 , 1 6k  

 

 
 

Figure 10. Temperature profiles for various values of   

when 0.5Mn , 0 0.2R , Pr 1 , 1 6k  

 
 

Figure 11. Temperature profiles for various values of Pr  

when 0.2  , 0 0.2R , 0.005  , 1 6k  

 

4.3 Species concentration profiles 

 

The species concentration profile     with   for the 

flow field suffers a substantial change with the variation of 

flow parameters such as viscoelastic parameter 1k , magnetic 

interaction parameter Mn , thermal radiation parameter 0R , 

variable thermal conductivity parameter  , rate of chemical 

reaction r , Soret parameter Sr , Schmidt number Sc  and 

Prandtl number Pr . It is noticed from Figures 12 – 19 that 
the values of the species concentration increase with an 

increase in viscoelastic parameter 1k , Soret parameter Sr  

and Prandtl number Pr . Thus, concentration boundary layer 
thickness increases with increasing values of these 
parameters. However, an increase in the values of magnetic 

interaction parameter Mn , thermal radiation parameter 0R , 

variable thermal conductivity parameter  , rate of chemical 

reaction parameter r  and Schmidt number Sc  corresponds 

to a decrease in the species concentration. Therefore, this 
decreases the concentration boundary layer thickness as 
displayed by Figures 12 – 19. 
 

 
 

Figure 12. Concentration profiles for various values of 1k  

when 0.5Sc , 0.5r , 0.5Sr , 0.5Mn  
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Figure 13. Concentration profiles for various values of Mn  

when 0.5Sc , 0.5r , 0.5Sr , 1 6.0k  

 

 
 

Figure 14. Concentration profiles for various values of Ro  

when 0.5Sc , 0.5r , 0.5Sr , 1 6.0k  

 

 
 

Figure 15. Concentration profiles for various values of   

when 0.5Sc , 0.5r , 0.5Sr , 1 6.0k  

 
 

Figure 16. Concentration profiles for various values of r  

when 0.5Sc , 0.5Mn , 0.5Sr , 1 6.0k  

 

 
 

Figure 17. Concentration profiles for various values of Sr  

when 0.5Sc , 0.5r , 0.5Mn , 1 6.0k  

 

 
 

Figure 18. Concentration profiles for various values of Sc  

when 0.5Mn , 0.5r , 0.5Sr , 1 6.0k  
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Figure 19. Concentration profiles for various values of Pr  when 0.5Sc , 0.5r , 0.5Sr , 1 6.0k  

 

Table 1. Numerical results (guess values obtained) for some values of sensitive parameters 
 

Pr R Mn Sc r Sr Β   K1 r  
(0) f  (0)  (0)  

1 0.5 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 0.14561814 0.81762062 0.40054048 

         -5 0.15206379 0.81748185 0.40059741 

         -10 0.15431441 0.81701603 0.40064599 

1 0.5 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 -0.14561814 0.81762062 0.40054048 

        4  0.01024139 0.78632225 0.38203173 

        5  0.08773145 0.76621793 0.37272378 

1 0.5 0.1 0.2 0.2 0.1 -0.5 0.05 3 -1 0.13774017 1.00796373 0.38003817 

      0.0    0.14383081 0.87426499 0.39430502 

      0.2    0.14561814 0.81762062 0.40054048 

1 0.5 0.1 0.2 0.2 0.1 0.2 0.0 3 -1 0.14561529 0.84505740 0.39742565 

       0.05   0.14561814 0.81762062 0.40054048 

       0.2   0.14622407 0.74731520 0.40853662 

1 0.0 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 0.13595004 0.16269642 0.45183547 

 0.5         0.14561814 0.81762062 0.40054048 

 0.8         0.14782272 1.03760785 0.37468119 

0.5 0.5 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 0.13776234 0.56684416 0.42723526 

1          0.14561814 0.81762062 0.46054048 

1.5          0.14761023 0.37860234 1.00455099 

1 0.5 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 0.10610159 0.81083350 0.39613846 

  0.2        0.18453793 0.82434204 0.40498045 

  0.5        0.29518543 0.84581176 0.41794149 

1 0.5 0.1 0.1 0.2 0.1 0.2 0.05 3 -1 0.14561814 0.81762062 0.40054048 

   0.2       0.14561835 0.81763016 0.34390965 

   0.4       0.14561863 0.81764322 0.23064138 

1 0.5 0.1 0.2 0.2 0.1 0.2 0.05 3 -1 0.14561814 0.81762062 0.40054048 

    1      0.14561781 0.81759919 0.55925017 

    2      0.14561731 0.81757081 0.71307436 

1 0.5 0.1 0.2 0.2 0.5 0.2 0.05 3 -1 0.14561639 0.81755237 0.71355693 

     1.0     0.14561105 0.81740894 1.07606348 

     2.0     0.14558588 0.81706787 1.60028221 

 

 
5. CONCLUSION 

 
The present study focuses on the effect of thermal 

radiation, chemical reaction, variable viscosity and an internal 
uniform magnetic field on the flow, temperature and species 

concentration distribution of a magnetohydrodynamic non-
Newtonian viscoelastic fluid over a stretching sheet with 
variable thermal conductivity in the presence of the non-
uniform heat source/sink and thermal diffusion. Using 
appropriate similarity transformations, the formulated 
governing equations are transformed and then solved 
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numerically by employing Runge-Kutte-Fehlberg scheme 
with shooting technique. The numerical results show the 
influences of thermal diffusion and radiation, variable 
viscosity and other physical controlling parameters on the 
flow, heat and mass characteristics. Therefore, results of 
physical interest on velocity, temperature and species 
concentration distributions of flow field as well as local shear 
stress, wall temperature and species concentration gradients 
are summarized below:   
i. The influence of viscoelastic parameter is to decrease 

velocity distribution and increase both temperature and 
species concentration distribution in the boundary 
layer. Contrast effect is seen for magnetic field 
interaction parameter on the velocity, temperature and 
species concenntration profiles. It is also observed that 
the velocity distribution decreases with increasing 
values of fluid viscosity parameter; 

ii. As the intensity of the thermal radiation and variable 
thermal conductivity parameters increase, the velocity 
and temperature profiles increase. However, an 
increase in thermal radiation and variable thermal 
conductivity parameter is found to decrease with the 
species concentration profile; 

iii. The effect of Prandtl number is found to increase and 
decrease the thermal and species concentration 
boundary layer thicknesses respectively. Also, as the 
value of Schmidt number increases, it has the influence 
of decreasing the species concentration boundary layer 
thickness; 

iv. The temperature distribution is lower throughout the 
boundary layer for heat-sink parameter and higher for 
heat-source parameter. The chemical reaction and 
thermal diffusion parameters have opposite effects on 
the species concentration profiles; 

v. The effect of Prandtl number, variable thermal 
conductivity, heat source/sink and magnetic interaction 
parameters is to increase skin-friction coefficient and 
wall concentration gradient while the viscoelastic 
parameter decreases the wall temperature and 
concentration gradients; 

vi. The wall temperature gradient increases with increase 
in the values of Schmidt number, thermal radiation and 
magnetic interaction parameters but the reverse is the 
case with rate of chemical reaction, variable thermal 
conductivity, heat source/sink and thermal diffusion 
parameters. 
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NOMENCLATURE 

u and v Fluid velocity components in the x and y 
directions respectively. 

ko Coefficient of viscoelasticity 
Dm Coefficient of mass diffusivity 
CP specific heat, J. kg-1. K-1 
k thermal conductivity, W.m-1. K-1 
KT thermal diffusion parameter, m2. s-1 
Pr Prandtl number 
Sc Schmidtl number 
Ro Thermal radiation parameter 
Sr Thermal diffusion parameter 

 
Greek symbols 

 

o Magnetic field strength 

σ Electrical conductivity 
өr Fluid viscosity parameter 
µ Coefficient of viscosity, kg. m-1.s-1 
ρ∞ Constant fluid density 

 
  
 
 
 

26




