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ABSTRACT. The quasi-periodic solutions of nonlinear Hamiltonian system are important tools to 

enhance our understanding of dynamic behaviours. Therefore, this paper probes into a popular, 

completely resonant nonlinear beam equation. In the equation model, there is a nonlinear term 

periodic in the space variable and quasi-periodic in the time variable. The external frequency 

vector is 2-dimensional. Using the Kolmogorov-Arnold-Moser (KAM) method and the normal 

form, the author proved the existence of quasi-periodic solutions with two frequencies and gave 

the analytical expression. The solutions are small amplitude and linearly stable. The research 

findings shed new light on measurement estimation and normal form technique, provide new 

insights into the dynamics of beam equation, and promote the application of the KAM method. 

RÉSUMÉ. Les solutions quasi périodiques du système hamiltonien nonlinéaire sont des outils 

importants pour améliorer notre compréhension des comportements dynamiques. Par 

conséquent, cet article explore une équation de faisceau non linéaire très populaire et 

complètement résonante. Dans le modèle d'équation, il existe un terme nonlinéaire périodique 

dans la variable d'espace et quasi périodique dans la variable de temps. Le vecteur de 

fréquence externe est bidimensionnel. En utilisant la méthode de Kolmogorov-Arnold-Moser 

(KAM) et la forme normale, l'auteur a prouvé l'existence de solutions quasi-périodiques à deux 

fréquences et a donné l'expression analytique. Les solutions sont de faible amplitude et 

linéairement stables. Les résultats de la recherche jète un nouvel éclairage sur l’estimation des 

mesures et la technique de la forme normale, donne une nouvelle perception de la dynamique 

de l’équation du faisceau et promouvoir l’application de la méthode KAM. 
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1. Introduction 

This paper discusses the existence of quasi-periodic solutions for a beam equation 

𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 + 𝑓(𝜔𝑡, 𝑥, 𝑢) = 0, 𝑥 ∈ [0, 𝜋]                            (1.1) 

under the hinged boundary conditions 

𝑢(𝑡, 0) = 𝑢𝑥𝑥(𝑡, 0) = 𝑢(𝑡, 𝜋) = 𝑢𝑥𝑥(𝑡, 𝜋) = 0,                        (1.2) 

where 𝜔 = (𝜔1, 𝜔2) ∈ [𝜂, 2𝜂]
2  is a frequency vector with 𝜂 > 0 ; 𝑓(𝜔𝑡, 𝑥, 𝑢)  is a 

quasi-periodic nonlinear term in the time variable, and 𝑓(𝜔𝑡, 𝑥, 𝑢) = 𝑓(𝜗, 𝑥, 𝑢) (𝜗 ∈

𝕋2: = ℝ2/2𝜋ℤ2) is a  real analytic function in 𝜗 and 𝑥. 

The purpose of the discussion is to verify whether the small amplitude quasi-

periodic solutions of 𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 0  can persist under perturbation, whether the 

finite-dimensional tori is linearly stable, and whether quasi-periodic solutions have 

zero Lyapunov exponents. 

For non-autonomous Hamiltonian systems like Equation (1.1), their quasi-

periodic solutions are mainly investigated by the Lyapunov-Schmidt decomposition. 

However, the quasi-periodic solutions thus obtained tend to be global, failing to 

provide dynamical information around equilibrium points. Here, the Kolmogorov-

Arnold-Moser (KAM) method is adopted to solve the problem. 

The KAM theory, named after its proposer Kolmogorov, Arnold, and Moser, is 

one of the most important mathematical achievements in the 20th century. Later, 

Wayne, Kuksin, and Pöschel developed the infinite-dimensional KAM theory, which 

produces quasi-periodic solutions with dynamic properties like linear stability (Chen, 

2017; Chen et al., 2017; Cao and Yuan, 2017; Si and Si, 2017; Si and Si, 2018) and 

vanishing Lyapunov exponents.  

The KAM method can be applied to examine the Hamiltonian partial differential 

equations (PDEs) in the following manner: transforming nonlinear equations into 

infinite-dimensional Hamiltonian systems; constructing canonical transformations 

that can change the Hamiltonians to suitable Birkhoff normal forms; looking for 

quasi-periodic solutions though KAM iterations, that is, setting up a KAM theorem. 

Much research has been done on the quasi-periodic solutions of nonlinear beam 

equations (Eliasson et al., 2016; Geng and You, 2003; Geng and You, 2006; Geng 

and Zhou, 2018; Liang and Geng, 2006; Procesi, 2010). However, there is only a few 

reports on those of complete resonant equations. Geng and You (2006) tackle a 

complete resonant beam equation with a nonlinear term 𝑢3. Tuo and Si (2015) probe 

into a beam equation with nonlinearity 𝜙(𝑡)𝑢5 (Gao and Liu, 2017; Ge and Geng, 

2018). 

In this paper, it is assumed that 𝑓  in Equation (1.1) has a special nonlinear 

form𝑓(𝑡, 𝑥, 𝑢) = 𝛿𝜓(𝜔𝑡, 𝑥)𝑢3, where 𝛿 is a small positive parameter and 𝜓 is quasi-

periodic in 𝑡 and periodic in 𝑥. This model is very difficult to solve because of the 

dependence of nonlinearity on time and space variables, but it is widely applicable. 
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Equation (1.1) is a perturbation of the linear beam equation 𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 0 

whose solution can be written as 𝑢(𝑡, 𝑥) = ∑ 𝑞𝑗𝑗∈𝒥 (𝑡)𝜙𝑗(𝑥), 𝑞𝑗(𝑡) = 𝐼𝑗 𝑐𝑜𝑠( 𝑗
2𝑡 +

𝜑𝑗
0).  Here, for 𝑗 ∈ ℤ+,  𝜙𝑗(𝑥) = √

2

𝜋
𝑠𝑖𝑛 𝑗 𝑥;  𝒥  is any subset of ℤ+: = {1,2,⋯ } ; 

amplitudes 𝐼𝑗 ≥ 0 and 𝜑𝑗
0 are initial phases. The solutions travel on a rotational torus, 

which is finite- or infinite-dimensional. Every torus is linearly stable. The Lyapunov 

exponents of all solutions are zero. Unfortunately, not all the invariant manifolds will 

be preserved under the perturbation of 𝑓, owing to the numerous resonances and the 

strong perturbation of 𝑓 on solutions of large amplitude. 

This paper innovatively transforms the Hamiltonian into its Birkhoff normal form, 

despite falling short of the zero-momentum conditions. The perturbation was divided 

into two parts to overcome the difficulty of small divisor. One part satisfies zero-

momentum conditions while the other part does not. Thus, several conditions were 

added in Section 3. Then, it is necessary to estimate the measure of the parameter  , 

so as to maximize the number of parameters satisfying these conditions. Fortunately, 

the growth of eigenvalues is quartic, which is crucial for measure estimation. The 

KAM iterations here are in the standard form (Liu and Yuan, 2014), and are thus 

omitted. 

The remainder of this paper is organized as follows: Section 2 transforms the 

equation into an infinite-dimensional Hamiltonian system; Section 3 obtains the 

Birkhoff normal form; Section 4 relies on the normal form to prove the existence of 

quasi-periodic solution and give an analytic expression. 

2. Hamiltonian setting 

Firstly, Equation (1.1) was converted to a Hamiltonian system. Under Equation 

(1.2), the operator 𝐵 =
𝑑4

𝑑𝑥4
 has eigenvalues 𝜁𝑗 = 𝑗4  and eigenfunctions 𝜙𝑗(𝑥) =

√
2

𝜋
𝑠𝑖𝑛 𝑗 𝑥,  where 𝑗 ∈ ℤ+: = {1,2,⋯ } . Let 𝐷1(𝜎1): = {𝜗| |Im𝜗| < 𝜎1} , |𝜓|2𝑎: =

𝑠𝑢𝑝
𝑥∈𝐷2(2𝑎)

|𝜓(𝜗, 𝑥)|  for 𝜗 ∈ 𝐷1(𝜎1) , 𝐷2(2𝑎): = {𝑥| |Im𝑥| < 2𝑎} , and |𝜓|𝜎1,2𝑎: =

𝑠𝑢𝑝
(𝜗,𝑥)∈𝐷1(𝜎1)×𝐷2(2𝑎)

|𝜓(𝜗, 𝑥)|. 

It is assumed that <⋅,⋅>is the standard inner product in ℂ2;  (⋅,⋅)is the scalar 

product in 𝐿2[0, 𝜋], the space of real-valued sequences is 

𝑙𝑎,𝑠 = 𝑙𝑎,𝑠(ℝ): = {𝑞 = (𝑞1, 𝑞2, ⋯ ), (‖𝑞‖𝑎,𝑠)
2 = ∑ |𝑖≥1 𝑞𝑖|

2𝑖2𝑠𝑒2𝑎𝑖 < ∞}  (𝑎 >

0, 𝑠 >
1

2
); 

𝜎1 > 0 and 𝜎1  has a positive lower bound �̃�1 ,𝑎  is a positive real number, and 

“ measure ” refers to the Lebesgue measure. For function 𝜓 , the following 

assumptions were put forward: 
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(A1) 𝜓 has a Fourier expansion 𝜓(𝜗, 𝑥) = 𝜓0 + ∑𝑘∈ℤ2\{0}𝜓𝑘(𝑥)𝑒
𝑖<𝑘,𝜗> with0 ≠

𝜓0 ∈ ℝ. 

(A2) 𝜓 can analytically extend to 𝐷1(𝜎1) × 𝐷2(2𝑎) with |𝜓|𝜎1,2𝑎 < ∞. 

(A3) 𝜕𝑥
2𝑘+1𝜓(𝜗, 0) = 0, ∀𝑘 ∈ ℕ. 

By introducing 𝜕𝑡𝑢 = 𝑣 , 𝜕𝑡𝑣 + 𝐵𝑢 = −𝛿𝜓(𝜔𝑡, 𝑥)𝑢
3,  Equation (1.1) can be 

changed to a Hamiltonian system 𝐻 =
1

2
(𝑣, 𝑣) +

1

2
(𝐵𝑢, 𝑢) +

𝛿

4
∫ 𝜓
𝜋

0
(𝜔𝑡, 𝑥)𝑢4𝑑𝑥. If 

𝑢(𝑡, 𝑥) = ∑
𝑞𝑗(𝑡)

√𝜁𝑗
4𝑗≥1 𝜙𝑗(𝑥), 𝑣(𝑡, 𝑥) = ∑ √𝜁𝑗

4
𝑗≥1 𝑝𝑗(𝑡)𝜙𝑗(𝑥),  

Where 𝑞 = (𝑞1, 𝑞2, ⋯ )  ,𝑝 = (𝑝1, 𝑝2, ⋯ )  and 𝑝, 𝑞 ∈ 𝑙𝑎,𝑠. , then the Hamiltonian 

can be transformed to 𝐻 = 𝛬 + 𝛿𝐺, and  

𝛬 =
1

2
∑ √𝜁𝑗𝑗≥1 (𝑞𝑗

2 + 𝑝𝑗
2), 𝐺 =

1

4
∫ 𝜓
𝜋

0
(𝜔𝑡, 𝑥)(∑

𝑞𝑗(𝑡)

√𝜁𝑗
4𝑗≥1 𝜙𝑗(𝑥))

4

𝑑𝑥.  

Then, the Hamiltonian system can be expressed as: 

�̇�𝑗 =
∂𝐻

∂𝑝𝑗
= √𝜁𝑗𝑝𝑗 , 𝑝𝑗

.
= −

∂𝐻

∂𝑞𝑗
= −√𝜁𝑗𝑞𝑗 − 𝛿

∂𝐺

∂𝑞𝑗
, 𝑗 ≥ 1                 (2.1) 

The corresponding symplectic structure is ∑𝑑 𝑞𝑖 ∧ 𝑑𝑝𝑖  on 𝑙𝑎,𝑠 × 𝑙𝑎,𝑠. According 

to Geng and You (2003), if the solution of Equation (2.1) (𝑝(𝑡), 𝑞(𝑡)) is real analytic 

for 𝑡 ∈ 𝐼, then for (𝑡, 𝑥) ∈× [0, 𝜋],  

𝑢(𝑡, 𝑥) = ∑
𝑞𝑗(𝑡)

√𝜁𝑗
4𝑗≥1 𝜙𝑗(𝑥)                                          (2.2) 

must be a real analytic classical solution of Equation (1.1), where 𝐼 is a real interval. 

Thus, this paper attempts to find a solution with the form (2.2). 

Then, action-angle variables 𝐽 ∈ ℝ2  and 𝜗 ∈ 𝕋2  were introduced to obtain an 

autonomous system. In this way, the Hamiltonian and the Hamiltonian system can be 

transformed into 

𝐻 =< 𝜔, 𝐽 > +
1

2
∑ √𝜁𝑗𝑗≥1 (𝑞𝑗

2 + 𝑝𝑗
2) + 𝛿𝐺(𝑞, 𝜗)                    (2.3) 

and  

�̇�𝑗 =
𝜕𝐻

𝜕𝑝𝑗
, �̇�𝑗 = −

𝜕𝐻

𝜕𝑞𝑗
, �̇� = 𝜔, 𝐽̇ = −𝛿

𝜕𝐺

𝜕𝜗
= −𝛿

𝜕 ∫ 𝜒
𝜋
0 𝑑𝑥

𝜕𝜗
, (𝑗 ≥ 1) 

The corresponding symplectic structure becomes 𝑑𝜗 ∧ 𝑑𝐽 + ∑𝑑 𝑞𝑖 ∧ 𝑑𝑝𝑖 . The 

following lemma can be proved by the method for Lemma 2.3 in Wang et al. (2018). 
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Lemma 2.1 The gradient 
𝜕𝐺

𝜕𝑞
 is real analytic and satisfies ‖

𝜕𝐺

𝜕𝑞
‖𝑎,𝑠 = 𝒪((‖𝑞‖𝑎,𝑠)

3). 

3. Brikhoff normal form 

This section transforms the Hamiltonian into a Birkhoff normal form. The 

complex coordinates 𝒛 = (𝒛𝟏, 𝒛𝟐, ⋯ ) , �̄� = (�̄�𝟏, �̄�𝟐, ⋯ )  and 𝒛, �̄� ∈ 𝒍𝒂,𝒔(ℂ)  were 

adopted, where 𝒛𝒊 =
𝒒𝒊+𝒊𝒑𝒊

√𝟐
, �̄�𝒊 =

𝒒𝒊−𝒊𝒑𝒊

√𝟐
 for 𝑖 ∈ ℤ+.Then, a real analytic Hamiltonian 

can be obtained as: 

𝐻 = 𝛬 + 𝛿𝐺,                                                (3.1) 

where 𝜦 =< 𝝎, 𝑱 > +∑ √𝜻𝒋𝒋 𝒛𝒋�̄�𝒋,    𝑮 =
𝟏

𝟒
∫ 𝝍
𝝅

𝟎
(𝝑, 𝒙) (∑

𝒛𝒋+�̄�𝒋

√𝟒𝜻𝒋
𝟒𝒋≥𝟏 𝝓𝒋(𝒙))

𝟒

𝒅𝒙. 

The corresponding symplectic structure becomes 𝒅𝝑 ∧ 𝒅𝑱 + 𝒊∑ 𝒅𝒊 𝒛𝒊 ∧ 𝒅�̄�𝒊 . 

Moreover, we have 

𝑮 =
𝟏

𝟏𝟔
∑

𝑮𝜾𝟏𝜾𝟐𝜾𝟑𝜾𝟒

𝜾𝟏𝜾𝟐𝜾𝟑𝜾𝟒
𝜾𝟏,𝜾𝟐,𝜾𝟑,𝜾𝟒∈ℤ

+, 𝜾𝟏±𝜾𝟐±𝜾𝟑±𝜾𝟒=𝟎
(𝒛𝜾𝟏 + �̄�𝜾𝟏)(𝒛𝜾𝟐 + �̄�𝜾𝟐)(𝒛𝜾𝟑 + �̄�𝜾𝟑)(𝒛𝜾𝟒 +

�̄�𝜾𝟒) +
𝟏

𝟏𝟔
∑

𝑮𝒌,𝜾𝟏𝜾𝟐𝜾𝟑𝜾𝟒

𝜾𝟏𝜾𝟐𝜾𝟑𝜾𝟒
|𝒌|≥𝟏,𝜾𝟏,𝜾𝟐,𝜾𝟑,𝜾𝟒∈ℤ

+ 𝒆𝒊<𝒌,𝝑>(𝒛𝜾𝟏 + �̄�𝜾𝟏)(𝒛𝜾𝟐 + �̄�𝜾𝟐)(𝒛𝜾𝟑 + �̄�𝜾𝟑)(𝒛𝜾𝟒 +

�̄�𝜾𝟒), 

where 

𝐺𝜄1𝜄2𝜄3𝜄4 = 𝜓0 ∫ 𝜙𝜄1
𝜋

0
𝜙𝜄2𝜙𝜄3𝜙𝜄4𝑑𝑥                               (3.2) 

and  

𝐺𝑘,𝜄1𝜄2𝜄3𝜄4 = ∫ 𝜓𝑘
𝜋

0
(𝑥)𝜙𝜄1𝜙𝜄2𝜙𝜄3𝜙𝜄4𝑑𝑥, |𝑘| ≥ 1.                   (3.3) 

It is obvious that 𝐺𝜄1𝜄2𝜄3𝜄4 = 0. unless 𝜄1 ± 𝜄2 ± 𝜄3 ± 𝜄4 = 0 and 

𝐺𝜄1𝜄2𝜄1𝜄2 =
𝜓0

2𝜋
(2 + 𝛿𝜄1𝜄2),                                        (3.4) 

where 𝛿𝜄1𝜄2 = 1 for 𝜄1 = 𝜄2, and 𝛿𝜄1𝜄2 = 0 for 𝜄1 ≠ 𝜄2. 

Next, an admissible set ℐ: = {(𝑛1, 𝑛2)|𝑛1, 𝑛2 𝑎𝑟𝑒 𝑜𝑑𝑑, 𝑛1 ≠ 7𝑚𝑜𝑑( 14), 𝑛2 >
6𝑛1

2} was selected, which satisfies the Definition 3.1 in Liang and Geng (2006). Three 

sets of vectors (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ ℤ+
4 . were defined for each index set ℐ: the set 𝛥0 that 

𝜄1, 𝜄2, 𝜄3, and 𝜄4 are all in ℐ, the set 𝛥𝑗 that 4 − 𝑗 of 𝜄1, 𝜄2, 𝜄3, and 𝜄4 are in ℐ for j=1,2, 

and the set 𝛥3  that none or only one of 𝜄1, 𝜄2, 𝜄3,  and 𝜄4  is in ℐ . Let ℐ
0
=

{(𝜄1, 𝜄2, 𝜄3, 𝜄4) ≡ (𝜄1, 𝜄2, 𝜄1, 𝜄2)}, ℰ1 = ℐ
0⋂𝛥0 and ℰ2 = ℐ

0⋂𝛥2.  

The next step is to construct a Hamiltonian S and use its vector-field 𝑋𝒮  to 

transform Equation (3.1) into a fourth-order partial Birkhoff form, so as to study it as 

a perturbation of a nonlinear integrable system. However, the divisors have to be 

http://www.baidu.com/link?url=sgrXMQArDwVt7Tgsvgj0h_TxdwJSGzIf07Is4bpFt9cuf9MaY7jltwHl0oYWfOirQEkbhnf7v-lSFS1aB0e8JzCToPB25dOUM7lMupqWPfNAv_TfcOYTAfP05OFkvB5L
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assumed as nonzero because of the small divisors of the Hamiltonian. Thus, it is 

necessary to estimate the measure of parameters which make the divisors zero. For 

this purpose, notations �̄�: = 𝛥0⋃𝛥1⋃𝛥2 and �̄̄�: = (𝛥0\ℰ1)⋃𝛥1⋃(𝛥2\ℰ2)  were 

introduced. 

Lemma 3.1 If (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ �̄� and 𝑘 are not zero and 𝛿 is sufficiently small, then 

there is a set �̄� ⊂ [𝜂, 2𝜂]2 satisfying that, for each 𝜔 ∈ �̄� and±√𝜁𝜄1 ± √𝜁𝜄2 ± √𝜁𝜄3 ±

√𝜁𝜄4 ≠ 0,  

|±√𝜁𝜄1 ± √𝜁𝜄2 ± √𝜁𝜄3 ±√𝜁𝜄4+< 𝑘,𝜔 >| ≥
𝜂𝛿

1
3

|𝑘|4
.                         (3.5) 

Moreover, 𝑚𝑒𝑎𝑠�̄� ≥ 𝜂2 (1 − 𝐶2𝛿
1

3), where 𝐶2 is a constant depending on 𝜂, 𝑛1, 

and 𝑛2. 

Proof Assuming that: 

ℎ𝜄1𝜄2𝜄3𝜄4,𝑘 = ±√𝜁𝜄1 ± √𝜁𝜄2 ±√𝜁𝜄3 ± √𝜁𝜄4+< 𝑘,𝜔 >,  

𝑅𝜄1𝜄2𝜄3𝜄4,𝑘 = {𝜔 ∈ [𝜂, 2𝜂]2: |ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| <
𝜂𝛿

1
3

|𝑘|4
},  

𝛺1 = ⋃ ⋃ 𝑅𝜄1𝜄2𝜄3𝜄4,𝑘(𝜄1,𝜄2,𝜄3,𝜄4)∈𝛥1|𝑘|≥1 , and Ω2 = ⋃ ⋃ 𝑅𝜄1𝜄2𝜄3𝜄4,𝑘(𝜄1,𝜄2,𝜄3,𝜄4)∈𝛥2|𝑘|≥1 .  

It is evident that �̃� = 𝛺0⋃𝛺1⋃𝛺2. For hyperplanes 

±√𝜁𝜄1 ± √𝜁𝜄2 ± √𝜁𝜄3 ± √𝜁𝜄4+< 𝑘,𝜔 >= ±
𝜂𝛿

1
3

|𝑘|4
.  

We have 

Measure𝑅𝜄1𝜄2𝜄3𝜄4,𝑘 ≤ 2|𝑘|
−1√2𝜂

2𝜂𝛿
1
3

|𝑘|4
≤

4√2𝛿
1
3

|𝑘|5
𝜂2.  

Hence, Measure𝑅𝜄1𝜄2𝜄3𝜄4,𝑘 ≤ 𝐶
𝜂2𝛿

1
3

|𝑘|5
, where 𝐶 is an absolute constant. Note that  

♯{𝑘 ∈ ℤ2: |𝑘| = 𝑙} ≤ 22𝑙, 𝑙 ∈ ℤ+.                                 (3.6) 

Case I. If (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ 𝛥0,  then it can be deduced from (3.6) that: 

MeasureΩ0 ≤ 𝐶 ∑
𝜂2𝛿

1
3

|𝑘|5|𝑘|≥1 (𝑛2 − 𝑛1 + 1)
4 ≤ 𝐶(𝑛2 − 𝑛1 +

1)4𝜂2𝛿
1

3∑
1

𝑙51≤|𝑘|=𝑙 22𝑙.  

Since ∑
1

𝑙4𝑙≥1  is convergent, Measure𝛺0 ≤ 𝐶𝜂2𝛿
1

3, and 𝐶  is dependent of 𝑛1 , 𝑛2 

and 𝜂. 
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Case II. For (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ 𝛥1, it is assumed that 𝜄4 ∉ ℐ. The other cases can be 

treated by analogy. Then, it can be derived that 

| < 𝑘, 𝜔 > ±√𝜁𝜄1 ± √𝜁𝜄2 ±√𝜁𝜄3| ≤ 2𝜂|𝑘| + 3𝑛2
2.  

If |𝜄4| > √2𝜂|𝑘| + 3𝑛2
2 + 1 and 𝛿 is sufficiently small, 

|ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| ≥ | ± √𝜁𝜄4| − | < 𝑘, 𝜔 > ±√𝜁𝜄1 ± √𝜁𝜄2 ± √𝜁𝜄3| > 2𝜂|𝑘| + 3𝑛2
2 +

1 − (2𝜂|𝑘| + 3𝑛2
2) = 1 >

𝜂2𝛿
1
3

|𝑘|4
.  

Thus, it only needs to discuss 1 ≤ 𝜄4 ≤ √2𝜂|𝑘| + 3𝑛2
2 + 1. Therefore, 

MeasureΩ1 ≤ 𝐶 ∑
𝜂2𝛿

1
3

|𝑘|4|𝑘||𝑘|≥1 (𝑛2 − 𝑛1 + 1)
3√2𝜂|𝑘| + 3𝑛2

2 + 1 ≤ 𝐶𝜂2𝛿
1

3(𝑛2 −

𝑛1 + 1)
3∑

1

|𝑘|4|𝑘|≥1 ≤ 𝐶𝜂2𝛿
1

3(𝑛2 − 𝑛1 + 1)
3∑ 22𝑙≥1 𝑙

1

𝑙4
≤ 𝐶𝜂2𝛿

1

3,  

and 𝐶 is dependent of 𝑛1, 𝑛2 and 𝜂. 

Case III. For (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ 𝛥2, it is assumed that 𝜄4 and 𝜄3 ∉ ℐ without loss of 

generality. 

Case III-1. If±√𝜁𝜄3 ± √𝜁𝜄4 = 0 , then |ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| = | < 𝑘, 𝜔 > ±√𝜁𝜄1 ±√𝜁𝜄2|. 

Assuming that 

𝛺2,1 = ⋃ ⋃ 𝑅𝜄1𝜄2𝜄3𝜄4,𝑘𝜄3,𝜄4∉ℐ, 𝜄1,𝜄2∈ℐ, ±√𝜁𝜄3±√𝜁𝜄4=0
|𝑘|≥1   

Then, we have 

MeasureΩ2,1 ≤ 𝐶 ∑
𝜂2𝛿

1
3

|𝑘|4|𝑘||𝑘|≥1 (𝑛2 − 𝑛1 + 1)
2 ≤ 𝐶𝜂2𝛿

1

3(𝑛2 − 𝑛1 +

1)2∑
1

|𝑘|5|𝑘|≥1 ≤ 𝐶𝜂2𝛿
1

3(𝑛2 − 𝑛1 + 1)
2∑ 22𝑙≥1 𝑙

1

𝑙5
≤ 𝐶𝜂2𝛿

1

3,  

where the constant 𝐶 depends on 𝑛1, 𝑛2 and 𝜂. 

Case III-2. If ±√𝜁𝜄3 ± √𝜁𝜄4 ≠ 0, then 𝜄3 − 𝜄4 ≠ 0. Without loss of generality, it 

is assumed that 𝜄3 > 𝜄4. Thus, 𝜄3 − 𝜄4: = 𝑡0 ≥ 1. Moreover, 

| ± √𝜁𝜄3 ± √𝜁𝜄4| ≥ 𝜄3
2 − 𝜄4

2 = (𝜄3 − 𝜄4)(𝜄3 + 𝜄4) = 𝑡0(2𝜄4 + 𝑡0).              (3.7) 

If 𝜄4 > 𝐾:= 𝜂|𝑘| + 𝑛2
2,  it can be derived that | ± √𝜁𝜄3 ± √𝜁𝜄4| ≥ 2𝜄4 + 𝑡0 >

2𝐾 + 1. Since 

| < 𝑘, 𝜔 > ±√𝜁𝜄1 ± √𝜁𝜄2| ≤ 2𝜂|𝑘| + 2𝑛2
2                            (3.8) 

and 

|ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| ≥ | ± √𝜁𝜄3 ± √𝜁𝜄4| − | < 𝑘, 𝜔 > ±√𝜁𝜄1 ±√𝜁𝜄2|,           (3.9) 
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|ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| > 2𝐾 + 1 − 2𝜂|𝑘| − 2𝑛2
2 = 1 > 𝐶

𝜂2𝛿
1
3

|𝑘|4
  

is true if 𝛿 is sufficiently small. Hence, it only needs to analyse 1 ≤ 𝜄4 ≤ 𝐾. If𝑡0 >
𝐾 + 1, it can be deduced from (3.7) that 

| ± √𝜁𝜄3 ± √𝜁𝜄4| ≥ 2𝑡0𝜄4 + 𝑡0
2 > 2𝑡0 = 2𝐾 + 2.  

It follows from (3.8) and (3.9) that 

|ℎ𝜄1𝜄2𝜄3𝜄4,𝑘| ≥ 2𝐾 + 2 − 2𝜂|𝑘| − 2𝑛2
2 = 2𝜂|𝑘| + 2𝑛2

2 + 2 − 2𝜂|𝑘| − 2𝑛2
2 = 2 >

𝜂2𝛿
1
3

|𝑘|4
, 

as 𝛿 is sufficiently small. Thus, it is necessary to study the case 1 ≤ 𝑡0 ≤ 𝐾 + 1. 

Thus, 1 ≤ 𝜄3 = 𝜄4 + 𝑡0 ≤ 2𝐾 + 2. Assuming that  

𝛺2,2 = ⋃ ⋃ 𝑅𝜄1𝜄2𝜄3𝜄4,𝑘𝜄4,𝜄3∉ℐ, 𝜄1,𝜄2∈ℐ, ±√𝜁𝜄3±√𝜁𝜄4≠0
|𝑘|≥1 ,  

then we have 

MeasureΩ2,2 ≤ 𝐶 ∑
𝜂2𝛿

1
3

|𝑘|4|𝑘||𝑘|≥1 (𝑛2 − 𝑛1 + 1)
2(𝜂|𝑘| + 𝑛2

2)(2𝜂|𝑘| + 2𝑛2
2 + 2) ≤

𝐶𝜂2𝛿
1

3(𝑛2 − 𝑛1 + 1)
2∑

1

|𝑘|5|𝑘|≥1 (𝑛2 − 𝑛1 + 1)
2(𝜂|𝑘| + 𝑛2

2)(2𝜂|𝑘| + 2𝑛2
2 + 2) ≤

𝐶𝜂2𝛿
1

3(𝑛2 − 𝑛1 + 1)
2∑ 22𝑙≥1 𝑙

1

𝑙3
≤ 𝐶𝜂2𝛿

1

3,  

where 𝐶  is dependent of 𝑛1 , 𝑛2  and 𝜂 . Thus, for (𝜄1, 𝜄2, 𝜄3, 𝜄4) ∈ 𝛥2 , there exists a 

constant 𝐶 satisfying MeasureΩ2 ≤ 𝐶𝜂2𝛿
1

3. 

To sum up, assuming �̄� = [𝜂, 2𝜂]2\�̃� , measΩ̄ ≥ (1 − 𝐶2𝛿
1

3)𝜂2  is valid, where 

the constant 𝐶2 is dependent of 𝑛1, 𝑛2 and 𝜂. 

Proposition 3.1 Concerning the Hamiltonian (3.1), if parameter 𝛿 is sufficiently 

small for each index set ℐ, then there is a subset 𝛺 ⊂ [𝜂, 2𝜂]2 satisfying Measure𝛺 >
0 such that for each 𝜔 ∈ 𝛺, there exists a transformation ϒ that changes (3.1) to a 

normal form, 

𝐻°ϒ = 𝛬 + 𝛿�̄� + 𝛿�̂� + 𝛿2𝐾,  

where 

�̄�(𝑧, �̄�) =
1

2
∑ �̄�𝜄1𝜄2𝜄1∈ℐ 𝑜𝑟 𝜄2∈ℐ |𝑧𝜄1|

2|𝑧𝜄2|
2,                           (3.10) 

�̄�𝜄1𝜄2 = {

3𝜓0

2𝜋𝜄1
2𝜄2
2 , 𝜄1 ≠ 𝜄2

9𝜓0

8𝜋𝜄1
2𝜄2
2 , = 𝜄2,
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�̂� = ∑ 𝜓𝜄1𝜄2𝜄3𝜄4(𝜄1,𝜄2,𝜄3,𝜄4)∈𝛥3, 𝜄1±𝜄2±𝜄3±𝜄4=0
(𝑧𝜄1 + �̄�𝜄1)(𝑧𝜄2 + �̄�𝜄2)(𝑧𝜄3 + �̄�𝜄3)(𝑧𝜄4 +

�̄�𝜄4) + ∑ 𝑒𝑖<𝑘,𝜗>|𝑘|≥1   

∑ 𝜓𝑘,𝜄1𝜄2𝜄3𝜄4(𝜄1,𝜄2,𝜄3,𝜄4)∈Δ3 (𝑧𝜄1 + �̄�𝜄1)(𝑧𝜄2 + �̄�𝜄2)(𝑧𝜄3 + �̄�𝜄3)(𝑧𝜄4 + �̄�𝜄4),    (3.11) 

and 𝛿
1

3|𝐾| = 𝒪((‖𝑧‖𝑎,𝑠)
6). The transformation is real analytic and canonical. Besides, 

ϒ is well defined in 𝐷1(
𝜎1

2
) × 𝒰, with 𝒰 ⊂ 𝑙𝑎,𝑠 being a neighbourhood of the origin. 

Proof Let 𝑧𝑗 = 𝑤𝑗, �̄�𝑗 = 𝑤−𝑗  (𝑗 ≥ 1) and 𝑤0 = 0. Then, we have 

𝐻 =< 𝜔, 𝐽 > +∑ √𝜁𝑗𝑗≥1 𝑤𝑗𝑤−𝑗 + 𝛿∑𝜄1,𝜄2,𝜄3,𝜄4, |𝜄1|±|𝜄2|±|𝜄3|±|𝜄4|=0𝜓𝜄1𝜄2𝜄3𝜄4𝑤𝜄1𝑤𝜄2𝑤𝜄3𝑤𝜄4   

+𝛿 ∑ ∑𝜄1,𝜄2,𝜄3,𝜄4|𝑘|≥1 𝜓𝑘,𝜄1𝜄2𝜄3𝜄4𝑒
𝑖<𝑘,𝜗>𝑤𝜄1𝑤𝜄2𝑤𝜄3𝑤𝜄4 ,  

where 𝜄1, 𝜄2, 𝜄3, 𝜄4 ∈ ℤ/{0} and 

𝜓𝜄1𝜄2𝜄3𝜄4: =
𝐺𝜄1𝜄2𝜄3𝜄4

16|𝜄1𝜄2𝜄3𝜄4|
, 𝜓𝑘,𝜄1𝜄2𝜄3𝜄4: =

𝐺𝑘,𝜄1𝜄2𝜄3𝜄4

16|𝜄1𝜄2𝜄3𝜄4|
.  

Clearly, 

𝜓𝜄1𝜄2𝜄3𝜄4 = 0 unless |𝜄1| ± |𝜄2| ± |𝜄3| ± |𝜄4| = 0.                 (3.12) 

Assuming that 

𝒮 = 𝛿𝑆 = 𝛿∑𝜄1,𝜄2,𝜄3,𝜄4𝑆𝜄1𝜄2𝜄3𝜄4𝑤𝜄1𝑤𝜄2𝑤𝜄3𝑤𝜄4 +

𝛿∑|𝑘|≥1∑𝜄1,𝜄2,𝜄3,𝜄4𝑆𝑘,𝜄1𝜄2𝜄3𝜄4𝑒
𝑖<𝑘,𝜗>𝑤𝜄1𝑤𝜄2𝑤𝜄3𝑤𝜄4   

with coefficients  

𝑖𝑆𝜄1𝜄2𝜄3𝜄4 =

{

𝜓𝜄1𝜄2𝜄3𝜄4

𝜁
𝜄1

′+𝜁𝜄2′+𝜁𝜄3′+𝜁𝜄4′
, if |𝜄1| ± |𝜄2| ± |𝜄3| ± |𝜄4| = 0 and |𝜄1|, |𝜄2|, |𝜄3|, |𝜄4| ∈ �̄̄�,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

and for 𝑘 ≠ 0, 

𝑖𝑆𝑘,𝜄1𝜄2𝜄3𝜄4 =

{
 
 
 

 
 
 

𝜓𝑘,𝜄1𝜄2𝜄3𝜄4

<𝑘,𝜔>
, |𝑘| ≥ 1, |𝜄1|, |𝜄2|, |𝜄3|, |𝜄4| ∈ �̄�,and

𝜁𝜄1′ + 𝜁𝜄2′ + 𝜁𝜄3′ + 𝜁𝜄4′ = 0,

𝜓𝑘,𝜄1𝜄2𝜄3𝜄4

𝜁
𝜄1

′+𝜁𝜄2′+𝜁𝜄3′+𝜁𝜄4′+<𝑘,𝜔>
,  |𝑘| ≥ 1,  |𝜄1|, |𝜄2|, |𝜄3|, |𝜄4| ∈ �̄�,and

𝜁𝜄1′ + 𝜁𝜄2′ + 𝜁𝜄3′ + 𝜁𝜄4′ ≠ 0,

0,otherwise,

  

where 𝜁𝑖′ = sgn𝑖 ⋅ |𝑖|
2. 

For 𝑆𝜄1𝜄2𝜄3𝜄4 , the divisor |𝜁𝜄1′ + 𝜁𝜄2′ + 𝜁𝜄3′ + 𝜁𝜄4′| ≥ 1for all (|𝑖|, |𝑗|, |𝑑|, |𝑙|) ∈ �̄̄�. 

according to the definition of admissible set. Lemma 3.1 in Wang et al. (2018) shows 

that there exists a subset �̱� ⊂ [𝜂, 2𝜂]2  such that, for all 0 ≠ 𝑘 ∈ ℤ2 , any 𝜔 ∈ �̱� 
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satisfies | < 𝑘, 𝜔 > | ≥
𝜂𝛿

1
3

|𝑘|4
 and Measure �̱� ≥ (1 − 𝐶1𝛿

1

3)𝜂2, where the constant 𝐶1 

is an absolute constant. Considering Lemma 3.1, it is assumed that 𝛺 = �̄� ∩ �̱�. Thus, 

Measure 𝛺 ≥ 𝜂2(1 − 𝐶𝛿
1

3) is valid and Measure 𝛺 > 0 as 𝛿 sufficiently small. Using 

the same proof for Proposition 3.1 in Wang et al. (2018), it can be proved that the 

vector-field of 𝑋𝑆 is real analytic in some complex neighbourhood 𝜗 ∈ 𝐷1(
𝜎1

2
) of 

2

and a neighbourhood of the origin in 𝑙𝑎,𝑠. Moreover, ‖
𝜕𝑆

𝜕𝑤
‖
𝑎,𝑠
≤

𝐶

𝛿
1
3

(‖𝑤‖𝑎,𝑠)
3 is true. 

Let ϒ = 𝑋𝒮
1  be the time-one map of vector field, then ϒ satisfies the result of this 

theorem. Other estimates can be found in Proposition 3.1 in Wang et al. (2018). Q.E.D. 

4. Conclusions 

Let 𝜍𝑗 ∈ [0,1] and ℤ1: = ℤ+\ℐ. Under the complex coordinates 

{

𝑧𝑛1 = √𝜍1 + 𝐼1𝑒
−𝑖𝜃1 ,

𝑧𝑛2 = √𝜍2 + 𝐼2𝑒
−𝑖𝜃2 ,

𝑧𝑗 = 𝑤𝑗 , 𝑗 ∈ ℤ1,

                                          (4.1) 

the Hamiltonian can be transformed into 

𝐻 = ∑ 𝜔𝑖1≤𝑖≤2 𝐽𝑖 + ∑ 𝜛𝑗1≤𝑗≤2 𝐼𝑗 + ∑ Ω̂𝑙𝑙∈ℤ1 𝑤𝑙�̄�𝑙 + 𝑃.                  (4.2) 

The corresponding symplectic structure becomes ∑ 𝑑1≤𝑖≤2 𝜗𝑖 ∧ 𝑑𝐽𝑖 +
∑ 𝑑1≤𝑗≤2 𝜃𝑗 ∧ 𝑑𝐼𝑗 + 𝑖 ∑ 𝑑𝑙∈ℤ1

𝑤𝑙 ∧ 𝑑�̄�𝑙 , where 𝑃 = 𝛿�̆� + 𝛿�̂� + 𝛿2𝐾,  with �̆� =
1

2
∑ �̄�𝑛𝑖𝑛𝑗1≤𝑖,𝑗≤2 (𝐼𝑖 + 𝜍𝑖)(𝐼𝑗 + 𝜍𝑗) + ∑ �̄�𝑙𝑛𝑗𝑙∈ℤ1, 1≤𝑙≤2 (𝐼𝑗 + 𝜍𝑗)|𝑤𝑙|

2,  𝜛 = 𝛼 + 𝛿�̃�𝜍, 

�̂� = 𝜁 + 𝛿𝐵𝜍,  𝛼 = (√𝜁
𝑛1
, √𝜁

𝑛2
),  𝜁 = (√𝜁𝑙)𝑙∈ℤ1

, and �̃� = (
�̄�𝑛1𝑛1 �̄�𝑛1𝑛2
�̄�𝑛2𝑛1 �̄�𝑛2𝑛2

) , 𝐵 =

(

  
 

�̄�1𝑛1 �̄�1𝑛2
�̄�2𝑛1 �̄�2𝑛2
⋮ ⋮

�̄�𝑙𝑛1 �̄�𝑙𝑛2
⋮ ⋮ )

  
 

𝑙∈ℤ1

. 

Assuming that𝜔 = 𝜔− + 𝛿
3

2�̄�, �̄� ∈ [0,1]2, where 𝜔− ∈ 𝛺is fixed and 𝜔 ∈ �̄̄�: =

{𝜔 ∈ 𝛺 ∣ |𝜔 − 𝜔−| ≤ 𝛿
3

2}., it is clear that �̄̄� × [0,1]2 ⊂ 𝛺 × [0,1]2. 

Then, the variables were scaled by setting �̄� = 𝛿
1

2�̃̄� , 𝜍 = 𝛿
1

2𝜍̃, 𝑤 = 𝛿
1

4�̃�,  �̄� =

𝛿
1

4�̃̄�, 𝐼 = 𝛿
1

2𝐼, and 𝐽 = 𝛿
1

2𝐽. The scaled Hamiltonian can be expressed as: 
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𝐻 = 𝛿−
3

2𝐻(𝜗, 𝛿
1

2𝐽, 𝜃, 𝛿
1

2𝐼, 𝛿
1

4�̃�, 𝛿
1
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where �̃�1(�̃̄�) = 𝛿−1𝜔−1 + 𝛿�̃̄�1,   �̃�2(�̃̄�) = 𝛿−1𝜔−2 + 𝛿�̃̄�2,   �̃�(�̃̄�) =

(�̃�1(�̃̄�), �̃�2(�̃̄�)) ,�̃�(𝜍) = 𝛿−1𝛼 + 𝛿
1

2�̃�𝜍̃ , and �̃̂�(𝜍) = 𝛿−1𝜁 + 𝛿
1

2𝐵𝜍̃.  It is clear that 

𝜔 = 𝛿�̃�, 𝜛 = 𝛿�̃�, and �̂� = 𝛿�̃̂�. 

Then, some notations were introduced as �̂�1 = �̃�1(�̃̄�),  �̂�2 = �̃�2(�̃̄�) , 

�̃�1(𝜍̃) ,�̃�2(𝜍̃);�̂� = (�̃�(�̃̄�), �̃�(𝜍̃)); 𝜉 = (�̃̄�, 𝜍̃) ∈ 𝛱 ; 𝛱 = [𝛽, 2𝛽]; and 𝛽 = 𝛿−
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 and 𝑟 = 𝑟0,  where 0 < 𝑟0 < 1  and 𝑟0  is a constant. Let 𝜎 = 𝑚𝑖𝑛{
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, 𝑀 = 𝑚𝑎𝑥{𝑀11 +𝑀12, 𝑀2}, 𝜏 > 9, 𝜇 = 2𝜏 + 3, 
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6.  Note that 𝑀 does not depend on 𝛿. 

For a function 𝑄, the corresponding Hamiltonian vector field can be defined as 

𝑋𝑄 = (𝑄𝐽, −𝑄𝜗 , 𝑄𝐼 , −𝑄𝜃 , 𝑖𝑄�̄̃�, −𝑖𝑄�̃�)
𝑇, 

and the weighted norm for 𝑋𝑄 can be defined as: 
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Taking 𝛿 ≤ (
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6 𝜎

2𝜇+3)2 and using the same proof for Theorem 4.1 in 

Wang et al. (2018), it can be derived that there exists a set𝛱𝛿 ⊂ 𝛱, a family of torus 

embedding 𝛷:𝕋4 × 𝛱𝛿 → 𝒫𝑎,𝑠 and a map �̃̂�0 = (�̃�0, �̃�0): 𝛱𝛿 → ℝ4. that satisfy the 

following conditions: for any 𝜉 ∈ 𝛱𝛿 , the map 𝛷  restricted to 𝕋4 × {𝜉}  is a real 

analytic embedding of a rotational torus, whose frequency vector is �̃̂�0(𝜉) for 𝐻 at ξ; 

𝛱𝛿 is a Cantor set, and 𝛷, �̃̂�0 are Whitney smooth; every embedding is real analytic 

in |Im𝜗| <
𝜎

2
 and |Im𝜃| <
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2  hold 

uniformly, where 𝛷0 is the trivial embedding. 

Returning 𝛱𝛿  to the subset in �̄̄� × [0,1]2 , namely 𝛴𝛿 , there exists a Cantor set 

𝛴𝛿 ⊂ 𝛺 × [0,1]
2 satisfying the result in the following Theorem 4.1. Returning �̃̂�0 to 

the frequencies in the system with Hamiltonian (4.2), namely �̂�0, the frequency vector 

can be estimated. Therefore, the nonlinear equation (1.1) admits a Cantor family of 

rotational tori, which are 4-dimensional. Their frequency vectors are �̂�0 =
(𝜔01, 𝜔02, 𝜛0𝑛1 , 𝜛0𝑛2), where 𝜔01 = 𝜔1 + 𝒪(𝛿), 𝜔02 = 𝜔2 + 𝒪(𝛿), 𝜛0𝑛1 = 𝜁𝑛1 +

𝒪(𝛿), and 𝜛0𝑛2 = 𝜁𝑛2 + 𝒪(𝛿). A big part of the family of tori persists under small 

perturbations and is linearly stable. The quasi-periodic solutions have small 

amplitudes and zero Lyapunov exponents.  In short, the following theorem is valid. 
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Theorem 4.1 Assuming that (A1), (A2) and (A3) are valid, for every admissible 

index set ℐ: = {(𝑛1, 𝑛2)|𝑛1, 𝑛2 𝑎𝑟𝑒 𝑜𝑑𝑑,  𝑛1 ≠ 7𝑚𝑜𝑑( 14), 𝑛2 > 6𝑛1
2}, there exits 

a 𝛿∗  which satisfies the following condition: for 0 < 𝛿 < 𝛿∗, there exist sets 𝛺 ⊂
[𝜂, 2𝜂]2  and 𝛴𝛿 ⊂ 𝛴:= 𝛺 × [0,1]2  such that for any 𝜉 = (𝜔1, 𝜔2, 𝜍𝑛1 , 𝜍𝑛2) ∈ 𝛴𝛿 , 

Equation (1.1) under the conditions (1.2) has a quasi-periodic solution 
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where |𝜛0𝑗 − 𝑗
2| ≤ 𝑐𝛿, 𝛺 and 𝛴𝛿  have positive Lebesgue measures. 

Les différentes sections sont numérotées de l’introduction jusqu’à la conclusion. 

Les remerciements et la bibliographie (ainsi que l’extended abstract) ne sont pas 

numérotés. Les intertitres sont alignés à gauche sans alinéa, comme suit. Les espaces 

au-dessus s’annulent quand ils sont précédés par un autre inter. 
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