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ABSTRACT. The unified power quality compensator (UPQC) is a one of the best solutions used 

in industry to mitigate both voltage- and current-based power quality problems. Fail in UPQC 

can affect the power line and generate a hardly detectable fault due to its specific architecture. 

Therefore, a signal processing technique is required to detect and localize the damage. The 

technique used must reach three goals. The first one, identify the damaged inverter. Second one 

localizes which leg is affected and the last one detects the failed switch. An automatic tool based 

on Artificial Neural Network (ANN) is applied to identify and localize the faulty switch. The 

features extracted from time and frequency domain are used to train and test the ANN classifier 

model. 

RÉSUMÉ. Le compensateur de qualité de l'alimentation unifié (UPQC) est l'une des meilleures 

solutions utilisées dans l'industrie pour atténuer les problèmes de qualité de l'alimentation liés 

à la tension et au courant. Une défaillance de l'UPQC peut affecter la ligne électrique et 

générer une défaut difficilement détectable en raison de son architecture spécifique. Par 

conséquent, une technique de traitement du signal est nécessaire pour détecter et localiser les 

dommages. La technique utilisée doit atteindre trois objectifs. Le premier est d’identifier 

l’onduleur endommagé. Le second est de localiser la branche affectée et le dernier est de 

détecter le commutateur défaillant. Un outil automatique basé sur le Réseau neuronal artificiel 

(ANN) est utilisé pour identifier et localiser le commutateur défectueux. Les caractéristiques 

extraites du domaine temporel et du domaine fréquentiel servent à former et à tester le modèle 

de classificateur ANN. 
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1. Introduction 

Electric power quality is important in the transmission, distribution and the use of 

electrical power. The power quality can be disturbed by voltages or currents 

fluctuations. However, electrical power distribution systems are facing severe power 

quality (PQ) problems of voltages and currents (reactive power burden, unbalanced 

loads, voltage sag, swell, surges, notches…) (Singh et al., 2015). Improving the 

quality of power line plays an important role in industry.  The UPQC system offers a 

good solution to improve the quality affected by external or internal disturbances, it’s 

composed of two inverters voltage source converters and current source converters. 

The Parallel Active Filter deals with current changes and removes harmonics 

responsible of disturbances. The Series Active Filter offers a solution to improve the 

voltage quality (Singh et al., 2015). 

The performance of the power line is related to the UPQC state. Sometimes, 

failures in UPQC devices can corrupt the quality. Identifying the sources of 

disturbances is very difficult and hardly detectable. These failures affect electrical 

machines and even destroy the electrical parts. To solve this problem, various fault 

diagnostic methods have been developed during the last decade and many researchers 

have proposed various methods.  

Considered various fault modes of a voltage source PWM inverter system for 

induction motor drive (Kastha and Bose, 1994). They have studied rectifier diode 

short circuit; inverter transistor base driver open and inverter transistor short-circuit 

conditions. However, they do not propose to reconfigure the inverter topology.  

Was interested in fault tolerant control of induction motor drive applications using 

analytical redundancy, providing solutions to most frequent occurring faults (Thybo, 

2001).  

In Xu et al., (2008) have describing many methods used in detection, and they 

describe a technique of neural network with orthogonal basis functions based on 

recursion least square is utilized to transform signals in order to achieve harmonic 

characteristic for classifying fault type.  

Benslimane and Thameur, (2009) presents a fault diagnosis method based on 

classical currents measurements including combinatory logic to analyze and validate 

error signals. They demonstrate that a change in active filter signal waveform is 

defined as the instant at which a sudden increase or decrease is observed in the DC 

offset component of the signal. Fault detection is based on the calculation of zero 

harmonic components.  

Suggested the use of the average absolute values of current to detect faulty phase 

and faulty switches (Ubale et al., 2013).  

There are many works carried out on fault detection and diagnosis and they have 

tended to move from traditional techniques to artificial intelligence. A. Rohan and S. 

Ho Kim (Ali et al., 2016) have proposed to use Discrete wavelet transform (DWT) on 

the Clarke transformed (-) stator current and extracted features from the wavelets. An 

artificial neural network (ANN) is then used for the detection and identification of 
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single and multiple switching faults. In this paper, we explore a new technique for the 

open switch fault detection, applied on an UPQC system, based on SVPWM control 

strategy feeding a nonlinear load. The new approach of a fault diagnostic system is 

presented based on the use of ANN in order to automate the fault detection and 

localization. The features (Input data) of the ANN model are extracted from the 

variation of current and voltage signals, enables us to extract useful information 

related to the open- switch faults on UPQC system. The data extracted in Frequency 

domain are computed by FFT and in Time-domain by computing the skewness, for 

both healthy and faulty states to develop a very rich database. The database will be 

used to train the ANN model to detect and localize the inverter and the switch 

responsible of the fluctuations on the transmission line. 

2. Unified Power Quality Compensator (UPQC) 

The UPQC is a power electronic device, which is a combination of shunt and series 

compensators shown in Figure 1 (Singh et al., 2015). It is used to mitigate both load 

current as well as supply voltage imperfections. A UPQC works in simultaneous 

voltage and current control modes, it depends on the series and shunt APF controller 

at the same time. The purpose of the shunt device named the SHUNT APF, is to 

mitigate the current quality problems. It acts as a controlled current generator that 

compensated the load current and the source current drained from the network will 

become balanced, sinusoidal and in phase with the positive-sequence system voltages. 

It compensates reactive current of the load and improves power factor. The series 

component of the UPQC called the SERIES APF is responsible to provide a 

compensating voltage to keeps the load end voltage insensitive to the supply voltage 

quality problems such as sags/swells, flicker, voltage unbalance and harmonics. The 

SERIES APF inserts voltages between the supply and the consumer load to maintain 

the load voltages at a desired level (Singh et al., 2015; Anjali et al., 2010; Sandhya et 

al., 2010; Benachaiba et al., 2010; Aredes et al., 2003). 

 

Figure 1. General model of UPQC 
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3. Control strategies of the UPQC system  

The main objective of a control algorithm in the active power filters is to maintain 

a stable power quality under any disturbances. There are many control strategies 

reported in the literature to find out the reference values of the voltage and the current 

of UPQC. Most of the control algorithms used for the SHUNT APF and SERIES APF 

are applied to the UPQC. The Figure 2 shows the block diagram for control strategies 

of an UPQC system. These control algorithms are classified as time-domain and 

frequency-domain control algorithms. Some of them are as follows: The 

Instantaneous reactive power (PQ or α–β) theory, synchronous reference frame (SRF 

or d–q) theory, Artificial Neural network theory, fuzzy control algorithm and 

instantaneous symmetrical component theory... The SHUNT APF and SERIES APF 

are controlled separately for power quality enhancement in the current and voltage, 

respectively. The SHUNT APF and SERIES APF controller offer the advantage to 

mitigate the disturbance with precision, fast response, flexibility, robustness and ease 

implementation (Singh et al., 2015).  

 

Figure 2. Control strategies of the UPQC 

3.1. Estimation of reference voltage (Singh et al., 2015) 

The Instantaneous Reactive Power control algorithm of SHUNT APFs is shown 

in Figure 3. Three-phase load currents (iLa; iLb; iLc) and point of common coupling 

(PCC) voltages (vsa; vsb; vsc) are sensed and filtered.  These three-phase filtered load 

voltages and load currents are transformed into two-phase α–β orthogonal coordinates 

(vα, vβ) and (iLα, iLβ)   respectively as: 
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The calculation of instantaneous active and reactive power (pL, qL) as: 

(
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vβ −vα
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).                                       (3) 

The DC components of active and reactive powers are extracted by using two low-

pass filters (LPFs), and these quantities are processed to generate reference current 

commands isa
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These reference supply currents isa
∗ ; isb

∗ ; and isc
∗ , with the respective sensed supply 

currents (isa
∗ , isb

∗ , isc
∗ ) are fed to a current controller to generate the switching signals 

for controlling the APF and injecting the  appropriate current in the system to mitigate 

the power quality problems. the control algorithms to compute the voltage 

compensation reference vsa
∗ ; vsb

∗ ; and vsc
∗ , of the series active power filter are similar 

to the control algorithm of the shunt active power filter. The switching signals are 

generated by employing hysteresis, PWM, SVM or SVPWM current or voltage 

control. 

 

Figure 3. Instantaneous reactive power theory-based control algorithm of SHUNT 

APFs (Singh et al., 2015) 
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4. Fault diagnosis algorithm 

The basic architecture of the fault detection and localization system is shown in 

Figure 4. The proposed methodology for fault diagnosis is based on using ANN as a 

tool for detecting the exact time when the fault occurs and localize the opened switch 

responsible of the fault.  

The neural network approach has two phases; training and testing. Before the 

training phase, open single switch faults were created through simulation and features 

were computed and saved in the input database.  A second database was created 

named target outputs. The databases of inputs and target outputs determine the 

structure of the ANN model. In the training phase the ANN model is trained to learn 

the relationship between the inputs database and target outputs. In the test phase the 

ANN model is tested with a different and non-used input database. Once the networks 

are trained and tested, they are ready to identify and localize the open switch fault.  

 

Figure 4. Structure of fault detection and localization system 

4.1. Feature extraction 

For the UPQC system, a measurement of current and voltage must be done. 

Current sensors are used to measure the grid current and help to identify if the Active 

shunt compensator is damaged or no. The load voltage is measured to identify if the 

Active Series compensator is damaged or no. All of the features were chosen for their 

potential in discriminating between the different characteristics (frequency, 

amplitude, …) of a signal (current or voltage) in healthy or faulty state.  

A change in active filter signal waveform is defined as the instant at which a 

sudden increase or decrease is observed in the DC offset component of the signal. 
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Fault detection is based on the calculation of zero harmonic components (Benslimane 

and Thameur, 2009).  

To detect the change in signal waveform, the first feature computed is the 

maximum value of the magnitude of the Fast Fourier Transform (FFT) on the 

frequency domain (Shiuly et al., 2014). The second feature computed is the skewness 

in the time domain, because it represents the change of form occurred on the signal 

(Cohen, 2016).  

4.1.1. Fast fourier transform (FFT)  

The Fourier transform has been widely used in different applications of signal 

processing because it’s determined all frequencies of the signal and allow a better 

understanding of this signal very fast. It gives us a frequency-domain version of the 

signal (transforms a time domain signal into its frequency domain). The FFT is widely 

used in power electronics applications (estimate the reference currents, harmonic 

analysis, and so on) due to its functioning in the frequency domain. The Fast Fourier 

Transform (FFT) is a mathematical tool which computes the discrete Fourier 

transform (DFT). The discrete - time Fourier transform (DFT) is defined by (Shiuly 

et al., 2014), (Kumar et al., 2015): 

X(k) =  ∑ x(n). e−jnωkN−1
n=0 .                                (5) 

With  

ωk = 
2πk

N
, frequency of the kth sinusoid. 

The FFT is used to extract harmonic components, the function obtained by 

subtracting the DC and fundamental components from a non-sinusoidal periodic 

function. The magnitude and order of Fourier transform describes the signal (Singh et 

al., 2015). The equation of the magnitude It is given by the following expression: 

Magnitude[FFT(X)] =  √(real[FFT(X)]2 +  imag[FFT(X)]2)       (6) 

4.1.2. Skewness 

The skewness is a statistical tool used in time domain; it’s the third standardized 

moment. The skewness measures the asymmetry of the data around the mean value. 

Skewness checks the distributions with respect to a Gaussian one. The values of 

Skewness negative or positive indicate the data that are skewed left or right 

respectively. In the time domain analysis, the feature will be selected from skewness, 

defined as follows (Cohen, 2016), (Li and Wang, 2016):  

Skewness: 
∑ (xi−Ex)

3N
i=1

(N−1)ϑx
3 .                                         (7) 

With  

Energy:    Ex =  ∑ xi
2N

i=1 .                                         (8) 
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Where xi are data samples in a data set, i=1, 2, 3, …, N; and N is he size of the 

data set; Ex and ϑx are the mean and the standard deviation of the data set respectively.  

4.1.3. Artificial neural network model 

An Artificial neural network (ANN) is formed by mathematical model to simulate 

human brain process. It’s used in various fields, including pattern recognition, 

identification, classification, and control systems. The first step makes the best ANN 

model is to choose the Network Structure. This includes the selection of the features, 

the input, hidden and output layers and type of the transfer function used. The 

parameters of the ANN network (weights and biases) are determined based on a 

comparison of the output and the target, many such input/target pairs are needed to 

train a network until the network output matches the target (Devaraj et al., 2005), 

(Nahak et al., 2017). 

The multilayer perceptron neural network (MLP) is the most famous and used one, 

due to its powerful characteristics such as generalization, parallelism, and ease of use. 

A MLP is constituted generally three layers: an input layer, hidden layer and output 

layer. There are many different types and architectures of neural networks varying 

according to the training algorithm. The back-propagation learning algorithm which 

propagates the error from the output layer to the hidden layer to update the weight 

matrix is most commonly used for feed forward neural networks. The most frequently 

used training algorithm to resolve identification problem is the back-propagation 

algorithm based on the Levenberg–Marquardt (LM) algorithm (Qasim and Khadkikar, 

2014; Nahak et al., 2017).  

5. Simulation results and analysis  

To diagnose the inverter condition, the specific time and frequency domain 

features, skewness and maximum of the magnitude (FFT), are extracted.  

Table 1. Characteristics of the proposed ANN model 

Number of inputs 

nodes 
12 

3 nodes for FFT of SAPF 

3 nodes max (magnitude (FFT(ASAPF)) 

3 nodes for FFT of SERIES APF 

3 nodes max (magnitude (FFT(ASERIES 

APF)) 

Number of outputs 

nodes 
5 Target output = [X X X X X]; X= 0 or 1. 

Number of Hidden 

layers 
2  

Number of Hidden 

nodes 

Layer1: 7   

Layer2: 4 
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In this work we use an MLP trained with LM algorithm. The structure of the 

proposed ANN model is shown in table 1. The network consists of four layers, an 

input layer with twelve (12) neurons, extracted features are defined as input layers to 

the neural network algorithm. The features used correspond to the maxima of 

magnitude resulting from FFT (max (magnitude (Ia)), max (magnitude (Ib)), max 

(magnitude (Ic)), max (magnitude (Va)), max (magnitude (Vb)), and max (magnitude 

(Vc)). Two (02) hidden layers with seven (07) and four (04) neurons respectively, and 

one output layer with five (05) neurons corresponding to the state of the system, the 

filter damaged and the switch responsible of the fault. The target output for a healthy 

and faulty case is shown in Table 1. 

Table 2 presents the details of the best structure of the ANN model found for an 

automatic detection and localization of open switch fault occurred in UPQC system. 

The training data are applied with the corresponding Input/output data. The neural 

network model was trained using the back-propagation algorithm based on the 

Levenberg–Marquardt (LM) training algorithm. At the end of the training process, the 

model obtained consists of the optimal weight and the bias vector. The minimum 

performance gradient was set to 1.00 e−8 and training will stop when any one of these 

conditions are met: 

1) the maximum number of epochs = 10000; 

2) the mean square error = 0.001;  

3) the performance gradient <= 1.00 e−8. 

Table 2. The target output for healthy and faulty case 

1: for healthy state 

0: for fault state 

0: for SHUNT APF 

1: for SERIES APF 

0 0 1: T1 

0 1 0: T3 

0 1 1: T5 

1 0 1: T2 

1 1 0: T4 

1 1 1: T6 

 

The simulation deals with the technique of diagnosis and detection of open-circuit 

fault using the ANN algorithm in an UPQC system. The SHUNT APF and the 

SERIES APF devices are standard two-level inverters. The UPQC system has been 

simulated using the Matlab SIMULINK software for the healthy and the faulty cases. 

A single open switch fault is applied during tests (12 faults; 6 for SHUNT APF and 6 

for SERIES APF). The waveform of the healthy state and the FFT analysis of the 

phase (A) current and voltage are illustrated in Figure 5a and 6a respectively.  

The different waveforms of the load current for the phases (A, B, and C) after 

applying the open switch fault on T1, for the SHUNT APF are illustrated on figure 

5b, 5c and 5d respectively. The corresponding magnitude is computed using the FFT 

and is shown in the same figures. 
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(a) FFT of current Phase (A) healthy state 

 

(b) FFT of current Phase (A) open switch fault state in T1 

 

(c) FFT of current Phase (B) open switch fault state in T1 
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(d) FFT of current Phase (C) open switch fault state in T1 

Figure 5. Currents waveforms and FFT analysis: (a) phases A for healthy state, (b, 

c, d) phases (A, B, and C) for faulty open-circuit T1 

The voltages of the phases (A, B, and C) are measured and the FFT are computed 

the results are illustrated on the figures 6b, 6c and 6d. 

 

(a) FFT of voltage Phase (A) healthy state 

 

(b) FFT of voltage Phase (A) open switch fault state in T1 
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(c) FFT of voltage Phase (B) open switch fault state in T1 

 

(d) FFT of voltage Phase (C) open switch fault state in T1 

Figure 6. Voltages waveforms and FFT analysis of phases: (a) phases A for healthy 

state, (b, c, d) phases (A, B, and C) for faulty open-circuit T1 

5.1. Evaluation of performance 

In order to evaluate the performance of the classifier, the data collected were 

randomly divided into training and testing sets. Each dateset is divided in two types 

were: one is normal state (without a fault) and the other a faulty signal with an open 

switch fault. The performance of the ANN classifier can be determined by the 

computation of sensitivity, specificity and total classification accuracy (Sujatha BG et 

Anitha GS. 2016). The calculated statistical measures are shown in Table 3.  

• Sensitivity: number of true positive decisions divided by the number of actual 

positive cases; 

Sensitivity =  
TP

TP + FN
 x 100; 
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• Specificity: number of true negative decisions divided by the number of actual 

negative cases; 

Specificity =  
TN

TN + FP
 x 100; 

• Classification accuracy: number of correct decisions divided by the total number 

of cases. 

Accuracy =  
TN + TP

TN + TP + FN + FP
 x 100. 

Table 3. The values of the statistical parameters of the classifier ANN 

  Statistical parameters (%) 

State 
Desired result 

X= 0 or 1 
Sensitivity Specificity Accuracy 

Healthy 

SHUNT APF 

or 

SERIES APF 

1 X 0 0 1: T1 

1 X 0 1 0: T3 

1 X 0 1 1: T5 

1 X 1 0 1: T2 

1 X 1 1 0: T4 

1 X 1 1 1: T6 

96.98 97.13 97.35 

Faulty 

SHUNT APF 

0 0 0 0 1: T1 

0 0 0 1 0: T3 

0 0 0 1 1: T5 

0 0 1 0 1: T2 

0 0 1 1 0: T4 

0 0 1 1 1: T6 

96.20 97.01 97.6 

Faulty 

SERIES APF 

0 1 0 0 1: T1 

0 1 0 1 0: T3 

0 1 0 1 1: T5 

0 1 1 0 1: T2 

0 1 1 1 0: T4 

0 1 1 1 1: T6 

97.36 98.95 97.4 

 

The values of statistical parameters indicated that the ANN classifier model 

chosen had considerable success in the open switch fault detection and classification.  
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6. Conclusion 

The UPQC system is a complex system due to its complex architecture consisting 

of two independent inverters. The detection and localization of an open circuit faults 

becomes very difficult with conventional methods. The purpose of the research was 

to investigate the accuracy of an automatic diagnosis system, trained on the extracted 

features for detecting and localizing the fault. The ANN classifier showed a great 

performance to detect and localize an open switch fault on an UPQC system. 

Advantages of the proposed scheme its simplicity, modeling, and implementation. 

Finally, the diagnosis system based on the ANN classifier allow realizing a preventive 

maintenance and ensuring the safety of the material and the person by localizing the 

defective transistor and thus to allow its replacement or an alternative arm can be 

envisaged. 
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