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Intrusion Detection is a protection device that tracks and identifies inappropriate network 

behaviors. Several computer simulation methods for identifying network infiltrations 

have been suggested. The existing mechanisms are not adequate to cope with network 

protection threats that expand exponentially with Internet use. Unbalanced groups are one 

of the issues with datasets. This paper outlines the implementation and study on 

classification and identification of anomaly in different machine learning algorithms for 

network dependent intrusion. A number of balanced and unbalanced data sets are known 

as benchmarks for assessments by NSLKDD and CICIDS. For deciding the right range of 

options for app collection is the Random Forest Classifier. The chosen logistic regression, 

decision trees, random forest, naive bayes, nearest neighbors, K-means, isolation forest, 

locally-based outliers are a group of algorithms that have been monitored and 

unmonitored for their use. Results from implementations reveal that Random Forest beats 

the other approaches for supervised learning, though K-Means does better than others. 
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1. INTRODUCTION

The Intrusion Detection System (IDS) is a protection 

framework that track network activities to verify that network 

operation is natural. Intrusion Detection System (IDS) Based 

on the extent, then appropriate steps are taken. The IDS is 

graded as Missuse and Anomaly in machine-based learning. 

IDS focused on malfunctioning learns trends from computer 

processing. Anomaly-based IDS may detect actions that vary 

from standard network behaviour. IDS based on signature or 

maliciosis detects proven attacks only, but IDS based on 

abnormalities will detect new attacks not studied from 

modeling. In this article, the methods used for machine 

learning are: regression of logistics, decision trees, random 

woods, Naãive Bays, K-Nearest neighbors, K-means, 

insulation forest and local outlier variables. 

2. COMPARATIVE STUDY

This paper compares the following algorithms. 

2.1 Logistic regression 

It is a classification model that uses a logistic function to 

predict the probabilities of events with the data fit to it. It uses 

a sigmoid function to map predicted values to the probabilities. 

The logistic function is used by this model is represented by 

Eq. (1): 

log [
𝑝(𝑥)

1 − 𝑝(𝑥)
] =  𝛽0 + 𝑥𝛽 (1) 

To predict a class that data belongs to, this method uses a 

threshold value. Based on the predicted value greater than the 

threshold, it can be classified accordingly. 

2.2 Random forest 

This paper uses the Random Forest algorithm for 

classification. It builds a set of N decision trees, each 

associated with k random number of data samples. For a new 

sample, make each of the N trees predict the category to which 

the data point belongs and assign a new data point to the 

category that wins the majority vote. It is an ensemble method 

of learning, in which a strong learning group is created from a 

set of weak learners. 

2.3 Decision trees 

This paper uses Decision trees for classification. Decision 

trees split the data using if-then-else conditions of the features. 

The decision tree’s core components are a branch, a leaf node, 

and a decision node. Classification begins at the decision node, 

tests the features guided by that node, going down the tree at 

that point, then comparing the estimation of the features in the 

given sample. For attribute selection at each decision node, it 

uses one of the techniques called information gain using 

entropy, gini index. 

2.4 Naïve bayes 

Naive bayes method is based on applying Baye’s theorem, 

with the “naive” assumption of conditional independence 

between every pair of features given the value of the class 
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variable. We use the classification rule as Eq. (2): 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦  𝑝(𝑦) ∏ 𝑝(𝑥𝑖| 𝑦)

𝑛

𝑖=1

(2) 

The different naive Bayes classifiers differ by the 

distribution of probabilities P(xi | y). 

According to the Gaussian Naïve Bayes, the likelihood of 

the features is given by Eq. (3): 

𝑝(𝑥𝑖|𝑦) =
1

√(2𝜋𝜎𝑦
2)

exp (−
(𝑥𝑖 − 𝜇𝑦)

2

2𝜎𝑦
2

) (3) 

2.5 K-nearest neighbors 

In this, each time a new sample is to be classified, it 

computes k-instances that are nearest to the required one. The 

k-closest neighbors can be computed using one of the

Hamming distance, Minkowski, Euclidean distance,

Manhattan distance.

2.6 K-means 

K-means is an unsupervised learning method that involves

iterative calculations that tend to divide the dataset into K 

distinct clusters where each data point belongs to only one 

group. It first chooses k number of clusters and calculates k 

centroids and then assigns each data point to the closest 

centroid. Again compute the new centroid of each cluster and 

then reassign each data point to the nearest cluster centroid and 

repeat this process till convergence. 

2.7 Isolation forest 

Isolation forest, also called iForest, is an unsupervised 

learning algorithm that works to isolate anomalies that 

are ’few and different’ in the feature space compared to normal 

data points. iForest separates the samples by arbitrarily 

choosing an attribute and choosing a split value between the 

maximum and minimum estimations of that chosen attribute. 

This split relies upon to what extent it takes to isolate the points. 

Random partitioning of random trees in a forest produces 

shorter paths, they are considered as anomalies. 

2.8 Local outlier factor 

It is an anomaly detection method based on unsupervised 

learning that computes local density based on nearest 

neighbors. It compares local densities of the data points to the 

densities of its neighbors and identifies the outliers. 

The main aim of the paper is to study and summarise the 

work of intrusion detection models. The applications of deep 

learning in intrusion detection systems are specifically 

explored as follows: Restricted Boltzmann Machines and its 

variants, including Deep Belief Network (DBN) and Deep 

Boltzmann Machines (DBM), Convolutionary Neural 

Networks (CNN) and Recurrent Neural Networks, 

Autoencoder (AE) and its variants (RNN). The advantages are: 

DL-based MHMS does not require comprehensive knowledge

of human labour and experts. Deep learning model 

implementations are not limited to particular types of devices. 

The drawbacks are: DL-based MHMS efficiency depends 

heavily on the size and consistency of datasets. 

A major challenge for IDSs is the existing network traffic 

details, sometimes enormous in scale. Such big data slows 

down the entire detection process and, because of the 

computational difficulties in managing such data, may lead to 

unsatisfactory classification accuracy [1]. In IDS, machine 

learning technologies are typically used. Most conventional 

machine learning technologies, however, apply to shallow 

learning; they do not effectively solve the enormous problem 

of classification of intrusion data that occurs in the face of a 

real application environment for network applications. In 

addition, shallow learning with enormous data is incompatible 

with smart analysis and the predetermined criteria of high-

dimensional learning. 

In recent academic study, deep learning for network 

intrusion detection is one of the hot spots. The development of 

deep learning has been promoted with the enhancement of 

hardware computing power and the rapid growth of data 

volume, so that the practicality and popularity of deep learning 

have improved greatly [2]. Deep learning is a technique of 

machine learning designed to allow artificial intelligence to 

enhance computer systems through experience and data. In 

order to classify data learning, deep learning uses several 

nonlinear feature transformations, i.e. processing layers 

generated by multilayer perception mechanisms [3]. Computer 

vision [4], speech recognition [5], natural language processing 

[6], biomedicine [7], and malicious code detection [8], as well 

as several other fields, have been applied to deep learning. 

Studies on deep learning in network security have steadily 

appeared since 2015, drawing broad interest from academic 

circles. Deep learning is widely used mostly for malware 

detection and network intrusion detection in the two main 

areas of network security, and deep learning increases 

detection performance compared to conventional machine 

learning and decreases false positives [9]. Deep learning 

algorithms, however, get rid of the reliance on feature 

engineering and are able to identify attack features 

intelligently, helping to identify possible security threats [10]. 

Detection of network intrusion is one of the essential means 

of security protection for securing computer systems and 

networks. A hot topic of recent academic research is deep 

learning for network intrusion detection, and several 

literatures have suggested the efficient application of deep 

learning technology to solve problems with network intrusion 

detection [11, 12]. At present, the experimental results of deep 

learning detection of network intrusion are mostly 

differentiated between regular and attack, and there is no 

differentiation between attack types. The next focus is on 

several widely used deep learning models for intrusion 

detection of multiclassification networks: deep neural 

networks, recursive neural networks, and networks of deep 

belief. 

3. RELATED WORK

The section presents various works carried out by some of 

the authors on NSL-KDD and CICIDS in the form of Table 1. 
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Table 1. Previous works related to CICIDS and NSLKDD datasets 

Author Year Dataset 
Feature Selection 

method used 
Classification model used 

Performance of the 

model 

Hakim and Fatma 

[1] 
2019 NSL-KDD 

Information Gain, 

Gain Ratio, ReliefF 

selection, Chisquare, 

J48, Random Forest, Naïve 

Bayes, KNN 

Performance is significant 

though there is a slight 

drop in accuracy 

Patgiri et al. [2] 2018 NSL-KDD 
Recursive Feature 

Elimination (RFE). 

Random Forest Support Vector 

Machine 
SVM outperforms RF. 

Belavagi et al. [3] 2016 NSL-KDD - 

Random Forest, Support Vector 

Machine, Gaussian Naive Bayes, 

LogisticRegression 

RF outperforms other 

methods 

Pattawaro et al. [4] 2018 NSL-KDD Attribute ratio K-Means, XGBoost

Accuracy-84.41% 

Detection rate - 86.36% 

false alarm rate - 18.20% 

Aung et al. [5] 2018 KDD 99 - k-means - 

Pervez et al. [6] 2014 NSL-KDD 

Merge of feature 

selection and 

classification 

SVM 91% to 99% accuracy 

Mashayak et al. [7] 2019 NSL-KDD 
Recursive Feature 

Elimination 
Decision Tree, Random Forest Accuracy 99% 

Abdulhammed et al. 

[8] 
2019 

CICIDS 

2017 

Dimensionality 

Reduction using Auto 

Encoder, PCA 

Random Forest, Bayesian 

network, 

LDA, QDA 

- 

Desale et al. [9] 2015 NSL-KDD Genetic Algorithm Naive Bayes and J48 - 

Meira et al. [10] 2018 
NSL-KDD, 

ISCX 
- 

Nearest Neighbors, K-means, 

Auto Encoder, 

Isolation Forest 

Accuracy 60% 

4. METHODOLOGY

4.1 Experiment steps for supervised learning 

The experiment is carried out using the steps given below: 

“Data set selection, Data preprocessing, Feature Selection 

using Random Forest, Build the models using selected features, 

Train the models, Test the models, Compare the performance 

of the models”. 

Data sets selection: 

In this paper, the authors have used NSL-KDD and 

CICIDS-2017 datasets as benchmark datasets as the IDS 

research community already adopts these datasets. NSL-KDD 

is selected because it is the traditional one, and CICIDS-2017 

is selected because it is the dataset with all types of up-to-date 

attacks. NSL-KDD is the improved version of KDD-CUP-99, 

an acronym for Knowledge Discovery in Databases. CIC-IDS-

2017 dataset is developed by Canadian Institute for 

Cybersecurity. 

NSLKDD [13] and CICIDS [14] are used for binary 

classification. The data proportions for binary classes (normal 

and attack data) identifies that NSLKDD is almost balanced 

and CICIDS is imbalanced. 

Data Preprocessing: 

Preprocessing is a crucial phase in which raw data can be 

transformed into a standardized format. It includes data 

cleaning (handling null or missing values, deleting unneeded 

variables, handling categorical values), data normalization or 

scaling, data balancing, separating target variables, and 

splitting data into train and test. 

Feature Selection:  

In data preprocessing, the number of features may increase 

if we apply one-hot encoding for categorical columns. Even 

otherwise, selecting a subset of features from the existing 

features plays a vital role because it affects the performance of 

the model.  

Random Forest with feature importance is used for feature 

selection. Random Forest uses ensemble learning by 

combining a set of Decision Trees with controlled variance. 

Majority voting can be used for deciding the predictions. As 

the number of trees increases, the model variance decreases. 

Random Forests are resistant to overfitting. Because of all 

these reasons, Random Forests are chosen for feature selection. 

A random forest classifier with a threshold of 0.01 is chosen 

for selecting features.  

Build the models using selected features: 

With the subset of features selected in the previous step, the 

following models are built. Logistic Regression, Random 

Forest, Decision Tree, Gaussian Naive Bayes, K- Nearest 

Neighbors.  

Train the models: 

Having the features selected for our dataset, the models can 

be trained using the train data. 

Test the models: Here we use the test data to predict the 

labels in it and evaluate the performance metrics. 

Compare the performance metrics of the models: 

The performance metrics used to evaluate the models for 

prediction are the Confusion matrix, F1-Score, Precision, 

Recall, Area under ROC curve, and Accuracy. 

4.1.1 Supervised learning using NSL-KDD dataset 

This dataset has 41 feature columns and one label column. 

The 41 features are grouped into three categories: basic 

features related to TCP/IP connections, traffic features 

associated with the service or host, and content features 

extracted from packet contents. There are five different types 

of labels that categorizing the data as normal or attack. The 

attacks are classified into four types: DOS, Probing, U2R, R2L. 

DOS: To make the network resources unavailable to the 

user. 

Probing: To explore the fragility in the network that can lead 

to attacks. 
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U2R: Invader that has user privileges but trying to get admin 

privileges.  

R2L: Invader that has illegitimate access to the remote 

system. 

In this paper, binary classification of the data as normal or 

attack is used. The authors have used KDDTrain+ and 

KDDTest+ datasets for implementation. KDDTrain+ has 

125973 samples and KDDTest+ has 22544 samples. 

Data Preprocessing: 

Preprocessing includes the following steps. 

1. In NSL-KDD dataset, there are no null values or missing 

values. 

2. All the values of the column, num_outbound_cmds 

contain zero for all the rows. So it is deleted because it does 

not affect the performance. 

3. There are three categorical values protocol type, service, 

flag. One hot encoding is applied for categorical features of 

both train and test datasets. For protocol type, there are three 

unique values in train and test data sets. There are 70 unique 

values in the train data set and 64 unique values in the test data 

set for service. For the flag, there are 11 unique values for train 

and test datasets. All the protocol type and flag categorical 

values are one-hot encoded. All the 70 categories in the train 

data set and 64 categories in the test dataset are one-

hotencoded for service. The remaining six categories that are 

missing in the test dataset are filled with zeros. 

4. The target label ‘class’ is encoded as 0 for normal data 

and 1 for attack data using Label Encoder. 

5. All the one-hot encoded data is scaled to put them in the 

range between 0 and 1. Standard Scaler is used for this purpose. 

6. For binary classification, data is almost balanced, so no 

resampling techniques are used. Data balancing is identified as 

shown in Figure 1. 

class 0: normal: 6734333  

class 1: anomaly: 5863034  

Proportion: 1.15:1 

After completing the data preprocessing step, the shapes of  

train and test data are: 

Train shape: (125973, 121) 

Test shape: (22544, 121) 

Feature Selection: 

The authors have chosen the Random Forest classifier for 

feature selection. Out of 121 features, 26 features are selected 

based on the threshold value of feature importance 0.01. Due 

to this, the data set size is reduced to 

Train shape: (125973, 26) 

Test shape: (22544, 26) 

The selected features include:  

[protocol_type_icmp, protocol_type_tcp, service_ecr_i, 

service_http, service_private, flag_S0, flag_SF, 

srv_serror_rate, same_srv_rate, diff_srv_rate, 

dst_host_count, dst_host_srv_count, srv_count, 

dst_host_rerror_rate, dst_host_srv_rerror_rate, 

dst_host_srv_diff_host_rate, dst_host_same_srv_rate, 

logged_in, dst_host_serror_rate, count, src_bytes, dst_bytes, 

dst_host_diff_srv_rate, dst_host_srv_serror_rate, 

dst_host_same_src_port_rate, serror_rate] 

Build the models using selected features:  

All the models ‘Logistic Regression, Random Forest, 

Decision Tree, Gaussian Naive Bayes, K- Nearest Neighbors’ 

are implemented using the subset of 26 features selected out 

of 121 features. 

Train the models:  

All the models are trained using the train data as 

for cls in classifiers: 

trained_model=cls.fit(X_train, Y_train) 

Test the models:  

The models are tested with test data as 

Y_pred = trained_model.predict(X_test) 
 

 
 

Figure 1. Data balancing for NSL-KDD 

 

 
 

Figure 2. ROC Curve for supervised learning with NSLKDD 

dataset 

 

Table 2. Results of supervised learning with random forest feature selection using NSL-KDD 
 

Model Accuracy F1 Score Precision Recall AUC Confusion matrix 

Logistic Regression 0.722453 0.740513 0.619913 0.9 19369 0.853823 
[[7359   5474] 

[783    8928]] 

Decision Tree 0.754524 0.772488 0.642920 0.967459 0.780515 
[[7615   5218] 

[316     9395]] 

Random Forest 0.765037 0.780925 0.652543 0.972196 0.948926 
[[7806   5027] 

[ 270   9441]] 

Gaussian NB 0.743390 0.744738 0.651559 0.869014 0.819417 
[[8320   4513] 

[1272   8439]] 

K-Nearest Neighbors 0.764105 0.778545 0.653569 0.962619 0.809692 
[[7878   4955] 

[363   9348]] 
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Compare the performance metrics of the models: 

The models are tested with test data and the results are given 

in Table 2. 

ROC curve for supervised learning using NSL-KDD: 

ROC curve for supervised learning is obtained as shown in 

Figure 2. The curve indicates that Random forest occupies 

more area. 

 

4.1.2 Supervised learning using CICIDS-2017 dataset 

The dataset is available in two formats: PCAP files and CSV 

files. The authors have used CSV files for implementing their 

models. All these files are combined to form 78 feature 

columns and one label column. There are 15 different types of 

attacks. They are ‘BENIGN, DoS slowloris, DoS Slowhttptest, 

DoS Hulk, DoS GoldenEye, Heartbleed, PortScan, DDoS, 

FTP-Patator, SSH-Patator, DoS Slow HTTP Test, Bot, Web 

Attack-Brute Force, Web Attack- XSS, Infiltration, Web 

Attack-Sql Injection’. Authors have used binary classification 

to identify the traffic as normal or attack. 

Data Preprocessing: Preprocessing includes the following 

steps. 

1. CICIDS dataset contains infinity values and null values. 

Infinity values are replaced with NaN values. All null values 

are replaced with the mean of the column containing the null 

value. 

2. Eight columns are containing 0 for all the rows. The 

columns are: 

[Bwd PSH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk, 

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd12 Avg 

Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate] 

The above features are deleted as they do not affect the 

performance. 

3. There are no categorical values in the dataset. 

4. The target label ‘Label’ is encoded as zero for normal 

data and one for attack data using Label Encoder. Target labels 

are separated from the remaining features. 

5. The data is scaled to put it in the range between 0 and 1. 

Standard Scaler is used for this purpose. 

6. Data is identified as imbalanced for binary classification 

as shown in Figure 3.  

 

 
 

Figure 3. Data balancing for CICIDS dataset 

 

Date shape: (2830743, 70) 

class 0: Benign: 2273097 

class 1: Anomaly: 557646 

Proportion: 4.08: 1 

7. The data is split into train data and test data. The test data 

size is 25% of the total data. After the data split, the size of the 

train and test data is: 

Train_X shape: (2123057, 70) 

Test_X shape: (707686, 70) 

Train_y shape: (2123057,) 

Test_y shape: (707686,) 

8. A ‘Near Miss Under sampling’ technique is used for 

resampling the train data. Using this technique train data is  

resampled to the average of the total samples, the reason 

behind that is, if we use near-miss under sampling to resample 

to the number of samples in the minority class, the data may 

cause underfitting. 

Before Under Sampling, counts of label ‘1’: 418679 

Before UnderSampling, counts of label ‘0’: 1704378 

After UnderSampling, counts of label ‘1’: 418679 

After UnderSampling, counts of label ‘0’: 675288 

After UnderSampling, the shape of train_X: (1093967, 70) 

After UnderSampling, the shape of train_y: (1093967,) 

Feature selection: 

Random Forest classifier is used for feature selection. Out 

of 70 features, 27 features are selected based on the threshold 

value of feature importance 0.01. Because of this, the data set 

size is reduced to 

Train_X shape: (1093967, 27) 

Test_X shape: (707686, 27). 

The selected features include: 

[Destination Port, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Fwd Packet Length 

Max, Fwd Packet Length Mean, Bwd Packet Length Max, 

Bwd Packet Length Min, Bwd Packet Length Mean, Bwd 

Packet Length Std, Flow Packets/s, Flow IAT Max, Fwd 

Packets/s, Max Packet Length, Packet Length Mean, Packet 

Length Std, Packet Length Variance, Average Packet Size, 

Avg Fwd Segment Size, Avg Bwd Segment Size, Subflow 

Fwd Packets, Subflow Fwd Bytes, Subflow Bwd Packets, Init 

Win bytes forward, Init Win bytes backward, act data pkt fwd, 

Idle Max]. 

Build the models using selected features: 

All the models “Logistic Regression, Random Forest, 

Decision Tree, Gaussian Naive Bayes, K- Nearest Neighbors” 

are implemented using the subset of 27 features selected out 

of 70 features. 

Train the models: 

All the models are trained using the train data. 

for cls in classifiers: 

trained_model = cls.fit(train_X, train_y) 

Test the models: 

The models are tested with test data as 

Y_pred = trained_model.predict(test_X) 

Compare the performance metrics of the models: 

The models are tested with test data and the results are given 

in Table 3. 

ROC curve for supervised learning using CICIDS data 

set: 

ROC curve is obtained as shown in Figure 4. The curve 

indicates that Random forest occupies more area under curve. 

Hyper parameters used with the models in supervised 

learning: 

Hyper parameters used in the supervised learning 

algorithms are given in Table 4. 

 

 

 

55



 

Table 3. Results of supervised learning with random forest feature selection using CICIDS 

 
Model Accuracy F1 Score Precision Recall AUC Confusion matrix 

Logistic Regression 0.823021 0.592122 0.540815 0.654184 0.897242 
[[491531   77188] 

[48057    90910]] 

Decision Tree 0.891597 0.774368 0.654829 0.947296 0.910645 
[[499328   69391] 

[7324    131643]] 

Random Forest 0.937743 0.841484 0.841460 0.841509 0.986115 
[[546686   22033] 

[22025   116942]] 

Gaussian NB 0.696664 0.3792802 0.317034 0.471939 0.766184 
[[427436 141283] 

[73383  65584]] 

K-Nearest Neighbors 0.906897 0.805871 0.682306 0.984089 0.950408 
[[505043    63676] 

[2211    136756]] 

 
 

Figure 4. ROC Curve for supervised learning with CICIDS 

 

Table 4. Hyper parameters used in supervised learning 

 
Model Hyper parameters used 

Logistic Regression 

C = 1.0, 

Penalty = ‘L2’ 

Solver = ‘lbfgs’ 

Decision Tree Criterion = ‘gini’ 

Random Forest n_estimators = 100 

K-Nearest Neighbors 

n_jobs = -1, 

algorithm = ‘auto’ 

metric = ‘minkowski’ 

 

 

4.2 Experiment steps for unsupervised learning: 

 

The steps used for the experiment are given in below.  

“Data set selection, Data preprocessing, Select the model 

for anomaly detection, Classification results”. 

 

4.2.1 Unsupervised learning using NSL-KDD dataset 

After data preprocessing (as with supervised learning), 

unsupervised learning models: K-means, Isolation Forest, 

Local outlier factor are selected for the identification of 

clusters and anomaly detection. After processing is done 

results are obtained as given in Table 5 and Table 6. 

 

4.2.2 Unsupervised learning using CICIDS dataset 

As part of data preprocessing, infinity columns are replaced 

with NaN. All null values are replaced with the mean of their 

corresponding columns. The columns with all zero values are 

deleted. Data normalization is done to set the data values 

between 0 and 1. All target labels are encoded as 0 for normal 

and 1 for attack data. All target labels are separated from the 

remaining independent variables. We need to feed these 

independent features to the models to learn the patterns and to 

prepare clusters. The number of clusters is taken as 

two.Predicted labels are compared with actual labels, and 

results obtained are given in Table 7 and Table 8.  

Hyper parameters used with the models in unsupervised 

learning. Hyper parameters used in the unsupervised learning 

algorithms are given in Table 9. 

 

Table 5. Results of unsupervised learning using NSL-KDD 

 
Model Clusters Accuracy Precision Recall F1 Score Contingency matrix 

K-Means 

[0,1] 

0 normal 

1 anomaly 

0.88 
[0.99,0.82] 

 
[0.76,0.99] [0.86,0.89] 

[54185   17278] 

[757    76297]] 

Isolation Forest 

[-1,1] 

1 normal 

-1 anomaly 

0.56 [0.73,0.55] [0.15,0.95] [0.25,0.69] 
[10777    60686] 

[4075    72979]] 

Local outlier factor 

[-1,1] 

1 normal 

-1 anomaly 

0.49 [0.34,0.50] [0.07,0.87] [0.12,0.64] 
[5041   66422] 

[9811   67243]] 

 

Table 6. Results of unsupervised learning using NSL-KDD 

 

Model 
Adjusted random 

score 

Adjusted mutual info 

score 

Homogeneity 

score 

Complete-ness 

score 
V_measure 

Fowlkes 

mallows 

score 

K-Means 0.5732 0.5389 0.52588 0.55262 0.53892 0.79415 

Isolation Forest 0.0154 0.0268 0.0197 0.04202 0.0268 0.64678 

Local outlier 

factor 
-0.00020 0.00895 0.00658 0.01402 0.0089 0.64068 

 

56



 

Table 7. Results of unsupervised learning using CICIDS 

 
Model Clusters Accuracy Precision Recall F1 Score Contingency matrix 

K-Means 

[0,1] 

0-normal 

1-anomaly 

0.79 [0.84,0.46] [0.91,0.31] [0.88,0.37] 
[2078680  194417] 

[389423   168223]] 

Isolation Forest 

[-1,1] 

1-normal 

-1-anomaly 

0.79 [0.45,0.83] [0.23,0.93] [0.30,0.88] 
[126033    431613] 

[157042   2116055]] 

Local Outlier factor 

[-1,1] 

1-normal 

-1-anomaly 

0.56 [0.55,0.73] [0.07,0.95] [0.24,0.68] 
[10477    60486] 

[4099    72999]] 

 

Table 8. Results of unsupervised learning using CICIDS 

 

Model 
Adjusted random 

score 

Adjusted mutual info 

score 

Homogen-eity 

score 

Complete-ness 

score 
Vmeasure 

Fowlkes 

mallows 

score 

K-Means 0.1781 0.0628 0.0556 0.07216 0.06285 0.77735 

Isolation Forest 0.1387 0.0439 0.03634 0.0554 0.04391 0.78415 

Local Outlier 

factor 
0.0147 0.02468 0.0187 0.04102 0.02652 0.6366 

 

Table 9. Hyper parameters used with the models in 

unsupervised learning 

 
Model Hyper parameters used 

K-Means 
init = ‘k-means++’ 

n_clusters = 2 

Isolation Forest n_estimators=100, contamination=0.1 

Local Outlier Factor contamination='auto', n_jobs= -1 

 

 

5. RESULTS AND DISCUSSIONS 

 

In supervised learning, with the NSL-KDD dataset, among 

all the models that are used, Random forest and K-NN are 

showing better performance than other models with an 

accuracy of 76%. For all the models, recall values are higher 

than precision values, which means that false negatives are 

lesser than false positives. From a network security 

perspective, it is required to have a less false-negative rate. 

With the CICIDS dataset, the Random forest outperforms 

other models with an accuracy of 93%. Precision and recall 

values are almost the same for the random forest. Also, it 

occupies more area in the ROC curve plot. After Random 

forest, KNN and Decision Tree algorithms show better 

performance. The metrics accuracy, precision, recall, f1 score, 

confusion matrix, classification report are evaluated and 

presented in the tables. In unsupervised learning, with NSL-

KDD and CICIDS datasets, K-means is showing better 

accuracy. However, the problem observed is that it depends on 

the random seed. The best accuracy observed is 88% with 

NSL-KDD and 79% with CICIDS. A new column is added 

with the actual labels [0, 1] changed to [1, -1] in both the 

datasets, comparing the outlier labels with the actual labels and 

then evaluating all the metrics for Isolation forest and Local 

outlier factor algorithms. The outliers are represented with a 

negative one value. Vmeasure is the harmonic mean of 

homogeneity and completeness score. Fowlkes mallows score 

is the geometric mean of pairwise precision and recall values. 

The Adjusted random score, adjusted mutual info score, 

Homogeneity score, Completeness score, Vmeasure, and 

Fowlkes mallows score are used for internal evaluation based 

on the data [15]. Other metrics accuracy, precision, recall, and 

f1 score are used for external evaluation to quantify the quality 

of predictions. 

 

 

6. CONCLUSION 

 

This paper presents a comparative study of supervised and 

unsupervised algorithms using NSL-KDD and CICIDS 

datasets. For supervised learning, a random forest is used for 

feature selection. The threshold value of 0.01 for feature 

importance is used for feature selection in training and testing. 

Using these features, the models are evaluated for both the 

datasets. With CICIDS, since the data is imbalanced, Near 

Miss under-sampling is used for balancing the data. The result 

of this under-sampling data with the selected features using 

random forest, the models are evaluated and quantified the 

predictions. Unsupervised learning models are used for 

clustering and anomaly detection. With supervised learning, 

Random forest and KNN are performs better than other 

algorithms. With unsupervised learning, K-Means performs 

better. 
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