
Intrusion Detection Models Using Supervised and Unsupervised Algorithms - A

Comparative Estimation

Aswadati Sirisha1*, Kosaraju Chaitanya2, Komanduri Venkata Sesha Sai Rama Krishna2, Satya Sandeep Kanumalli2

1 Department of IT, Vignan's Institute of Information and Technology, Duvvada 530046, Andhra Pradesh, India
2 Department of CSE, Vignan’s Nirula Institute of Technology & Science for Women, Peda Palakaluru, Guntur 522009,

Andhra Pradesh, India

Corresponding Author Email: sirishavignan1@gmail.com

https://doi.org/10.18280/ijsse.110106 ABSTRACT

Received: 31 July 2020

Accepted: 3 January 2021

Intrusion Detection is a protection device that tracks and identifies inappropriate network

behaviors. Several computer simulation methods for identifying network infiltrations

have been suggested. The existing mechanisms are not adequate to cope with network

protection threats that expand exponentially with Internet use. Unbalanced groups are one

of the issues with datasets. This paper outlines the implementation and study on

classification and identification of anomaly in different machine learning algorithms for

network dependent intrusion. A number of balanced and unbalanced data sets are known

as benchmarks for assessments by NSLKDD and CICIDS. For deciding the right range of

options for app collection is the Random Forest Classifier. The chosen logistic regression,

decision trees, random forest, naive bayes, nearest neighbors, K-means, isolation forest,

locally-based outliers are a group of algorithms that have been monitored and

unmonitored for their use. Results from implementations reveal that Random Forest beats

the other approaches for supervised learning, though K-Means does better than others.

Keywords:

data balancing, intrusion detection, machine

learning, supervised learning, unsupervised

learning

1. INTRODUCTION

The Intrusion Detection System (IDS) is a protection

framework that track network activities to verify that network

operation is natural. Intrusion Detection System (IDS) Based

on the extent, then appropriate steps are taken. The IDS is

graded as Missuse and Anomaly in machine-based learning.

IDS focused on malfunctioning learns trends from computer

processing. Anomaly-based IDS may detect actions that vary

from standard network behaviour. IDS based on signature or

maliciosis detects proven attacks only, but IDS based on

abnormalities will detect new attacks not studied from

modeling. In this article, the methods used for machine

learning are: regression of logistics, decision trees, random

woods, Naãive Bays, K-Nearest neighbors, K-means,

insulation forest and local outlier variables.

2. COMPARATIVE STUDY

This paper compares the following algorithms.

2.1 Logistic regression

It is a classification model that uses a logistic function to

predict the probabilities of events with the data fit to it. It uses

a sigmoid function to map predicted values to the probabilities.

The logistic function is used by this model is represented by

Eq. (1):

log [
𝑝(𝑥)

1 − 𝑝(𝑥)
] = 𝛽0 + 𝑥𝛽 (1)

To predict a class that data belongs to, this method uses a

threshold value. Based on the predicted value greater than the

threshold, it can be classified accordingly.

2.2 Random forest

This paper uses the Random Forest algorithm for

classification. It builds a set of N decision trees, each

associated with k random number of data samples. For a new

sample, make each of the N trees predict the category to which

the data point belongs and assign a new data point to the

category that wins the majority vote. It is an ensemble method

of learning, in which a strong learning group is created from a

set of weak learners.

2.3 Decision trees

This paper uses Decision trees for classification. Decision

trees split the data using if-then-else conditions of the features.

The decision tree’s core components are a branch, a leaf node,

and a decision node. Classification begins at the decision node,

tests the features guided by that node, going down the tree at

that point, then comparing the estimation of the features in the

given sample. For attribute selection at each decision node, it

uses one of the techniques called information gain using

entropy, gini index.

2.4 Naïve bayes

Naive bayes method is based on applying Baye’s theorem,

with the “naive” assumption of conditional independence

between every pair of features given the value of the class

International Journal of Safety and Security Engineering
Vol. 11, No. 1, February, 2021, pp. 51-58

Journal homepage: http://iieta.org/journals/ijsse

51

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.110106&domain=pdf

variable. We use the classification rule as Eq. (2):

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑝(𝑦) ∏ 𝑝(𝑥𝑖| 𝑦)

𝑛

𝑖=1

(2)

The different naive Bayes classifiers differ by the

distribution of probabilities P(xi | y).

According to the Gaussian Naïve Bayes, the likelihood of

the features is given by Eq. (3):

𝑝(𝑥𝑖|𝑦) =
1

√(2𝜋𝜎𝑦
2)

exp (−
(𝑥𝑖 − 𝜇𝑦)

2

2𝜎𝑦
2

) (3)

2.5 K-nearest neighbors

In this, each time a new sample is to be classified, it

computes k-instances that are nearest to the required one. The

k-closest neighbors can be computed using one of the

Hamming distance, Minkowski, Euclidean distance,

Manhattan distance.

2.6 K-means

K-means is an unsupervised learning method that involves

iterative calculations that tend to divide the dataset into K

distinct clusters where each data point belongs to only one

group. It first chooses k number of clusters and calculates k

centroids and then assigns each data point to the closest

centroid. Again compute the new centroid of each cluster and

then reassign each data point to the nearest cluster centroid and

repeat this process till convergence.

2.7 Isolation forest

Isolation forest, also called iForest, is an unsupervised

learning algorithm that works to isolate anomalies that

are ’few and different’ in the feature space compared to normal

data points. iForest separates the samples by arbitrarily

choosing an attribute and choosing a split value between the

maximum and minimum estimations of that chosen attribute.

This split relies upon to what extent it takes to isolate the points.

Random partitioning of random trees in a forest produces

shorter paths, they are considered as anomalies.

2.8 Local outlier factor

It is an anomaly detection method based on unsupervised

learning that computes local density based on nearest

neighbors. It compares local densities of the data points to the

densities of its neighbors and identifies the outliers.

The main aim of the paper is to study and summarise the

work of intrusion detection models. The applications of deep

learning in intrusion detection systems are specifically

explored as follows: Restricted Boltzmann Machines and its

variants, including Deep Belief Network (DBN) and Deep

Boltzmann Machines (DBM), Convolutionary Neural

Networks (CNN) and Recurrent Neural Networks,

Autoencoder (AE) and its variants (RNN). The advantages are:

DL-based MHMS does not require comprehensive knowledge

of human labour and experts. Deep learning model

implementations are not limited to particular types of devices.

The drawbacks are: DL-based MHMS efficiency depends

heavily on the size and consistency of datasets.

A major challenge for IDSs is the existing network traffic

details, sometimes enormous in scale. Such big data slows

down the entire detection process and, because of the

computational difficulties in managing such data, may lead to

unsatisfactory classification accuracy [1]. In IDS, machine

learning technologies are typically used. Most conventional

machine learning technologies, however, apply to shallow

learning; they do not effectively solve the enormous problem

of classification of intrusion data that occurs in the face of a

real application environment for network applications. In

addition, shallow learning with enormous data is incompatible

with smart analysis and the predetermined criteria of high-

dimensional learning.

In recent academic study, deep learning for network

intrusion detection is one of the hot spots. The development of

deep learning has been promoted with the enhancement of

hardware computing power and the rapid growth of data

volume, so that the practicality and popularity of deep learning

have improved greatly [2]. Deep learning is a technique of

machine learning designed to allow artificial intelligence to

enhance computer systems through experience and data. In

order to classify data learning, deep learning uses several

nonlinear feature transformations, i.e. processing layers

generated by multilayer perception mechanisms [3]. Computer

vision [4], speech recognition [5], natural language processing

[6], biomedicine [7], and malicious code detection [8], as well

as several other fields, have been applied to deep learning.

Studies on deep learning in network security have steadily

appeared since 2015, drawing broad interest from academic

circles. Deep learning is widely used mostly for malware

detection and network intrusion detection in the two main

areas of network security, and deep learning increases

detection performance compared to conventional machine

learning and decreases false positives [9]. Deep learning

algorithms, however, get rid of the reliance on feature

engineering and are able to identify attack features

intelligently, helping to identify possible security threats [10].

Detection of network intrusion is one of the essential means

of security protection for securing computer systems and

networks. A hot topic of recent academic research is deep

learning for network intrusion detection, and several

literatures have suggested the efficient application of deep

learning technology to solve problems with network intrusion

detection [11, 12]. At present, the experimental results of deep

learning detection of network intrusion are mostly

differentiated between regular and attack, and there is no

differentiation between attack types. The next focus is on

several widely used deep learning models for intrusion

detection of multiclassification networks: deep neural

networks, recursive neural networks, and networks of deep

belief.

3. RELATED WORK

The section presents various works carried out by some of

the authors on NSL-KDD and CICIDS in the form of Table 1.

52

Table 1. Previous works related to CICIDS and NSLKDD datasets

Author Year Dataset
Feature Selection

method used
Classification model used

Performance of the

model

Hakim and Fatma

[1]
2019 NSL-KDD

Information Gain,

Gain Ratio, ReliefF

selection, Chisquare,

J48, Random Forest, Naïve

Bayes, KNN

Performance is significant

though there is a slight

drop in accuracy

Patgiri et al. [2] 2018 NSL-KDD
Recursive Feature

Elimination (RFE).

Random Forest Support Vector

Machine
SVM outperforms RF.

Belavagi et al. [3] 2016 NSL-KDD -

Random Forest, Support Vector

Machine, Gaussian Naive Bayes,

LogisticRegression

RF outperforms other

methods

Pattawaro et al. [4] 2018 NSL-KDD Attribute ratio K-Means, XGBoost

Accuracy-84.41%

Detection rate - 86.36%

false alarm rate - 18.20%

Aung et al. [5] 2018 KDD 99 - k-means -

Pervez et al. [6] 2014 NSL-KDD

Merge of feature

selection and

classification

SVM 91% to 99% accuracy

Mashayak et al. [7] 2019 NSL-KDD
Recursive Feature

Elimination
Decision Tree, Random Forest Accuracy 99%

Abdulhammed et al.

[8]
2019

CICIDS

2017

Dimensionality

Reduction using Auto

Encoder, PCA

Random Forest, Bayesian

network,

LDA, QDA

-

Desale et al. [9] 2015 NSL-KDD Genetic Algorithm Naive Bayes and J48 -

Meira et al. [10] 2018
NSL-KDD,

ISCX
-

Nearest Neighbors, K-means,

Auto Encoder,

Isolation Forest

Accuracy 60%

4. METHODOLOGY

4.1 Experiment steps for supervised learning

The experiment is carried out using the steps given below:

“Data set selection, Data preprocessing, Feature Selection

using Random Forest, Build the models using selected features,

Train the models, Test the models, Compare the performance

of the models”.

Data sets selection:

In this paper, the authors have used NSL-KDD and

CICIDS-2017 datasets as benchmark datasets as the IDS

research community already adopts these datasets. NSL-KDD

is selected because it is the traditional one, and CICIDS-2017

is selected because it is the dataset with all types of up-to-date

attacks. NSL-KDD is the improved version of KDD-CUP-99,

an acronym for Knowledge Discovery in Databases. CIC-IDS-

2017 dataset is developed by Canadian Institute for

Cybersecurity.

NSLKDD [13] and CICIDS [14] are used for binary

classification. The data proportions for binary classes (normal

and attack data) identifies that NSLKDD is almost balanced

and CICIDS is imbalanced.

Data Preprocessing:

Preprocessing is a crucial phase in which raw data can be

transformed into a standardized format. It includes data

cleaning (handling null or missing values, deleting unneeded

variables, handling categorical values), data normalization or

scaling, data balancing, separating target variables, and

splitting data into train and test.

Feature Selection:

In data preprocessing, the number of features may increase

if we apply one-hot encoding for categorical columns. Even

otherwise, selecting a subset of features from the existing

features plays a vital role because it affects the performance of

the model.

Random Forest with feature importance is used for feature

selection. Random Forest uses ensemble learning by

combining a set of Decision Trees with controlled variance.

Majority voting can be used for deciding the predictions. As

the number of trees increases, the model variance decreases.

Random Forests are resistant to overfitting. Because of all

these reasons, Random Forests are chosen for feature selection.

A random forest classifier with a threshold of 0.01 is chosen

for selecting features.

Build the models using selected features:

With the subset of features selected in the previous step, the

following models are built. Logistic Regression, Random

Forest, Decision Tree, Gaussian Naive Bayes, K- Nearest

Neighbors.

Train the models:

Having the features selected for our dataset, the models can

be trained using the train data.

Test the models: Here we use the test data to predict the

labels in it and evaluate the performance metrics.

Compare the performance metrics of the models:

The performance metrics used to evaluate the models for

prediction are the Confusion matrix, F1-Score, Precision,

Recall, Area under ROC curve, and Accuracy.

4.1.1 Supervised learning using NSL-KDD dataset

This dataset has 41 feature columns and one label column.

The 41 features are grouped into three categories: basic

features related to TCP/IP connections, traffic features

associated with the service or host, and content features

extracted from packet contents. There are five different types

of labels that categorizing the data as normal or attack. The

attacks are classified into four types: DOS, Probing, U2R, R2L.

DOS: To make the network resources unavailable to the

user.

Probing: To explore the fragility in the network that can lead

to attacks.

53

U2R: Invader that has user privileges but trying to get admin

privileges.

R2L: Invader that has illegitimate access to the remote

system.

In this paper, binary classification of the data as normal or

attack is used. The authors have used KDDTrain+ and

KDDTest+ datasets for implementation. KDDTrain+ has

125973 samples and KDDTest+ has 22544 samples.

Data Preprocessing:

Preprocessing includes the following steps.

1. In NSL-KDD dataset, there are no null values or missing

values.

2. All the values of the column, num_outbound_cmds

contain zero for all the rows. So it is deleted because it does

not affect the performance.

3. There are three categorical values protocol type, service,

flag. One hot encoding is applied for categorical features of

both train and test datasets. For protocol type, there are three

unique values in train and test data sets. There are 70 unique

values in the train data set and 64 unique values in the test data

set for service. For the flag, there are 11 unique values for train

and test datasets. All the protocol type and flag categorical

values are one-hot encoded. All the 70 categories in the train

data set and 64 categories in the test dataset are one-

hotencoded for service. The remaining six categories that are

missing in the test dataset are filled with zeros.

4. The target label ‘class’ is encoded as 0 for normal data

and 1 for attack data using Label Encoder.

5. All the one-hot encoded data is scaled to put them in the

range between 0 and 1. Standard Scaler is used for this purpose.

6. For binary classification, data is almost balanced, so no

resampling techniques are used. Data balancing is identified as

shown in Figure 1.

class 0: normal: 6734333

class 1: anomaly: 5863034

Proportion: 1.15:1

After completing the data preprocessing step, the shapes of

train and test data are:

Train shape: (125973, 121)

Test shape: (22544, 121)

Feature Selection:

The authors have chosen the Random Forest classifier for

feature selection. Out of 121 features, 26 features are selected

based on the threshold value of feature importance 0.01. Due

to this, the data set size is reduced to

Train shape: (125973, 26)

Test shape: (22544, 26)

The selected features include:

[protocol_type_icmp, protocol_type_tcp, service_ecr_i,

service_http, service_private, flag_S0, flag_SF,

srv_serror_rate, same_srv_rate, diff_srv_rate,

dst_host_count, dst_host_srv_count, srv_count,

dst_host_rerror_rate, dst_host_srv_rerror_rate,

dst_host_srv_diff_host_rate, dst_host_same_srv_rate,

logged_in, dst_host_serror_rate, count, src_bytes, dst_bytes,

dst_host_diff_srv_rate, dst_host_srv_serror_rate,

dst_host_same_src_port_rate, serror_rate]

Build the models using selected features:

All the models ‘Logistic Regression, Random Forest,

Decision Tree, Gaussian Naive Bayes, K- Nearest Neighbors’

are implemented using the subset of 26 features selected out

of 121 features.

Train the models:

All the models are trained using the train data as

for cls in classifiers:

trained_model=cls.fit(X_train, Y_train)

Test the models:

The models are tested with test data as

Y_pred = trained_model.predict(X_test)

Figure 1. Data balancing for NSL-KDD

Figure 2. ROC Curve for supervised learning with NSLKDD

dataset

Table 2. Results of supervised learning with random forest feature selection using NSL-KDD

Model Accuracy F1 Score Precision Recall AUC Confusion matrix

Logistic Regression 0.722453 0.740513 0.619913 0.9 19369 0.853823
[[7359 5474]

[783 8928]]

Decision Tree 0.754524 0.772488 0.642920 0.967459 0.780515
[[7615 5218]

[316 9395]]

Random Forest 0.765037 0.780925 0.652543 0.972196 0.948926
[[7806 5027]

[270 9441]]

Gaussian NB 0.743390 0.744738 0.651559 0.869014 0.819417
[[8320 4513]

[1272 8439]]

K-Nearest Neighbors 0.764105 0.778545 0.653569 0.962619 0.809692
[[7878 4955]

[363 9348]]

54

Compare the performance metrics of the models:

The models are tested with test data and the results are given

in Table 2.

ROC curve for supervised learning using NSL-KDD:

ROC curve for supervised learning is obtained as shown in

Figure 2. The curve indicates that Random forest occupies

more area.

4.1.2 Supervised learning using CICIDS-2017 dataset

The dataset is available in two formats: PCAP files and CSV

files. The authors have used CSV files for implementing their

models. All these files are combined to form 78 feature

columns and one label column. There are 15 different types of

attacks. They are ‘BENIGN, DoS slowloris, DoS Slowhttptest,

DoS Hulk, DoS GoldenEye, Heartbleed, PortScan, DDoS,

FTP-Patator, SSH-Patator, DoS Slow HTTP Test, Bot, Web

Attack-Brute Force, Web Attack- XSS, Infiltration, Web

Attack-Sql Injection’. Authors have used binary classification

to identify the traffic as normal or attack.

Data Preprocessing: Preprocessing includes the following

steps.

1. CICIDS dataset contains infinity values and null values.

Infinity values are replaced with NaN values. All null values

are replaced with the mean of the column containing the null

value.

2. Eight columns are containing 0 for all the rows. The

columns are:

[Bwd PSH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk,

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd12 Avg

Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate]

The above features are deleted as they do not affect the

performance.

3. There are no categorical values in the dataset.

4. The target label ‘Label’ is encoded as zero for normal

data and one for attack data using Label Encoder. Target labels

are separated from the remaining features.

5. The data is scaled to put it in the range between 0 and 1.

Standard Scaler is used for this purpose.

6. Data is identified as imbalanced for binary classification

as shown in Figure 3.

Figure 3. Data balancing for CICIDS dataset

Date shape: (2830743, 70)

class 0: Benign: 2273097

class 1: Anomaly: 557646

Proportion: 4.08: 1

7. The data is split into train data and test data. The test data

size is 25% of the total data. After the data split, the size of the

train and test data is:

Train_X shape: (2123057, 70)

Test_X shape: (707686, 70)

Train_y shape: (2123057,)

Test_y shape: (707686,)

8. A ‘Near Miss Under sampling’ technique is used for

resampling the train data. Using this technique train data is

resampled to the average of the total samples, the reason

behind that is, if we use near-miss under sampling to resample

to the number of samples in the minority class, the data may

cause underfitting.

Before Under Sampling, counts of label ‘1’: 418679

Before UnderSampling, counts of label ‘0’: 1704378

After UnderSampling, counts of label ‘1’: 418679

After UnderSampling, counts of label ‘0’: 675288

After UnderSampling, the shape of train_X: (1093967, 70)

After UnderSampling, the shape of train_y: (1093967,)

Feature selection:

Random Forest classifier is used for feature selection. Out

of 70 features, 27 features are selected based on the threshold

value of feature importance 0.01. Because of this, the data set

size is reduced to

Train_X shape: (1093967, 27)

Test_X shape: (707686, 27).

The selected features include:

[Destination Port, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Fwd Packet Length

Max, Fwd Packet Length Mean, Bwd Packet Length Max,

Bwd Packet Length Min, Bwd Packet Length Mean, Bwd

Packet Length Std, Flow Packets/s, Flow IAT Max, Fwd

Packets/s, Max Packet Length, Packet Length Mean, Packet

Length Std, Packet Length Variance, Average Packet Size,

Avg Fwd Segment Size, Avg Bwd Segment Size, Subflow

Fwd Packets, Subflow Fwd Bytes, Subflow Bwd Packets, Init

Win bytes forward, Init Win bytes backward, act data pkt fwd,

Idle Max].

Build the models using selected features:

All the models “Logistic Regression, Random Forest,

Decision Tree, Gaussian Naive Bayes, K- Nearest Neighbors”

are implemented using the subset of 27 features selected out

of 70 features.

Train the models:

All the models are trained using the train data.

for cls in classifiers:

trained_model = cls.fit(train_X, train_y)

Test the models:

The models are tested with test data as

Y_pred = trained_model.predict(test_X)

Compare the performance metrics of the models:

The models are tested with test data and the results are given

in Table 3.

ROC curve for supervised learning using CICIDS data

set:

ROC curve is obtained as shown in Figure 4. The curve

indicates that Random forest occupies more area under curve.

Hyper parameters used with the models in supervised

learning:

Hyper parameters used in the supervised learning

algorithms are given in Table 4.

55

Table 3. Results of supervised learning with random forest feature selection using CICIDS

Model Accuracy F1 Score Precision Recall AUC Confusion matrix

Logistic Regression 0.823021 0.592122 0.540815 0.654184 0.897242
[[491531 77188]

[48057 90910]]

Decision Tree 0.891597 0.774368 0.654829 0.947296 0.910645
[[499328 69391]

[7324 131643]]

Random Forest 0.937743 0.841484 0.841460 0.841509 0.986115
[[546686 22033]

[22025 116942]]

Gaussian NB 0.696664 0.3792802 0.317034 0.471939 0.766184
[[427436 141283]

[73383 65584]]

K-Nearest Neighbors 0.906897 0.805871 0.682306 0.984089 0.950408
[[505043 63676]

[2211 136756]]

Figure 4. ROC Curve for supervised learning with CICIDS

Table 4. Hyper parameters used in supervised learning

Model Hyper parameters used

Logistic Regression

C = 1.0,

Penalty = ‘L2’

Solver = ‘lbfgs’

Decision Tree Criterion = ‘gini’

Random Forest n_estimators = 100

K-Nearest Neighbors

n_jobs = -1,

algorithm = ‘auto’

metric = ‘minkowski’

4.2 Experiment steps for unsupervised learning:

The steps used for the experiment are given in below.

“Data set selection, Data preprocessing, Select the model

for anomaly detection, Classification results”.

4.2.1 Unsupervised learning using NSL-KDD dataset

After data preprocessing (as with supervised learning),

unsupervised learning models: K-means, Isolation Forest,

Local outlier factor are selected for the identification of

clusters and anomaly detection. After processing is done

results are obtained as given in Table 5 and Table 6.

4.2.2 Unsupervised learning using CICIDS dataset

As part of data preprocessing, infinity columns are replaced

with NaN. All null values are replaced with the mean of their

corresponding columns. The columns with all zero values are

deleted. Data normalization is done to set the data values

between 0 and 1. All target labels are encoded as 0 for normal

and 1 for attack data. All target labels are separated from the

remaining independent variables. We need to feed these

independent features to the models to learn the patterns and to

prepare clusters. The number of clusters is taken as

two.Predicted labels are compared with actual labels, and

results obtained are given in Table 7 and Table 8.

Hyper parameters used with the models in unsupervised

learning. Hyper parameters used in the unsupervised learning

algorithms are given in Table 9.

Table 5. Results of unsupervised learning using NSL-KDD

Model Clusters Accuracy Precision Recall F1 Score Contingency matrix

K-Means

[0,1]

0 normal

1 anomaly

0.88
[0.99,0.82]

[0.76,0.99] [0.86,0.89]

[54185 17278]

[757 76297]]

Isolation Forest

[-1,1]

1 normal

-1 anomaly

0.56 [0.73,0.55] [0.15,0.95] [0.25,0.69]
[10777 60686]

[4075 72979]]

Local outlier factor

[-1,1]

1 normal

-1 anomaly

0.49 [0.34,0.50] [0.07,0.87] [0.12,0.64]
[5041 66422]

[9811 67243]]

Table 6. Results of unsupervised learning using NSL-KDD

Model
Adjusted random

score

Adjusted mutual info

score

Homogeneity

score

Complete-ness

score
V_measure

Fowlkes

mallows

score

K-Means 0.5732 0.5389 0.52588 0.55262 0.53892 0.79415

Isolation Forest 0.0154 0.0268 0.0197 0.04202 0.0268 0.64678

Local outlier

factor
-0.00020 0.00895 0.00658 0.01402 0.0089 0.64068

56

Table 7. Results of unsupervised learning using CICIDS

Model Clusters Accuracy Precision Recall F1 Score Contingency matrix

K-Means

[0,1]

0-normal

1-anomaly

0.79 [0.84,0.46] [0.91,0.31] [0.88,0.37]
[2078680 194417]

[389423 168223]]

Isolation Forest

[-1,1]

1-normal

-1-anomaly

0.79 [0.45,0.83] [0.23,0.93] [0.30,0.88]
[126033 431613]

[157042 2116055]]

Local Outlier factor

[-1,1]

1-normal

-1-anomaly

0.56 [0.55,0.73] [0.07,0.95] [0.24,0.68]
[10477 60486]

[4099 72999]]

Table 8. Results of unsupervised learning using CICIDS

Model
Adjusted random

score

Adjusted mutual info

score

Homogen-eity

score

Complete-ness

score
Vmeasure

Fowlkes

mallows

score

K-Means 0.1781 0.0628 0.0556 0.07216 0.06285 0.77735

Isolation Forest 0.1387 0.0439 0.03634 0.0554 0.04391 0.78415

Local Outlier

factor
0.0147 0.02468 0.0187 0.04102 0.02652 0.6366

Table 9. Hyper parameters used with the models in

unsupervised learning

Model Hyper parameters used

K-Means
init = ‘k-means++’

n_clusters = 2

Isolation Forest n_estimators=100, contamination=0.1

Local Outlier Factor contamination='auto', n_jobs= -1

5. RESULTS AND DISCUSSIONS

In supervised learning, with the NSL-KDD dataset, among

all the models that are used, Random forest and K-NN are

showing better performance than other models with an

accuracy of 76%. For all the models, recall values are higher

than precision values, which means that false negatives are

lesser than false positives. From a network security

perspective, it is required to have a less false-negative rate.

With the CICIDS dataset, the Random forest outperforms

other models with an accuracy of 93%. Precision and recall

values are almost the same for the random forest. Also, it

occupies more area in the ROC curve plot. After Random

forest, KNN and Decision Tree algorithms show better

performance. The metrics accuracy, precision, recall, f1 score,

confusion matrix, classification report are evaluated and

presented in the tables. In unsupervised learning, with NSL-

KDD and CICIDS datasets, K-means is showing better

accuracy. However, the problem observed is that it depends on

the random seed. The best accuracy observed is 88% with

NSL-KDD and 79% with CICIDS. A new column is added

with the actual labels [0, 1] changed to [1, -1] in both the

datasets, comparing the outlier labels with the actual labels and

then evaluating all the metrics for Isolation forest and Local

outlier factor algorithms. The outliers are represented with a

negative one value. Vmeasure is the harmonic mean of

homogeneity and completeness score. Fowlkes mallows score

is the geometric mean of pairwise precision and recall values.

The Adjusted random score, adjusted mutual info score,

Homogeneity score, Completeness score, Vmeasure, and

Fowlkes mallows score are used for internal evaluation based

on the data [15]. Other metrics accuracy, precision, recall, and

f1 score are used for external evaluation to quantify the quality

of predictions.

6. CONCLUSION

This paper presents a comparative study of supervised and

unsupervised algorithms using NSL-KDD and CICIDS

datasets. For supervised learning, a random forest is used for

feature selection. The threshold value of 0.01 for feature

importance is used for feature selection in training and testing.

Using these features, the models are evaluated for both the

datasets. With CICIDS, since the data is imbalanced, Near

Miss under-sampling is used for balancing the data. The result

of this under-sampling data with the selected features using

random forest, the models are evaluated and quantified the

predictions. Unsupervised learning models are used for

clustering and anomaly detection. With supervised learning,

Random forest and KNN are performs better than other

algorithms. With unsupervised learning, K-Means performs

better.

REFERENCES

[1] Hakim, L., Fatma, R. (2019). Influence analysis of

feature selection to network intrusion detection system

performance using NSL-KDD dataset. In 2019

International Conference on Computer Science,

Information Technology, and Electrical Engineering

(ICOMITEE), pp. 217-220.

https://doi.org/10.1109/icomitee.2019.8920961

[2] Patgiri, R., Varshney, U., Akutota, T., Kunde, R. (2018).

An investigation on intrusion detection system using

machine learning. In 2018 IEEE Symposium Series on

Computational Intelligence (SSCI), pp. 1684-1691.

https://doi.org/10.1109/ssci.2018.8628676

[3] Belavagi, M.C., Muniyal, B. (2016). Performance

evaluation of supervised machine learning algorithms for

intrusion detection. Procedia Computer Science, 89: 117-

123. https://doi.org/10.1016/j.procs.2016.06.016

[4] Pattawaro, A., Polprasert, C. (2018). Anomaly-Based

Network intrusion detection system through feature

selection and hybrid machine learning technique. In 2018

57

https://doi.org/10.1109/icomitee.2019.8920961
https://doi.org/10.1109/ssci.2018.8628676

16th International Conference on ICT and Knowledge

Engineering (ICT&KE), pp. 1-6.

https://doi.org/10.1109/ictke.2018.8612331

[5] Aung, Y.Y., Min, M.M. (2018). An analysis of K-means

algorithm based network intrusion detection system.

Advances in Science, Technology and Engineering

Systems Journal, 3(1): 496-501.

https://doi.org/10.25046/aj030160

[6] Pervez, M.S., Farid, D.M. (2014). Feature selection and

intrusion classification in NSL-KDD cup 99 dataset

employing SVMs. In The 8th International Conference

on Software, Knowledge, Information Management and

Applications (SKIMA 2014), pp. 1-6.

https://doi.org/10.1109/skima.2014.7083539

[7] Mashayak, S.A., Bombade, B.R. (2019). Network

intrusion detection exploitation machine learning

strategies with the utilization of feature elimination

mechanism. International Journal of Computer Sciences

and Engineering, 7(5): 1292-1300.

https://doi.org/10.26438/ijcse/v7i5.12921300

[8] Abdulhammed, R., Musafer, H., Alessa, A., Faezipour,

M., Abuzneid, A. (2019). Features dimensionality

reduction approaches for machine learning based

network intrusion detection. Electronics, 8(3): 322.

https://doi.org/10.3390/electronics8030322

[9] Desale, K.S., Ade, R. (2015). Genetic algorithm based

feature selection approach for effective intrusion

detection system. In 2015 International Conference on

Computer Communication and Informatics (ICCCI), pp.

1-6. https://doi.org/10.1109/iccci.2015.7218109

[10] Meira, J., Andrade, R., Praça, I., Carneiro, J., Marreiros,

G. (2018). Comparative results with unsupervised

techniques in cyber attack novelty detection. In

International Symposium on Ambient Intelligence, pp.

103-112. https://doi.org/10.3390/proceedings2181191

[11] Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A. (2018).

Toward generating a new intrusion detection dataset and

intrusion traffic characterization. In ICISSp, pp. 108-116.

https://doi.org/10.5220/0006639801080116

[12] Aksu, D., Üstebay, S., Aydin, M.A., Atmaca, T. (2018).

Intrusion detection with comparative analysis of

supervised learning techniques and fisher score feature

selection algorithm. In International Symposium on

Computer and Information Sciences, pp. 141-149.

https://doi.org/10.1007/978-3-030-00840-6_16

[13] NSL-KDD Data Set [Online], Available at:

https://www.unb.ca/cic/datasets/nsl.html/, accessed on 6

June 2020.

[14] CICIDS 2017 Data Set [Online]. Available:

https://www.unb.ca/cic/datasets/ids2017.html, accessed

on 6 June 2020.

[15] Clustering metrics accessed from https://scikit-

learn.org/stable/modules/clustering.html, accessed on 6

June 2020.

58

https://doi.org/10.1109/ictke.2018.8612331
https://doi.org/10.25046/aj030160
https://doi.org/10.1109/skima.2014.7083539
https://doi.org/10.26438/ijcse/v7i5.12921300
https://doi.org/10.3390/electronics8030322
https://doi.org/10.1109/iccci.2015.7218109
https://doi.org/10.3390/proceedings2181191
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1007/978-3-030-00840-6_16
https://www.unb.ca/cic/datasets/nsl.html/
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

