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In the current study, this way was adopted numerically in order to optimize the 

performance of a HEC through the use of extended solid sections in the form of 'W' (W-

baffles: WBs). All limit conditions of the channel have been defined, with all the 

thermo-physical properties of the HTF (heat transfer fluid) used. The FVM (Finite-

Volume-Method) has been adopted with some necessary numerical schemes in order to 

give the numerical solution, which allows us to visualize dynamically the flow filed and 

to deduce all the energetic characteristics contained by this HE. Dynamically, the HTF 

flow velocity at the HEC outlet section reached about 1.812 m/s, in the case of the 

lowest Re value. While, it passed 4.8 m/s in the case of the largest value of the same 

variable, i.e. 1.726 to 4.648 times better than the Uin within the limits of Re numbers 

used. Thermally, areas with very hight TGs (temperature gradients) were observed near 

the top deflector’s sides, which reflects the effect of the W-baffles. This highlights the 

importance of the adopted obstacles in changing characteristics of the HEC to the best. 

Keywords: 
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1. INTRODUCTION

The arrangement of obstacles, such as baffles, fins, and ribs, 

within channels, are among the effective methods used by 

many researchers and investigators in their numerical and 

experimental studies. For example, see Berner et al. [1], Habib 

et al. [2], Yuan et al. [3], Cheng and Huang [4], Hong and 

Hsieh [5], Bazdidi-Tehrani and Naderi-Abadi [6], Demartini 

et al. [7], Li and Kottke [8], Mousavi and Hooman [9], Pirouz 

et al. [10], Mokhtari et al. [11], Webb and Ramadhyani [12], 

Wen et al. [13], Dong et al. [14], Skullong et al. [15], 

Thianpong et al. [16], Nanan et al. [17], Promvonge [18], Du 

et al. [19], and Menni et al. [20-30]). These studies have 

adopted many obstacles in various forms to give channels with 

high energy efficiency. 

Moreover, some studies contributed to the nanometer and 

other fluids for different ducts of various application systems. 

For example, see Kolsi [31], Rashad [32], Ghalambaz et al. 

[33], Ismael [34], Selimefendigil [35], Ashham et al. [36], 

Alsabery et al. [37], and Hajjar et al. [38]. Other predictions 

have treated both heat and mass transfer in different flow 

conditions using nuerical and experimental methods. For 

example, see Kolsi [39], Rashad [40], Ismael and AI-Rabeh 

[41], Selimefendigil [42], Ghalambaz et al. [43], Mehryan et 

al. [44], Azmi et al. [45], and Menni et al. [46-54]. 

The ongoing study adopted a new flow behavior based on a 

modern design for the obstacles by giving them an attractive 

geometrical model. They are the W-shaped obstacles. These 

deflectors create a different flow structure, which causes the 

scales inside the channel to change, due to their complex 

structural shape. It is important to note that this type of 

obstacle has not been used a lot, especially numerically. For 

this, we will try as much as possible to diagnose the air in the 

different base stations present. We will study carefully:  

▪ Discussing speed fields, i.e. average (V), axial (u or x-

velocity), and transverse (v or y-velocity) velocities, as

well as analyzing kinetic energy (k) values.

2. MATHEMATICAL MODEL

2.1 Problem statement 

To intensify the augmentation in the heat transfer between 

the hot wall and the AHTF (Air Heat Transfer Fluid), a W-

Baffle has been represented. Figure 1(a) shows the 

corresponding geometry. In our study, the channel mentioned 

in Ref. [7] has been updated through: 
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▪ Replace the simple baffles with the news obstacles.

▪ Fixing the entrance section near the hot wall (x = 0, -007

m ≤ y ≤ H/2), while the exit section is near the insulated

wall (x = L, -H/2 ≤ y ≤ 0.007 m).

This updated channel is shown in Figure 1(b) with all the 

boundary conditions to which it is subject. Also, the various 

stations of the updated channel have been meshed, as shown 

in Figure 1(c). 

2.2 Characteristics and boundary conditions 

To ensure a correct numerical solution, and to avoid 

diverging in the numerical model, the following has been 

adopted: 

▪ AHTF is Steady and incompressible.

▪ AHTF is Turbulent (12 × 103 ≤ Re ≤ 3.2 × 104).

▪ AHTF ρf is constant (= 1.225 kg/m3 at 300 K).

▪ AHTF Cp is constant (= 1006.43 J/kg. K at 300 K).

▪ AHTF μf is constant (=1.7894 e-05 kg/m. s at 300 K).

▪ AHTF λf is constant (= 0.0242 w/m. K at 300 K).

▪ AHTF Uin (x = 0, -0.007 m ≤ y ≤ H/2) = u.

▪ AHTF Tin (x = 0, -0.007 m ≤ y ≤ H/2) = 300 K.

▪ AHTF P (x = L, -H/2 ≤ y ≤ 0.007 m) = Patm.

▪ Tw (0 ≤ x ≤ L, y = H/2) = 375 K

▪ The horizontal channel axis of (0 ≤ x ≤ L, y = -H/2) is

thermally insulated. The left and right walls of the

channel are also insulated.

2.3 Numerical models 

The modeled governing equations, the used simulation 

software, the employed grid generation preprocessor, the 

adopted numerical method, the selected discretization 

algorithm, and the various followed CFD schemes are 

presented in [55, 56]. 

Figure 1. (a) W-baffle geometry, (b) updated channel and (c) Mesh system 

3. RESULTS AND DISCUSSION

In the first part of this study, various AHTF fields, i.e., 

dynamic pressure (Pd), mean velocity (V), turbulent-kinetic-

energy (k) and turbulent intensity (TI), as well as thermal 

behavior fileds, i.e., isotherms (T) were analyzed. Reynolds’ 

values (Re) used to analyze these fields are restricted to the 

range, from 12 × 103 to 3.2 × 104. 

The newly used design allows the flow path to be changed, 

from straight to wavy, see Figure 2. This change in behavior 
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is due to the presence of the WBs. The complex geometry of 

these WBs changes Pd value from one station to another. As 

mentioned, it is very high above the lower WB (about 17 Pa), 

considered below the top WB (approximately 12 Pa), while it 

is low in the rest of the stations. This quantitative difference in 

terms of Pd values is evident for the high Re values. Moreover, 

the maximum Pd value (Pd max) is about 2.447 Pa at Re = 12 × 

103.  

This value improves by about 1.016, 2.385, 4.105, and 

6.178 times when Re improves to 17, 22, 27, and 32 (× 103), 

respectively. 

Figure 2. Variation of Pd (Pa) with Re 

 

 

 

 

 

Figure 3. Variations of V with Re 

By analyzing the V fields, rapid flows were identified across 

three main stations, see Figure 3. The first station, located 

within the lower perimeter of the channel, extends from the 

hot top side of the top WB (i.e., y = -0.007 m) to the insulated 

axis (i.e., y = -H/2). The second station, situated in the upper 

perimeter of the channel, confined between the insulated upper 

side of the bottom WB (i.e., y = 0.007 m) and the hot axis (i.e., 

y = H/2). The last stage, is representing the channel outlet 

section (x = L, -H/2 ≤ y ≤ 0.007 m). The best V value is about 

5.356 m/s, observed on the upper front side of the bottom WB, 

and this for Re = 3.2 × 104. 

That is about 5.102 times the speed of the entrance (Uin). 

Moreover, the V at the exit section reached about 1.812 m/s in 

the case of the lowest Re value. In comparison, it passed 4.8 

m/s in the case of the most significant value of the same 

variable, i.e., 1.726 to 4.648 times better than the Uin within 

the limits of Re numbers used. On the other hand, reverse 

flows existed behind each WB, in the form of continuous 

vortices. 

The study also proves the effect of Re on k values. 

According to Figure 4, the k values are low across the entire 

channel stream for low Re values. When the Re improves, 

different areas from the channel appear with average energy 

values. The first area is located behind the left wall of the 

channel, where the k value is about 0.4 m2/s2. The second area 

is small in size, located on the second sharp front head of the 

first WB, where the k value is around 0.6 m2/s2, see zone (A). 

Also, another small area, however, is situated behind the top 

edge of the 1 WB, where the k value is estimated at 0.4 m2/s2. 

The third region occupies the entire space adjacent to the front 

and upper parts of the top section of the 2 WB. The k value is 

approximately 1.2 m2/s2, see zone (B). The fourth region is 

vast, extending from the top of the second WB, near the hot 

axis (about 0.8 m2/s2) to the right wall (around 0.6 m2s2). The 

last area is the zone adjacent to the channel exit, where the k 

value exceeds 1.2 m2s2.  

 

 

 

 

Figure 4. Variations of k with Re 

TI fields are also included in this study as shown in Figure 

5. The highest TI value was detected in the zone (B) and across

the channel exit, for the highest Re value. This intensity is

around 100 percent. In Figure 6, there are two different

temperature regions. The first region surrounds the first WB,

(a) Re = 12,000

(b) Re = 17,000

(c) Re = 22,000

(d) Re = 27,000

(e) Re = 32,000

(a) Re = 12,000

(b) Re = 17,000

(c) Re = 22,000

(d) Re = 27,000

(e) Re = 32,000 Zone A 

Zone B 

(a) Re = 12,000

(b) Re = 17,000

(c) Re = 22,000

(d) Re = 27,000

(e) Re = 32,000
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which has a high T (temperature), especially on the back, see 

zone (C). The second region is located above the second WB, 

on its rear side, with high TGs (temperature gradients), due to 

the high Pd and V values in the region, see zone (D). As 

expected, there is an inversely proportional between the T 

value and the Re number, while the TG is proportional to the 

same variable. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Variations of TI with Re 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variations of T with Re 
 

We also studied in detail the T profile variations as shown 

in Figure 7(a) to 7(d) for different stations of the channel. On 

the front side of the first WB, precisely at the positions x = 

0.18 m and x = 0.198 m, and based on Figure 7(a), the T 

profiles are elevated, due to their proximity to the left hot 

surface of the same obstacle. On the right side of the same WB, 

precisely at the stations x = 0.26 m and x = 0.29 m, and based 

on Figure 7 (b), the T profiles are very high, due to a decrease 

in The Pd and V, i.e., low TGs, which resulted in the formation 

of rotating rings at high Ts. Near the left side of the bottom 

WB, exactly at the locations x = 0.32 m and x = 0.34 m, and 

based on Figure 7(c), the T profiles are slightly elevated, due 

to the presence of an extension in the previous recycling cell 

to the region. Behind the same WB, precisely at the axial point 

x = 0.5 m, and based on Figure 7(d), the T profiles are 

decreasing from the top channel side towards the lower region. 

On the other hand, the evolution of the heat-transfer 

between the hot axis and AHTF was monitored by analyzing 

the Nux (local Nusselt number) curves for different Re values, 

as shown in Figures 8(a) and 8(b). Curves analysis highlights 

three different phases of heat transfer. The first phase runs 

from the entrance to the channel to the left side of the hot WB. 

A decrease in the heat transfer values is reported, especially 

in front of the fin (first WB), due to the change in the direction 

of the fluid downward, see zone (A). The second phase 

extends from the right side of the fin to the front side of the 

baffle (second WB), see zone (B). A continuous increase in 

Nux values is given, due to the presence of two cofactors. The 

presence of recycling cells on the backside of the first WB, and 

their contact with the hot channel surface allow enhanced heat 

transfer. Also, the AHTF deflection upward, due to the 

presence of the lower WB, allows for improved thermal 

transport, due to the high Pd and V values in the region, 

especially across the upper gap. The third phase is located to 

the right of the lower WB, see zone (C). There is a decrease in 

the values of Nux, due to a deviation in the flow direction, from 

the upper channel part towards the outlet section located on the 

lower region. 

 

 

 

(a)    Re = 12,000 

(b)    Re = 17,000 

(c)    Re = 22,000 

(d)    Re = 27,000 

(e)    Re = 32,000 

× 100 

(a)    Re = 12,000 

(b)    Re = 17,000 

(c)    Re = 22,000 

(d)    Re = 27,000 

(e)    Re = 32,000 

Zone C 

Zone D 
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Figure 7. T profiles for various axial stations, Re = 12 × 103 

 

There are also three main points in the figure. The first point 

is the place of the first WB. Here, there is no heat transfer. The 

second point is located just above the bottom WB. Here is the 

most significant value of the Nux, due to the high TGs in the 

region. The last point is the end of the third phase, i.e., the 

corner presented above the channel exit, has the lower value 

of the heat transfer in the region. 

 

 

 

 

 
 

Figure 8. Nux profiles for various Re values 

 

In addition to these changes in thermal transfer, Nux values 

can be improved by increasing the value of Re number, as in 

this simulation from 12 × 103 to 3.2 × 104, see Figure 8. 

Figure 9 also confirms the effect of Re change on enhancing 

heat transfer in terms of the Nu (average Nusselt number). 
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Figure 8. Continued 

 

 
 

Figure 9. Nu as a function of Re 

 

 

5. CONCLUSION 

 

In the present analysis, a baffling technique was adopted 

numerically to optimize the performance of an HEC, using 

extended solid sections in the form of WB (W-baffle). The 

results are summarized below: 

1) The newly used design allows the flow path to be 

changed, from straight to wavy. This change in behavior is due 

to the presence of the WBs.  

2) The maximum Pd value is about 2.447 Pa at Re = 12 × 

103. This value improves by about 1.016, 2.385, 4.105, and 

6.178 times when Re improves to 17, 22, 27, and 32 (× 103), 

respectively. 

3) The best V value is about 5.356 m/s, observed on the 

upper front side of the bottom WB, and this for Re = 3.2 × 104. 

That is about 5.102 times the speed of the entrance (Uin).  

4) The V value at the exit section reached about 1.812 m/s 

in the case of the lowest Re value. While, it passed 4.8 m/s in 

the case of the most significant value of the same variable, i.e., 

1.726 to 4.648 times better than the Uin within the limits of Re 

numbers used. 

5) Reverse flows existed behind each WB, in the form of 

continuous vortices. 

6) The highest TI value was detected in the zone (B) and 

across the channel exit, for the highest Re value. This intensity 

is around 100 percent. 

7) As expected, there is an inversely proportional between 

the T value and the Re number, while the TG is proportional 

to the same variable.  

8) Nu profile analysis highlighted three different phases of 

heat transfer: 

- The first phase runs from the entrance to the channel to the 

left side of the hot WB. A decrease in the heat transfer values 

was reported, especially in front of the fin, due to the change 

in the direction of the fluid downward. 

- The second phase extends from the right side of the fin to 

the front side of the baffle (second WB). A continuous increase 

in Nux values was given, due to the presence of two cofactors: 

(i) the presence of recycling cells on the backside of the first 

WB, and their contact with the hot channel surface allow 

enhanced heat transfer. Also, (ii) the AHTF deflection upward, 

due to the presence of the lower WB, allows for improved 

thermal transport, due to the high Pd and V values in the region, 

especially across the upper gap.  

- The third phase is located to the right of the lower WB. 

There was a decrease in the values of Nux, due to a deviation 

in the flow direction, from the upper channel part towards the 

outlet section located on the lower region. 

9) There are also three main points from the heat transfer 

profiles: 

- The first point is the place of the first WB. Here, there is 

no heat transfer.  

- The second point is located just above the bottom WB. 

Here is the most significant value of the Nux, due to the high 

TGs in the region.  

- The last point is the end of the third phase, i.e., the corner 

presented above the channel exit, has the lower value of the 

heat transfer in the region. 

10) In addition to these changes in thermal transfer, Nux 

values can be improved by increasing the value of Re number, 

as in this simulation from 12 × 103 to 3.2 × 104. The results 

also confirm the effect of Re change on enhancing heat 

transfer in terms of the average Nusselt number. 

Some future works related to this type of obstacles: 

▪ Analysis of transfer of heat and nanofluids insides HECs 

with WBs. 

▪ Study of the WBs separation distance and its impact on 

the overall performance of HECs.   

▪ Investigation of the WBs attack angle and its impact on 

the heat and fluid flow in HECs.  

▪ Examination of the WBs size and its impact on the heat 

transfer enhancement in HECs. 
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