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ABSTRACT
LIght Detection and Ranging (LIDAR) scanning can be used to safely and remotely provide intelligence 
on the interior of dangerous structures for use by fi rst responders that need to enter these structures. By 
scanning into structures through windows and other openings or moving the LIDAR scanning into the 
structure, in both cases carried by a remote controlled robotic crawler, the presence of dangerous items 
or personnel can be confi rmed or denied. Entry and egress pathways can be determined in advance, and 
potential hiding/ambush locations identifi ed. This paper describes an integrated system of a robotic 
crawler and LIDAR scanner. Both the scanner and the robot are wirelessly remote controlled from a 
single laptop computer. This includes navigation of the crawler with real-time video, self-leveling of 
the LIDAR platform, and the ability to raise the scanner up to heights of 2.5 m. Multiple scans can 
be taken from different angles to fi ll in detail and provide more complete coverage. These scans can 
quickly be registered to each other using user defi ned ‘pick points’, creating a single point cloud from 
multiple scans. Software has been developed to deconstruct the point clouds, and identify specifi c 
objects in the interior of the structure from the point cloud. Software has been developed to interactively 
visualize and walk through the modeled structures. Floor plans are automatically generated and a data 
export facility has been developed. Tests have been conducted on multiple structures, simulating many 
of the contingencies that a fi rst responder would face.
Keywords: Hazards, laser scanning, LIDAR, model, segmentation.

1 INTRODUCTION
First responders such as soldiers, police, and rescue workers often must enter structures that 
that are inherently dangerous. A dangerous structure is one that could potentially collapse 
because it is damaged or compromised by natural or man-made disaster. The structure could 
also be dangerous because it hosts armed enemy combatants, terrorist or other criminals. The 
structure could be dangerous because it can host any number of traps such as improvised 
explosive devices or chemical or biological agents. 

First responders need knowledge (intelligence) about the status of the structure. Is it safe 
from potential collapse? Are there hostile armed individuals in the structure? Are traps and 
other pitfalls present. At the very least the fi rst responders would wish to know the layout of 
the inside of the structure, including how to get in, location and path to emergency exits, and 
potential hiding places for hostiles.

Methods abound to collect terrain (geospatial) information. But there is a gap that has been 
satisfi ed by neither aerial collection, nor reconnaissance nor even by absorbing the ‘as built 
drawings’ in databases on structures. That gap is collecting information on what is on the 
inside of the building facade and seeing its condition. The gap has been covered to date by 
either sending in a man or a small camera equipped robot – or sometimes smashing out a hole 
to allow a good interior view. It is not an optimal situation, and a poor strategy in preparing 
fi rst responders for entry. 

This paper describes the logical next step where a terrestrial Light Detection and Ranging 
(LIDAR) scanner is used to map the interior of potentially dangerous spaces. The LIDAR 
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scanner is moved into position (into the interior of the structures, or adjacent to external 
 windows or other opening) using a wirelessly remote controlled robotic platform. Scans are 
made (controlled remotely and wirelessly) from various angles to create 3D maps. Scans can 
be conducted in darkness or bright sun, through glass windows and openings, or from the 
inside of the structure itself. These scans can be used to lay out fl oor maps, reveal potential 
hiding spaces for enemy combatants, reveal potential threats inside, map locations for egress, 
and give engineers the tools they need to evaluate the structural soundness of the building in 
question. 

The major innovation of this research project is to combine state-of-the-art commercial 
available hardware (LIDAR scanner, camera, mobile platform) into a single remote operated 
package and develop the software to model and visualize the inside of buildings and other 
structures that are too dangerous to enter without fi rst being able to determine the conditions 
and layout inside. The main technical advances are the integration of various commercial 
technologies and the development of advanced modeling and visualization techniques and 
software.

2 HARDWARE COMPONENTS

2.1 Leica scanner

A Leica HDS6000 LIDAR Scanner was purchased for this project. This scanner was selected 
after conducting a review of available existing technologies. The primary reason for selecting 
this device is that its phase shift distance measurement is an order of magnitude faster than 
comparable time of fl ight machines (an important consideration when emergency responders 
need to enter structure with unknown dangers). The HDS6000 was primarily selected for its 
scan rate of up to 500,000 points per second. It has a stated accuracy of 10 mm or less and a 
modeled accuracy of 2 mm (more than adequate for a mapping purposes), and a range of 
79 m. As such it was by far the fasted and most accurate scanner available at the required 
 scanning distances. The HDS 6000 does not have an integrated optical capability, but this was 
not considered important as optical imaging through glass windows is extremely diffi cult and 
close to impossible when shooting through glass into a darkened structure. 

For a few of the early investigations a Leica ScanStation II (time of fl ight) LIDAR scanner 
was used. Although it has the same accuracy as the HDS6000, it was found to be about 1 
order of magnitude slower than the HDS6000. The ScanStation II has a built in optical 
 imaging capability, and a range of up to 300 m, neither of which capability was considered 
important to this project.

2.2 Robotic platform

2.2.1 Basic robotic crawler
A ‘kit’ robotic crawler was acquired from Super Droid Robots (Fig. 1). The kit, assembled 
locally consisted of control and power systems, including rechargeable batteries, relays, 
microcontroller and wireless router (Fig. 2). A 30″ wide platform was selected to increase the 
stability while still fi tting through a standard door. Heavy duty treads were installed. A radio 
frequency (RF) maneuver control override was ordered for when moving the crawler into 
position or loading on a trailer. The crawler has rudimentary stair climbing abilities, but 
 limited to steps with small risers and low overall angle of ascent.
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2.2.2 Maneuvering camera
An Ethernet-based camera (Axis 213 PZT network camera) was installed to aid maneuvering 
(Fig. 3). Remote functions include zoom, pan, tilt, and  exposure control. The camera also has 
infrared capabilities for functioning in the dark. The camera was mounted on a rigid post at 
the rear of the crawler.

2.2.3 Lift tables
Two specially modifi ed electric lift tables were installed on the crawler (Figs 3 and 4). 
 Capable of lifting the scanner up to a height of 2.5 m, the tables are powered off the crawler 
batteries, and activated through relays on the crawler microcontroller board. The scanner was 
then mounted on the top lift table. Failsafe switches were put in place to ensure that the 
crawler could be moved only when the lift tables are retracted, because of stability issues, and 
to give the maneuvering camera an unobstructed view when in motion.

2.2.4 Automatic leveling system
An automated leveling system was put in place as the LIDAR scanner ideally works from 
a leveled position (Fig. 5), and to reduce the risk of the crawler tipping over, especially if 
the lift tables are to be extended. Electric linear actuators, powered from the crawler 
 batteries were installed vertically on four corners of the crawler. Each actuator has stroke 

Figure 1:  Robot crawler, acquired in kit form from www.superdroidrobots.com, as assembled 
without modifi cations.

Figure 2:  Robot crawler, internal electronics (motors, relays, power supplies, and wireless 
router).
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Figure 3:  HDS6000 LIDAR scanner mounted on two modifi ed lift tables on the crawler base. 
An Ethernet-based (Axis 213 PZT network) maneuvering camera can be seen on 
the crawler.

Figure 4: Lift tables extended to raise the HDS6000 scanner.
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length of about 18≡. On the base of each actuator is an articulated foot that allows the 
actuators to maintain good contact with the ground even while on uneven terrain. Limit 
switches located in the base of the feet to indicate when the actuators are all the way on 
the ground, as well as limit switches that indicated when the actuators are retracted all the 
way. (The robot is unable to move when the upper limit switches are not engaged because 
this indicates that the  actuator is extended, and movement of the crawler would damage 
the leveling system. 

The leveling system can operate completely automatically or manually. When in auto-
matic mode the robot is brought to a complete stop and the micro controller tells all four 
actuators to move down until they touch the ground, based on the response to the lower limit 
switches. Once the actuators have made contact with the ground, the micro controller will 
determine how level the robot is. It accomplishes this with the use of two 3 axis accelerom-
eters (only one is needed but two offers more reliability). Accelerometers were also used 
instead of an MEMS chip due to cost and the fact that this task did not need an extremely 
high level of accuracy. The accelerometers are not able to detect the degree that the robot is 
tilted directly, but with the use of the micro controller an angle can be obtained.  Accelerometers 
only  measure acceleration and in this case they measure gravity, which will always pull 
straight down, so if the accelerometers sense acceleration in any direction in other than the 
Z  direction the micro controller will know that the device is not level. The angle that the 
robot is tilting can be determined by comparing the acceleration sensed by the X and Y axis 
to the total  acceleration. Depending on the angle it was tilting, the micro controller would 
tell the appropriate actuators to extend until the accelerometer only reported acceleration in 
the Z direction. Because accelerations can be induced by the robot lifting the algorithm 
typically gets close to the level solutions, stop, and then refi nes the level.

In the event that one of the actuators loses contact with ground, the algorithm stops and the 
robot can be leveled manually, as the operator has access to individual accelerometers and tilt 
information in real time.

2.3 Remote control

All operations were controlled through a wireless router. A ruggedized laptop computer with 
a transrefl ective (sunlight viewable screen) was set up to control all functionality. Using the 

Figure 5: Automated leveling system added to the robot crawler.
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onboard wireless card, this single computer controls control all functions of the LIDAR as 
well as the crawler, including maneuvering, stabilizing (leveling), and vertical positioning of 
the LIDAR unit. In addition it controls the camera and displays real time video images from 
the camera.  No other control devices are used with the exception of an RF ‘joystick’ control 
to maneuver the crawler to and from the start of the scanning site.

The wireless link is bi-directional, and in addition to the control functions, the return data 
stream includes LIDAR data, real time video, and details on speed, direction, acceleration, 
tilt, relay status, and power consumption of the crawler.

3 SCANNING PROTOCOLS

3.1 Maneuvering

During initial maneuvers to bring the device to close to the scanning location, the RF 
 controller is used typically with the operator walking alongside the crawler (Fig. 5). Once 
close to the scanning location, the robot is controlled remotely through the laptop with the 
operator viewing the progress of the crawler remotely through the maneuvering camera, with 
the ability to pan, tilt, and zoom the camera (Fig. 6).

The crawler is then driven to an external window or other external opening or directly into 
the interior of the structure and positioned where the scan is to be taken. In most cases 
 multiple scanning locations from different angles will be required to fi ll in gaps and extent 
the coverage of the scan.

After that the automatic leveling algorithm is employed to level the crawler in preparation 
for scanning. Finally the LIDAR unit is raised to the appropriate height for scanning.

3.2 Scanning

The Cyclone® software (a registered trademark of Leica Geosystems) provided with the 
HSD6000 is used for scanning. The software  integrates seamlessly through the wireless 
transmission control protocol/Internet protocol interface. 

The HDS6000 has no provision for an optical image preview, but has the ability to do a 
low resolution full dome scan which takes about 1 minute. The results of that scan are 
used to narrow down the fi eld of interest to scan at a higher resolution. Scans are  conducted 

Figure 6:  Operators view from the camera mounted on the crawler, with crawler control 
console on the right.
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in either medium or high resolution (the scanner has an option of low, medium, high, very 
high, and ultra-high resolution). At a distance of approximately 8 meters, a medium reso-
lution scan would have a resolution (scan spacing) of approximately 5 mm and 
approximately 3 mm in high resolution. Distance resolution of a single point in the scan 
is about 8 mm.

3.3 Registration of scans

The Cyclone software is also used to register the different scans. In order to make this as 
functional and effi cient as possible in potentially dangerous areas, no survey control is used 
and not survey targets are required. Image registration is done automatically using a mini-
mum of three ‘pick points’ common to any two images to be registered, selected by the 
operator.

4 3D MODELING AND VISUALIZATION
We developed a prototype software system based on OpenGL® (a registered trademark of 
SGI) and Visual C++® (a registered trademark of Microsoft Corp) that can automatically 
reconstruct the 3D scene of the interior of a building or other structure from point clouds 
acquired by the ground-based LIDAR scanner. We developed a user-friendly graphical user 
interface that allows the users to interactively visualize, navigate and walk through the room 
from different view angles, zoom in and out, etc. The reconstructed 3D scene can be exported 
in the ‘OBJ’ data format that is fully compatible and exportable to other commercial visuali-
zation software. 

Given the LIDAR data of an interior room, we will conduct hierarchical segmentation and 
then reconstruct the corresponding 3D surface. More specifi cally, we fi rst identify all the 
major planar regions such as fl oor, ceiling and vertical walls of the room. Next, we identify 
and extract individual objects such as chairs, tables that are lying/attaching to fl oors/ceiling/
walls. We can further segment each extracted object such as chair into homogenous patches. 
Finally, we will reconstruct the 3D surface for each segmented patches based on a novel 
 volumetric vector fi eld construction. We will describe each of these steps in more details in 
the following. 

4.1 Floor and wall identifi cation

The goal of this step is to identify all the major planar regions in the scene such as fl oor, ceiling 
and vertical walls of the room. We provide two ways of doing this. If we can assume the room is 
a rectangular cube, then we will do automatic segmentation. If the interior scene is more generic 
and not a rectangular cube, then we will conduct user-guided semi-automatic segmentation.

4.2 Automatic plane identifi cation for rectangular room

We fi rst compute the bounding box that encloses the LIDAR data. Assuming that the LIDAR 
data is scanned from one side of the bounding box such as the windows of the room, we then 
search for major planar regions such as fl oor, ceiling and walls in the neighborhood of the 
other fi ve sides of the bounding box. More specifi cally, for each side of the bounding box, we 
fi rst extract all the point clouds that are within a certain distance of the current side of bound-
ing box. We then use random sample consensus (RANSAC) to fi nd the best plane that fi t 
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these selected point clouds. RANSAC is a hypothesis generation and testing algorithm that is 
very robust for outliers [1]. The main idea behind the technique is to use a minimal number 
of data points needed to estimate the model (i.e. fi tted plane), and then count how many of the 
remaining data points are compatible with the estimated model, in the sense of falling within 
a chosen threshold. 
The RANSAC-based plane fi tting algorithm can be briefl y sketched as

repeat
draw a sample of n points from the data uniformly and at random
fi t a plane to that set of n points
estimate percentage of inliers (i.e. points within a certain distance of the plane)
until satisfying solution (e.g. inliners > 95%)
refi ne plane fi tting (using all inliers)

The plane fi tting is based on the robust principal component analysis (PCA) algorithm which 
can compute local surface properties based on local neighborhoods of sample points. We fi nd 
the k-nearest neighbors of a sample point p, denoted by the index set Np, The local surface 
properties of the point clouds can be effi ciently estimated by the eigenanalysis of the 
 covariance matrix C of a local neighborhood at sample point p:
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where p is the centroid of the neighbors of p. 
Consider the eigenvector problem:

 C v v⋅ = ⋅ ∈l l l lλ , { , , }0 1 2  (2)

Since C is symmetric and positive semi-defi nite, all its three eigenvalues l0 £ l1 £ l2 are 
real-valued and the eigenvectors vl form an orthogonal frame, corresponding to the principal 
components of the point set. Thus v0 approximates the surface normal at p, or in other words, 
v1 and v2 span the tangent plane at p. Note that n is the size of the neighborhood, which 
serves as the scale-control parameter, and is dependent on the laser scanner resolution, i.e. 
how dense the point clouds data is.

4.3 User-guided semi-automatic planes identifi cation for generic interior scenes

For generic interior scenes, the above six-sided rectangular cube assumption of the interior 
scene will not always hold. Thus in this case, we implemented a new region growing–based 
segmentation algorithm.

The basic idea of the region-growing algorithm is: start with an unvisited point p,  iteratively 
include its neighboring point q, if the distance between p and q is smaller than a threshold 
(e.g. the sampling density), and the difference between the normal at p and the normal at q is 
also smaller than a threshold (2 degrees in our case). This can be done in a breadth-fi rst 
search, and stop when the above criteria is no longer hold. Then the algorithm move on to the 
next unvisited point, until all the points are visited.
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To speed up the computation, we employed volumetric grid to store the points, thus the 
connectivity inference can be done instantly by grid indexing. The surface normal is  estimated 
by the aforementioned PCA.

After the region growing, we further merge clusters that are co-planar, i.e. we would like 
to merge all the clusters that belong to a bigger plane even though they are not connected. 
More specifi cally, a cluster is merged with another if the normal of both clusters are within 2 
degrees of each other, AND the vector pointing from the fi rst cluster’s midpoint to the second 
cluster’s midpoint is more than 85 degrees apart from the average of the two cluster’s normals 
(by the fi rst condition, these two normals will be already nearly identical).

Finally, the fl oor and ceiling will be automatically identifi ed based on the height. The walls 
will be interactively identifi ed by the user.

4.4 Individual objects identifi cation and extraction

Once all the point clouds in these major planar regions such as fl oor, ceiling and walls are 
identifi ed and removed, there are suffi cient separation between points of individual objects 
such as chairs, tables that are lying/attaching to the ground, ceiling, and walls. We then 
 proceed to group all these points based on their proximity to each other by fi nding connected 
components such that each point in a connected component is within a given distance to at 
least one more point in that component. Hence, all the points belonging to an individual 
object such as a chair would lie in a single connected component. We employed effi cient 
 grid-based range-fi nding algorithms by using a volumetric grid to store the points to speed up 
the connected component analysis process. Each extracted object can be further segmented 
into homogenous patches/clusters based on some similarity metrics (e.g. distance, normal, 
curvature). We employed a region growing–based segmentation algorithm which is the same 
method we used for user-guided semi-automatic planes identifi cation for generic interior 
scenes, described in Section 4.1.3. The region growing–based segmentation algorithm works 
very well in our experiments. Figures 7–9 illustrates the process of ‘Floor, ceiling and vertical 
walls identifi cation’ and ‘Individual objects identifi cation and extraction’. Figure 10 shows 
an example of segmenting the extracted objects into individual homogenous patches. Each 
 segmented patch is represented by a single color.

Figure 7: Original LIDAR data.
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Figure 8:  Features identifi ed in different shades: Floor, ceiling, and vertical walls.

Figure 9:  Individual objects extracted from the LIDAR data (shown in different shades).

Figure 10:  Segmenting the extracted objects into individual homogeneous patches. Each 
segmented patch is represented by a different shade.
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4.5 3D surface reconstruction

There are two main steps in the 3D surface reconstruction phase. First, a saliency weighted 
normal vector fi eld is constructed based on the 3D points. Next, a watertight 3D surface is 
extracted from the saliency weighted normal vector fi eld by energy minimization. The 
 saliency weighted normal vector fi eld is constructed by the following three steps: (1) saliency 
fi eld construction by anisotropic kernel density estimation; (2) normal estimation and 
 consistent normal orientation propagation; (3) volumetric saliency weighted normal vector 
fi eld construction.

4.5.1 Saliency fi eld construction by Anisotropic Kernel density estimation
We use the term saliency to represent the likelihood the unknown surface passes through a 
certain part of 3D space. In this paper, we propose to employ Parzen window-based 
 nonparametric density estimation method to compute the saliency of each point.

Given n data points xi, i = 1, … , n in the d-dimensional Euclidean space Rd, the 
 multivariate kernel density estimate obtained with kernel k(x) and window radius h 
 (without loss of  generality, let’s assume h = 1 from now on), computed in the point x is 
defi ned as: 
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Ck,d is the normalizing constant, ||x|| is the L2 norm (i.e. Euclidean distance metric) of the 
d-dimensional vector x. There are three types of commonly used spherical kernel functions 
k(x): the Epanechnikov kernel, the uniform kernel, and the Gaussian kernel [2].

For 3D point cloud obtained by depth estimation, the outliers tend to spread in the space 
randomly, while ‘real’ (we use a quotation here to emphasize the fact that the real surface is 
unknown) surface points will spread along a thin shell which encloses the real surface object. 
In other words, the distribution of the outliers is relatively isotropic, while the distribution of 
the real surface points is rather anisotropic. Hence in this paper, we propose to employ an 
anisotropic ellipsoidal kernel-based density estimation method. More specifi cally, for 
 anisotropic kernel, the L2 norm ||x-xi|| in the above equation, which measures the Euclidean 
distance metric between two points x and xi will be replaced by the Mahalanobis distance 
metric ||x-xi||M : 

 || || (( ) ( )) /x x x x H x xi M i
t

i− = − −−1 1 2  (4)

here H is the covariance matrix defi ned as:

H = DDT

and

D = (x1 – x, x2 – x, ... , xn – x)

Geometrically, (x – xi)
t H–1(x – xi) = 1 is a three-dimensional ellipsoid centered at x, with its 

shape and orientation defi ned by H. Using single value decomposition, the covariance matrix 
H can be further decomposed as:

H = UAUT



 N. Maerz et al., Int. J. of Safety and Security Eng., Vol. 2, No. 4 (2012) 341

with
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l1 ≥ l2 ≥ l3 are the three eigenvalues of the matrix H, and U is an orthonormal matrix whose 
columns are the eigenvectors of matrix H.

To compute the anisotropic kernel-based density, we will apply an ellipsoidal kernel E of 
equal size and shape on all the data points. The orientation of the ellipsoidal kernel E will be 
determined locally. More specifi cally, given a point x, we will calculate its covariance matrix 
H by points located in its local spherical neighborhood of a fi xed radius. (Without loss of 
generality, we will assume the radius is 1, which can be done by normalizing the data by the 
radius). The U matrix of H calculated by the covariance analysis is kept unchanged to main-
tain the orientation of the ellipsoid. The size and shape of the ellipsoid will be modifi ed to be 
the same as the ellipsoidal kernel E by modifying the diagonal matrix A as:
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r is half of the length of the minimum axis of the ellipsoidal kernel E.

4.5.2 Normal estimation and consistent normal orientation propagation
Given the 3D point clouds, we can estimate the normal vector at each point based on the PCA 
algorithm [3]. Normal vectors estimated by the PCA algorithm however has an ambiguity of 
180 degree so might not be consistently oriented. An orientation propagation is often needed 
to ensure the consistent orientation of the normal vectors. One way to do this is to fi rst build 
a graph with each point as a node and the weights of edges between the adjacent points are 
defi ned as 1–||n1 · n2||, where n1 and n2 are the normal vectors of the two adjacent points, and 
then compute the minimum spanning tree (MST) from the graph using algorithms such as the 
Kruskal’s algorithm [4] which fi nds a subset of the edges that forms a tree that includes every 
vertex in the graph, where the total weight of all the edges in the tree is minimized. At the 
termination of the algorithm, the normals are adjusted so the two neighbors in the tree have 
consistent normal orientation.

The above MST-based normal orientation propagation approach however is not robust 
against noises and outliers. In this paper, we propose to utilize external knowledge to 
guide the normal orientation propagation (Fig. 11). Particularly, since the point clouds are 
generated by LIDAR scanner, for a given point p, it should be visible to the LIDAR scan-
ner, i.e. the dot product between the normal vector of the point p and the view direction of 
the LIDAR scanner should be negative. If not we will reverse the normal orientation at 
this point.

4.5.3 Volumetric saliency weighted normal vector fi eld construction
Once we have estimated the saliency and normal vector at each point, we will proceed to 
construct a volumetric saliency weighted normal vector fi eld, from which a watertight 3D 
surface can be extracted by energy minimization. A volumetric grid embedding all the 3D 
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points is fi rst constructed. The saliency and the normal vector of each point are then  propagated 
to its adjacent grid nodes (Fig. 12). Specifi cally, the saliency Sg of a grid node g is computed 
as the weighted summation of the saliency Spi of its adjacent points

 
Pi:

 
S C Sg p p

i
i i

= ∑  (7)

The weight Cpi is calculated using the aforementioned Parzen window kernel function based 
on the anisotropic Mahalanobis distance between the grid node g and point Pi . Since the 
 kernel we used (e.g. truncated Gaussian kernel) has fi nite support here, only a fi nite  number of 
points Pi (i = 1,..., n) within the kernel radius has non-zero weights Cpi. The  normal vector 

r
Ng

Figure 11:  LIDAR viewing direction guided normal orientation propagation. Left: 3D point 
shown with its normal vector estimated by the PCA algorithm. The orientation of 
the normal vectors at point p, q and r are not correct. Right: Based on the view 
direction of the LIDAR scanner, the orientation of the normal vectors at point p, q 
and r are reversed so that they are now opposite to the view direction of camera C.

Figure 12:  Construction of the volumetric saliency weighted normal vector fi eld. The normal 
vector at grid node g is calculated as the weighted sum of the normal vectors of 
its adjacent points p1, p2, ..., p7 .
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at grid node g is calculated similarly as the weighted summation of the normal vector 
r
N pi 

of its 
adjacent points

 
Pi: 

 

r r
N C S Ng p p p

i
i i i

= ∑  (8)

4.5.4 3D shape estimation by graph-cut
Once the volumetric saliency weighted normal vector fi eld is constructed, a watertight 3D 
surface S can be extracted by energy minimization. We use the following energy functional 
as suggested by [5]:

 E E Edata reg= + e  (9)

Edata is the data alignment term which is the inverse of the fl ux that enforces the surface 
 alignment with the data orientation:

 
E flux S N v dsdata S

= − = −∫( ) ,  (10)

where <,> is (Euclidean) dot product and N is unit normal to surface elements ds  consistent 
with a given orientation. If vectors v is interpreted as a local speed in a stream of water then 
the absolute value of fl ux equals the volume of water passing through the hypersurface in a 
unit of time. The sign of fl ux will be determined by the orientation of the surface. Ereg is the 
area-based regularization term that maintains the regularity of the extracted surface:

 
E dsreg S

= ∫  (11)

e is the coeffi cient of the regularization term Ereg that controls the strength of the smoothness 
in the energy minimization process and is related to the sampling density of the data. In our 
experiment, we set e as 0.2.

As pointed out by [5], combining fl ux with area-based regularization can overcome the 
shrinking effect of the area-based regularization and improve the reconstruction of elongated 
structures, narrow protrusions, and other fi ne details. Based on the divergence theorem for 
differentiable vector fi elds, the integral of fl ux of vector fi eld over surface S equals to the 
integral of vector fi eld’s divergence div(v) in the interior of S:

 
N v ds div v dp

S pV
, ( )∫ ∫= ⋅  (12)

Where V is the region enclosed inside S. Thus E is now:

 
E ds div v dp

S pV
= − ⋅∫ ∫e ( )  (13)

This equation can be solved effi ciently using the graph cut algorithm [5]. A typical graph 
construction is shown in Fig. 13: neighboring nodes are connected via n-links representing 
area-based regularization cost. Nodes are also connected to the terminals via one t-link based 
on their divergence value: blue nodes have positive divergence and are connected to the 
source terminal s with weight div(vp); red nodes have negative divergence and are connected 
to the sink terminal t with weight – div(vp); the black node has zero divergence and is not 
connected to either terminal. The weight of the n-link is defi ned as the inverse of the edge 
length so that the weights of severed n-links approximate the surface area [6]. Consequently, 
a global minimum surface for the above equation can be found by computing a minimal 
 s/t-cut in the constructed graph [5].
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5 CASE STUDIES
During this study, seventeen different interior spaces were imaged and analyzed.  Most scans 
were taken with the Leica HSD 6000 scanner mounted on the robot crawler; although two of 
the early scans were made using a tripod mounted Leica ScanStation II. Some scans were 
external scans into a structure through windows or openings; others were scanned by driving 
the robot crawler inside the structure using remote control. In all cases multiple scans were 
taken and registered using three pick points common to at least two of the images to be 
 registered. In some cases both internal and external scans were used and registered to together.

The types of structures scanned included rooms in residential homes, commercial 
 storefronts, public spaces such as large foyers and gymnasiums, offi ces and offi ce buildings, 
and underground mine and a cave, a simulated bomb making facility, a simulated chemical 
and biological laboratory, and an abandoned vehicle with a simulated improvised explosives 
device.

In this paper we give examples of three of these investigations.

5.1 Residential family room

A residential family room was imaged through a three pane window using the Leica Scan 
Station II. Figure 14 shows the refl ective nature of the window, which did not allow optical 
imaging into the interior of the structure. Figure 15 also shows the resulting LIDAR scan 
which includes elements of the window frame. In all three scans were taken at different 
angles through the window, and registered to each other using pick points. Figure 16 shows 
the results of the three scans merged with the exterior wall cropped from three different 
angles. Items that can be seen include furnishings, hardwood fl oor texture, ceiling tiles, 
 louvered doors, books, television, ceiling fan, items on coffee table, etc. In the visualization 
module this space can be rotated and viewed from all angles including from the inside.

Figure 13:  Shape estimation by graph cut. Graph construction for energy minimization: 
neighboring nodes are connected via n-links representing regularization cost. Nodes 
are also connected to the terminals vial t-links based on their divergence value: blue 
nodes have positive divergence and are connected to the source terminals; red nodes 
have negative divergence and are connected to the sink terminal t; the green node 
has zero divergence and is not connected to either terminal.
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Figure 14: Digital photography of LIDAR setup outside window.

Figure 15: LIDAR 3D laser map of interior room from a single scan.

Figure 16:  Visualization of an interior of a room. Colors represent the intensity of the laser 
refl ection.
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Figures 17 shows the elements of the room, after individual elements have been identifi ed 
and extracted then reconstructed in this image. ‘Black’ zones are shadow areas. Figure 18 
shows the automatically generated fl oor plan of the room.

5.2 Multipurpose gymnasium

The multi-purpose gymnasium building at Missouri S&T was scanned using the HDS6000 
scanner, remotely driven into the structure on the robot crawler through an open doorway 
(Fig. 19). Six internal scans were registered together, and show doors, windows, catwalk, and 
recessed hidden areas behind stored equipment (Fig. 20). Figure 21 shows the automatically 
generated fl oor plan of the building.

Figure 17: 3D surface reconstruction of room.

Figure 18: Floor plan of the room.
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Figure 19:  Maneuvering the robot crawler in the gymnasium and positioning the LIDAR 
high for one of the interior scans.

Figure 20: Interior scans of the multi-purpose building gymnasium.

5.3 Experimental mine

An entry adit at the Missouri S&T experiment mine was also scanned using the HDS6000 
scanner, driven in on the robot crawler through a ground level entrance (Fig. 22). Five internal 
scans were registered together and show the underground space and items stored in the tunnel 
(Fig. 23). Figure 24 shows the layout of the mine.
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Figure 21: Floor plan of the multi-purpose building gymnasium.

Figure 22: LIDAR scanning in the MS&T experimental mine.

Figure 23:  Room in the MS&T experimental mine showing stored equipment and services.

Figure 24: Registered composite image of the layout of the MS&T experimental mine.
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6 SUMMARY AND CONCLUSIONS
This paper presents the development of an interior surveillance system that using LIDAR can 
safely be used to scan the interior of potentially dangerous structures. For both military and civil-
ian fi rst responders, whether for the purpose of determining structural stability, presence of 
dangerous items or personnel, or simply to map the interior for egress and potential hiding 
spaces, the system can scan through windows or other transparent openings or even from inside.

A LIDAR scanner is carried to a window, or transported into the structure itself by a 
remotely controlled robot crawler. The LIDAR is maneuvered into position from a safe dis-
tance using a single laptop computer using standard wireless connectivity to drive the crawler 
and using a wireless network camera for guidance. Once in place the scanner is automatically 
leveled, and the scanner raised to the desired height. Several scans at different locations are 
taken to provide complete coverage of the inside of the structure, and are later registered into 
a single image.

Software has been developed to reconstruct the 3D scene of the interior of a building, to 
identify specifi c components of the interior, and to interactively visualize, navigate and walk 
through the room from different view angles, zoom in and out. Floor plans are automatically 
generated and a data export facility has been developed.

We have tested the system on seventeen different sites, from small rooms and offi ces to 
large public structures and a mine and a cave. In all cases the information acquired can be 
used by fi rst responders to visually the interior layout, look for potential dangers and hazards, 
including potential hiding areas and paths of egress.

The resolution of the system as applied in this program is less than 10 mm. As such it is 
more than adequate for creating fl oor plans, identifying methods of egress, hiding places, 
inhabitants, and dangerous objects. 

A further application of this technology which is currently under investigation will be used 
to assess the damage to structural components so that the integrity of structures such as build-
ings or bridges can be assessed. This aspect may require the LIDAR to operate at higher 
resolutions.
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