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The bottom layer of a group is a set of its elements of prime order. A group is called 

recognizable by bottom layer under additional conditions if it is uniquely restored by 

bottom layer under these conditions. A group is called almost recognizable by bottom 

layer under additional conditions, if there are a finite number of pairwise non-isomorphic 

groups satisfying these conditions, with bottom layer that is the same as that of the group. 

A group is called unrecognizable by bottom layer under additional conditions if there are 

an infinite number of pairwise non-isomorphic groups satisfying these conditions, with 

bottom layer that is the same as that of the group. In the paper we consider examples of 

groups recognized by bottom layer, by spectrum and, simultaneously, by spectrum and by 

bottom layer. We have also proved some results of recognizability of groups by bottom 

layer.   
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1. INTRODUCTION

The article relates to the description of layer-finite groups, 

that is, groups in which the set of elements of each order is 

finite. The applications of such groups are described in article 

of Senashov "Applications of layer-finite groups" [1]. Now we 

draw conclusions about the structure of the layer-finite group 

based on the properties of its bottom layer, that is, set of 

elements of a prime order. In the future, it is planned to extend 

these results to a class of almost layer-finite groups using the 

article by Senashov “Structure of almost layer-finite groups” 

[2]. 

The layer-finite groups in our results are not necessarily 

infinite. Thus, in Theorem 1, a finite simple group U4(5) is 

recognized. Simple finite groups find applications in studying 

of symmetric physical systems. Such systems include, in 

particular, molecules and crystals with symmetry.  

Definition. Bottom layer of a group is a set of its elements 

of prime order.  

Definition. A group is called recognizable by bottom layer 

under additional conditions if it is uniquely restored by bottom 

layer under these conditions.  

Definition. A group is called almost recognizable by bottom 

layer under additional conditions, if there are a finite number 

of pairwise non-isomorphic groups satisfying these conditions, 

with bottom layer that is the same as that of the group. 

Definition. A group is called unrecognizable by bottom 

layer under additional conditions if there are an infinite 

number of pairwise non-isomorphic groups satisfying these 

conditions, with bottom layer that is the same as that of the 

group.  

The question of restoring of a group by the bottom layer was 

considered in [3]. 

Definition. The spectrum of a finite group is a set of orders 

of its elements.  

Definition. A finite group G is called recognizable by 

spectrum if any finite group where spectrum coincides with 

the spectrum of G is isomorphic to G.  

Definition. A group is said to be almost recognizable by 

spectrum if there are a finite number of pairwise non-

isomorphic groups with the same spectrum as that of the group. 

Definition. A group is called unrecognizable by spectrum, 

if there is an infinite number of pairwise non-isomorphic 

groups with the same spectrum as that of the group.  

Results of recognizability of groups by spectrum can be 

found in the works of Vasiliev, Mazurov, Staroletov, 

Zavarnitsin and others. 

The paper considers the examples of groups recognized by 

bottom layer, by spectrum and, simultaneously, by spectrum 

and bottom layer. Examples of group recognizability are 

shown. 

We have proved several results on recognizability of a 

group by bottom layer. 

2. EXAMPLES AND THEOREMS

If bottom layer of a group consists of elements of order p 

and the number of its components is additionally given, then 

Kostrikin in 1959 proved the finiteness of the number of finite 

groups with such conditions [4]. If the set of orders of elements 

of a bottom layer of an infinite group is small in terms of the 

number of its constituent numbers, but not in their size, then 

such examples of groups are quite rare. According to 

Merzlyakov’s metaphoric expression, they are comparable 

with the «samples of the lunar soil». Such examples include 

Olshansky’s monsters [5]. A series of Olshansky groups for 

sufficiently large primes p > 1010 can only be included in the 

number of the infinite p-groups that coincide with its bottom 

layer in addition to the direct products of cyclic groups of order 

p. 
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Let us give examples describing the properties of groups 

with conditions for bottom layer. Gupta and Mazurov proved 

that for group G that without unite coincides with its bottom 

layer consisting of elements of orders 3, 5, one of the 

statements is true: 1) G = FT, where F is a 5-subgroup normal 

nilpotent of class at most two and |T| = 3; 2) G contains a 

normal 3-subgroups T nilpotent of class at most three such that 

G/T is a 5-group [6]. In the same paper it was shown that a 

group without unite that coincides with its bottom layer 

consisting of elements of orders 2, 5, either contains an 

elementary Abelian 5-subgroup of index 2, or an elementary 

Abelian normal Sylow 2-subgroup. 

By bottom layer of a group, sometimes you can restore a 

group, sometimes you can say something about the properties 

of such a group. Among these results, there are those that 

describe the structure of a group completely by its bottom 

layer, for example: if bottom layer consists of elements of 

orders 2, 3, 5 and there are no nontrivial elements of other 

orders in the group, then Kondratiev and Mazurov proved that 

this is a group of even substitutions on five elements [7]. 

Shunkov proved that if bottom layer in an infinite layer-

finite group consists of a single element of order 2, then the 

group is either a quasicyclic or an infinite generalized group 

of quaternions [8]. We can conclude that such a group is 

almost recognizable by bottom layer, i.e. there are 2 

nonisomorphic groups with the same bottom layer. Many 

results for groups with a given bottom layer describe only 

some properties of groups. For example, Mazurov proved that 

a group with bottom layer consisting of elements 2, 3, 5, in 

which all other non-unit elements have order 4, is locally finite 

[9]. 

Groups G and H are called isospectral if ω(G) = ω(H), 

where ω(G) is a specrum of group G. The number of pairwise 

non-isomorphic groups isospectral to G is designated by h(G). 

In this article we will discuss the relationship between group 

recognizability by bottom layer and recognizability by 

spectrum. 

Among the results on recognizability by bottom layer are 

those that describe the structure of the group completely by its 

bottom layer. For example, if bottom layer of a group consists 

of elements of order 2 and there are no non-unit elements of 

other orders in the group, then it is an elementary Abelian 2-

group. That is, the group under such conditions is recognizable 

by bottom layer. 

An example of an unrecognizable group by spectrum is 

group A6 with a spectrum of 2, 3, 5, 4, 8, 9 (there are infinitely 

many groups, one of which is A6) [10]. Group L3(3) with the 

spectrum 2, 3, 4, 8, 9, 13, 16, 27 is also unrecognizable by 

spectrum [10]. 

An example of unrecognizability by bottom layer is given 

by such groups as 𝐶𝑝∞ × 𝐶𝑞 , 𝐶𝑝∞ × 𝐶𝑞2 , 𝐶𝑝∞ × 𝐶𝑞3 ,… where 

the same bottom layer consists of p-1 elements of order p and 

q-1 elements of order q. 

It is proved in [11] that the symmetric groups Sn are 

recognizable by spectrum when 

 2,3,4,5,6,8,10,15,16,18,21,27,33,35,39,45n
. 

Grunberg–Kegel graph (or prime graph) GK(G) of group G 

is defined as follows. The set of vertices of this graph is π(G). 

Different prime numbers p and q from π(G) considered as 

vertices of the graph GK(G), are connected by an edge if and 

only if 𝑝𝑞 ∈ 𝜔(𝐺).  
Until now, all the considered symmetric groups, with the 

exception of group S9, the recognizability of which was proved, 

had a disconnected prime graph. A symmetric group of degree 

n>2 has a disconnected prime graph only if one of the numbers 

n or n-1 is prime [11]. 

In 1994, Shi and Brandl proved the recognizability of an 

infinite series of simple linear groups L2(q), q ≠ 9 [12, 13]. 

Note that the recognizability of Sn groups for n = 7, 9, 11, 

12, 13, 14 and unrecognizability for n = 2, 3, 4, 5, 6, 8 was 

established in [14-17]. The recognizability of group Sp was 

proved by Zavarnitsine [18], where p is a prime number 

greater than 17. In addition, strong restrictions on groups with 

the same spectrum as those of group Sp + 1 were also obtained. 

It was proved in [19] that if group G with the same spectrum 

as a symmetric group of degree n has a composition factor 

isomorphic to An, then nG S
. 

Consider some examples. 

Let G be a finite group and ω(G) = ω(S6(2)). Then G is 

isomorphic to S6(2) or 𝑂8
+(2). In particular, the group S6(2) is 

almost recognizable by spectrum [16]. 

Let S = S4(q) be a finite simple symplectic group of 

dimension 4 over a field of order q. If q = = 32n + 1> 3, then S 

is recognizable by spectrum. In all other cases, h(S) =  [20]. 

Denote by s = s(H) the number of connected components of 

graph GK (H), and by πi = πi(H) the i-th component of the 

connection, i = 1, ..., s. If the order of the group H is even, set 

2  π1. Let μi = μi(H) (respectively, ωi = ωi(H)) denote the set 

consisting of nμi (H) (nω(H)) such that each prime divisor 

of n belongs to πi. Proofs in ref. [20] are given in these terms. 

The case of even q was considered by Mazurov et al. [21]. 

Let L be a finite simple exceptional group of Lie type, and 

L ≠ 3D4 (2). Then any finite group isospectral to L is 

isomorphic to a finite group G, such that L ≤ G ≤ Aut L. In 

particular, L is almost recognizable by spectrum [22]. 

As shown by Mazurov [23], the 3D4(2) group is indeed an 

exception: it is unrecognizable by spectrum and quasi-

recognizable by spectrum at the same time. In fact, this will 

follow from a series of known results and the quasi-

recognizability by spectrum of the group E7(q) with q > 3. 

They have another bottom layer, and G and L are 

unrecognizable by spectrum, but recognizable by bottom layer, 

i.e. for any G that does not differ from L by spectrum, it differs 

from L by bottom layer. 

A finite simple group L is called quasi-recognizable by 

spectrum if for any finite group G, it follows from the equality 

ω(L) = ω(G) that G contains the only non-Abelian 

composition factor and it is isomorphic to L. 

We formulate several theorems for almost recognizability 

of groups by spectrum.  

Let G be a finite simple group L6(3) and H be a finite group 

with the property ω(H) = ω(G).  

Then H  G or H  G(γ), where γ is a graph automorphism 

of group G of order 2. In particular, h(G) = 2 [10]. 

Let G be a finite group and ω(G) = ω(S6(2)). Then G is 

isomorphic to S6(2) or 𝑂8
+(2). In particular, h(ω(G)) = 2 [14]. 

Let G be a finite group and ω(G) = ω(L3(5)). Then G is 

isomorphic to L3(5) or Aut L3(5). In particular, h(ω(G)) = 2 

[23]. 

The following groups are almost recognizable by spectrum: 

𝑂8
+(2) [16, 24], 𝑂7

+(3) [24], 𝑂8
+(3) [24], L3(9) [25, 26]. 

We present the information about recognizability by 

spectrum of simple non-Abelian groups, the orders of elements 

of which do not exceed 13. 

First, we list the groups recognized by spectrum [10], where 

the orders of elements do not exceed 13 (Table 1). The first 
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column of Table 1 contains the designations of the groups 

recognized by the spectrum. The second column defines the 

orders of these groups, i.e. the number of elements in the group: 

 

Table 1. Spectrum recognizable groups which orders of 

elements do not exceed 13 

 
Group G Order G 

А5 22*3*5 

L2(7)  23*3*7 

L2(8) 23*32*7 

L2(11) 22*3*5*11 

L2(13) 23*3*7*13 

А7 23*32*5*7 

L2(25) 23*3*52*13 

M11 23*32*5*11 

L2(27) 22*33*7*13 

А8 26*32*5*7 

L3(4) 26*32*5*7 

Sz(8) 26*5*7*13 

L2(49) 24*3*52*72 

U3(4) 26*3*52*13 

M12 26*33*5*11 

А9 26*34*5*7 

L2(64) 26*32*5*7*13 

M22 27*32*5*7*11 

U4(3) 27*36*5*7 

G2(3) 26*36*7*13 

L4(3) 27*36*5*13 
2F4(2) 211*33*52*13 

A11 27*34*52*7*11 

HS 29*32*53*7*11 
3D4(2) 212*34*72*13 

A12 29*35*52*7*11 

G2(4) 212*33*52*7*13 

A13 29*35*52*7*11*13 

U6(2) 215*36*5*7*11 

A14 210*35*52*72*11*13 

L5(3) 29*310*5*72*112*13 

Suz 213*37*52*7*11*13 

A15 210*36*53*72*11*13 

A16 214*36*53*72*11*13 

 

The following Table 2 shows a list of groups almost 

recognizable by spectrum (the orders of elements of these 

groups do not exceed 13) [10].   

 

Table 2. Almost recognizable by spectrum groups which 

orders of elements do not exceed 13 

 
Group G Order G h(G) 

S6(2) 29*34*5*7 2 

L3(9) 27*36*5*7*13 2 

𝑂7
+(3) 29*39*5*7*13 2 

U4(5) 27*34*56*7*13 2 

L6(3) 211*315*5*7*112*132 2 

S6(3) 29*39*5*7*13 2 

𝑂8
+(2) 212*35*52*7 2 

𝑂8
+(3) 212*312*52*7*13 2 

 

The groups from Table 2 are unrecognizable by spectrum, 

but they are all unique for such a spectrum and given bottom 

layer. 

We show this for the example of group U4(5). 

Theorem 1. Let G be a finite simple group U4(5) and H 

afinite group with the property ω(H) = ω(G) and bottom layer 

the same as that of group U4(5). Then 𝐻 ≅ 𝐺. That is, group 

U4(5) is unique for such a spectrum and a bottom layer. 

Proof. Indeed, let G be a finite simple group U4(5) and H be 

afinite group with the property ω(H) = ω(G). Vasiliev 

(Proposition 1) shows that apart from group U4(5), there is 

only one such group 𝐻 ≅ 𝐺(𝛾) , where γ is a field 

automorphism of order 2 of the group G. Groups U4(5) and H 

have the same spectrum. At the same time, these groups have 

different bottom layers, which differ, at least, by an element of 

order 2. Thus, group U4(5) is unique for such a spectrum and 

bottom layer. The theorem is proved. 

The following Table 3 demonstrates a list of groups that are 

unrecognizable by spectrum with the order of elements not 

exceeding 13 [10]. 

 

Table 3. Groups those are unrecognizable by spectrum which 

orders of elements do not exceed 13 

 
Group G Order G h(G) 

A6 23*32*5  

L3(3) 24*33*13  

U3(3) 25*33*7  

U4(2) 26*34*5  

U3(5) 24*32*53*7  

J2 27*33*52*7  

A10 27*34*52*7  

S4(5) 26*32*54*13  

U5(2) 210*35*5*11  

S4(7) 28*32*52*74  

S4(8) 29*35*52*7*11*13  

 

A question here is when groups are unrecognizable by 

spectrum, but at the same time recognizable by spectrum and 

by bottom layer. In particular this question is for groups of 

Tables 2 and 3. 

Let us prove several results for the recognizability of a 

group by bottom layer. 

Theorem 2. Let G be a complete group in which Z(G) is 

layer-finite and G/Z(G) is a periodic group containing for 

each prime p only a finite number of p-elements. If in the 

bottom layer of the group G with pn-1 elements of order p, qm-1 

elements of order q, then G is the direct product of n 

quasicyclic p-groups and m quasicyclic q-groups, which 

means G is recognizable by bottom layer. 

Proof. Let group G satisfy the indicated conditions. Since 

Z(G) is layer-finite and G/Z(G) is a periodic group containing 

only finitely many p-elements for each simple p, then by 

Proposition 2 the group G is layer-finite. Since, by Proposition 

3, each complete subgroup of the layer-finite group G is 

contained in the center of the group G, since the group G is 

complete, then it is Abelian. By Proposition 4, the complete 

Abelian group G decomposes into a direct sum of subgroups 

isomorphic to the additive group of rational numbers or to 

quasicyclic groups 𝐶𝑝∞ , 𝐶𝑞∞ , perhaps, by different prime 

numbers. There can be no rational numbers in this 

decomposition of groups, since G is a layer-finite group and 

therefore there are no elements of infinite order in it. Since on 

the lower layer of the group G we can find only elements of 

order p and elements of order q, then quasicyclic groups can 

be obtained only by primes p, q.  

Since in the lower layer of the group G we can find pn − 1 

elements of order p, elements qm − 1 of order q, then these 

factors are n and m respectively.  

Thus, we obtained that the group G is recognizable by 

bottom layer. The theorem is proved. 

Theorem 3. Let G be a complete group in which there exists 

a layer-finite subgroup S at the center of G such that G/S is a 
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layer-finite group. If in the bottom layer of the group G pn-1 is 

an element of order p, qm-1 is an element of order q, then G is 

a direct product of n quasicyclic p-groups and m quasicyclic 

q-groups, which means G is recognizable by bottom layer. 

Proof. Let a group G satisfy the conditions of the theorem. 

Since there exists a layer-finite subgroup S at the center of G 

such that G/S is a layer-finite group, by Proposition 2, the 

group G is layer-finite. Since, by Proposition 4, each complete 

subgroup of the layer-finite group G is contained in the center 

of the group G, and the group G is complete, then it is Abelian. 

By Proposition 4, the complete Abelian group G decomposes 

into a direct sum of subgroups isomorphic to the additive 

group of rational numbers or to a quasicyclic groups, perhaps, 

by different prime numbers. There can be no rational numbers 

in this decomposition of groups, since G is a layer-finite group 

and therefore there are no elements of infinite order in it. Since 

on the lower stratum of the group G pn − 1 is an element of order 

p and qm − 1 is an element of order q, then quasicyclic groups 

can be obtained only by primes p, q. Since in the lower stratum 

of the group G we can find pn − 1 elements of order p and qm − 1 

elements of order q, then there are n and m factors respectively. 

The theorem is proved. 

Theorem 4. Let G be a complete group in which there exists 

a layer-finite subgroup S at the center of G such that G/S is a 

layer-finite group. If in the lower layer of a group G is 𝑝1
𝑚1 −

1 element of order p1, 𝑝2
𝑚2 − 1element of order p2, ..., 𝑝𝑛

𝑚𝑛 −
1  element of order pn, then G is the direct product m1 of 

quasicyclic p1-groups, m2 of quasicyclic p2-groups, ..., mn of 

quasicyclic pn-groups, i.e. it is recognizable by bottom layer. 

Proof. Let the group G satisfy the conditions of the theorem. 

Since there exists at the center of G a layer-finite subgroup S 

such that G/S is a layer-finite group, by Proposition 2, the 

group G is layer-finite. Since, by Proposition 4, each complete 

subgroup of the layer-finite group G is contained in the center 

of the group G, since the group G is complete, then it is 

Abelian. By Proposition 4, the complete Abelian group G 

decomposes into a direct sum of subgroups isomorphic to the 

additive group of rational numbers or to quasicyclic groups 

perhaps, by different prime numbers. There can be no rational 

numbers in this decomposition of groups, since G is a layer-

finite group and therefore there are no elements of infinite 

order in it. Since on the lower layer of the group G there are 

only elements of orders p1, p2,…, pn, then quasicyclic groups 

𝐶𝑝1∞, 𝐶𝑝2∞, …, 𝐶𝑝𝑛∞can be only by prime numbers p1, p2, ..., pn. 

Since in the bottom layer of the group G is 𝑝1
𝑚1 − 1 elements 

of order p1, 𝑝2
𝑚2 − 1  elements of order p2, ..., 𝑝𝑛

𝑚𝑛 −
1elements of order pn, then these factors are m1, m2, ..., mn, 

respectively, hence G is recognizable by bottom layer. The 

theorem is proved. 

Proposition 1 (Vasiliev theorem [22]). Let G be a finite 

simple group U4(5) and H a finite group with the property ω(H) 

= ω(G). Then 𝐻 ≅ 𝐺  or 𝐻 ≅ 𝐺(𝛾) , where γ is a field 

automorphism of the group G of order 2. In particular, h(G) = 

2. 

Definition. h(G) is the number of pairwise nonisomorphic 

finite groups that are isospectral to the group G. 

Proposition 2 (Baer theorem [27]). The following 

properties are equivalent; 

a) G is a layer-finite group; 

b) Z(G) is layer-finite and G/Z (G) is a periodic group 

containing for each prime p only a finite number of p-elements; 

c) there exists a subgroup S at the center of G such that S 

and G/S are layer-finite groups. 

Proposition 3 (Lemma 3.1 from [28]). Each complete 

subgroup of a locally normal (in particular, layer-finite) group 

is contained in the center of the group. 

Proposition 4 (Theorem 9.1.6 from [29]). A non-zero 

complete Abelian group decomposes into a direct sum of 

subgroups isomorphic to the additive group of rational 

numbers or to quasicyclic groups perhaps by different prime 

numbers. 

c) for every prime number p, there exists at least one Sylow 

p-subgroup in G, which is a layer-finite group. 

 

 

3. CONCLUSION 

 

We consider the examples of groups recognized by bottom 

layer, by spectrum and simultaneously by spectrum and 

bottom layer. We proved several results on the recognizability 

of a group by bottom layer. 
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