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ABSTRACT
Vegetation indices are usually defined and evaluated empirically, according to their performance on images of
areas with certain vegetation types and targets of interest. In this paper we propose a probabilistic approach
to the problem of assessing the efficiency of a vegetation index, more precisely the transformed vegetation
index (TVI), in its two versions (TVIa and TVIb). A proper distribution is introduced in order to describe the
histograms of the red and near infrared channels. Then, the mathematical expressions for the distribution of
the TVIa and TVIb values are derived, according to theorems of statistics. The study of the behavior of this
distribution shows that the standard deviation of TVIa is bigger than that of the more often employed normalized
differences vegetation index (NDVI). This theoretical prediction is verified using satellite images of various
regions in Greece and in the Mediterranean Sea. The signal to noise ratio of TVIa and TVIb images is also
studied and it is shown that this ratio is bigger than that of NDVI, if the brightness value in the near infrared
channel is considerably bigger than that of the red channel. The general conclusion is that TVIa produces
images with a good contrast and TVIb presents a good signal to noise ratio over areas with a rich vegetation
cover.
Keywords: NDVI, signal to noise ratio, standard deviation, TVI, TVIa, TVIb.

1 INTRODUCTION
In geological and environmental research, spectral band ratios are often used as vegetation indices, for
mapping the vegetation cover of the area under study.Various vegetation indices have been introduced,
mainly based on empirical criteria of response over vegetation types, soils or geological targets of
interest [1–10]. Great effort has been used in extracting information about vegetation cover parameters
such as the leaf area index (LAI) or the forest biomass, from vegetation indices and various reflectance
bands [11–24]. Attempts to assess crop yield using vegetation indices have also been made [25, 26].
In these approaches, remote sensing data are compared with ground data and correlation coefficients
are computed. In certain cases, the sensitivity of various vegetation indices is assessed with the aid
of mathematical models which associate the vegetation cover with its reflectance at various bands
[27–30].

Recently, we have developed an alternative methodology of assessing the efficiency of vegetation
indices with the aid of probability theory, which has already been applied for the study of the nor-
malized differences vegetation index (NDVI) and the simple vegetation index [31], as well as for the
soil adjusted vegetation index [32]. The methodological difference between this approach and other
efforts is that our research is centered on the statistical behavior of the vegetation index under study,
using theorems about bivariate distributions and appropriate density functions to describe the his-
tograms of the frequency bands. This means that the whole approach is focused on the mathematical
structure of the function which describes the vegetation index and not on its functionality at different
ground types or its correlation with biophysical parameters.
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In this paper we study the behavior of the transformed vegetation index (TVI) [3], using this
probabilistic approach. TVI is usually defined in two forms, TVIa and TVIb. TVIa is given by [3, 12]:

u =



√
x − y

x + y
for x ≥ y,

0 for x < y,

(1)

where x and y are the brightness values at the near infrared (NIR) and red channel respectively and
u is the value of the vegetation index.

In order to reduce the number of pixels with a zero value, the modified version of TVI, i.e. TVIb,
is often preferred, which is given by the relation [17, 33]:

u =



√
x − y

x + y
+ 0.5 for x ≥ y/3,

0 for x < y/3.

(2)

The most frequently used vegetation index is NDVI ([34–37] and many others). NDVI is defined
by [2]:

u = x − y

x + y
. (3)

Although TVI has not been extensively used in remote sensing [3, 12, 17, 38, 39], we find that from
the methodological point of view it is interesting to apply the probabilistic approach in order to study
its behavior. After all, according to Rahman et al. [17], TVI presents a better correlation with biomass
content than the frequently used NDVI; therefore, it is worthwhile to draw a little bit more attention
to this index.

In this paper we compare the statistical parameters and the qualitative features of the TVIa, TVIb
and NDVI images. The quantitative evaluation of these three vegetation indices is mainly based on the
values of the standard deviation and the signal to noise ratio of the images. An image of a vegetation
index with a large standard deviation has a good contrast, which may help in detecting targets with
a different tonality. A narrow vegetation index histogram (with a small standard deviation) may be
broadened by histogram stretching. However two pixels with the same initial tonality can not have
a varied tonality in the histogram stretched image, even if they represent different land cover types.
On the other hand, if further processing of the vegetation index images (e.g. monitoring temporal
changes in land cover) is supposed to take place, histogram stretching should be avoided since it
distorts the original values of the pixels.

A large signal to noise ratio means an image with a reduced noise, limited tonality differences
between adjacent pixels in the same land cover unity and sharp edges between adjacent formations
in such a way that the targets of interest may be expressed more clearly.

Introducing proper distributions and taking into account certain theorems of statistics, we study the
characteristics of the histograms of the three vegetation indices (NDVI, TVIa and TVIb). We test the
theoretical predictions with real data obtained by a Landsat 7 satellite image from an island off western
Greece and a SPOT vegetation image from the Mediterranean Sea. The results and conclusions of
this paper may be useful in mapping more clearly the differences in the vegetation cover.

2 THE PROBABILISTIC APPROACH
In order to study the statistical characteristics of TVIa and TVIb, the histograms of the x and y channels
have to be simulated by a proper distribution. It is reasonable to assume that this distribution is zero
for a null brightness value, presents a peak at a relatively low value of the tonality range and gets
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practically nullified at high brightness values [40]. A satellite image, from which the atmospheric
scattering has been removed, is expected to have such a behavior, if histogram stretch has not been
done. In practice, the behavior of the histogram may be more complicated and it may present more
than one peak, but it is reasonable to make a rough approximation of the histogram by a simple
distribution, which may help in the mathematical analysis.

Vaiopoulos et al. [31] have proposed the following distributions p1 and p2 in order to describe the
histograms of the channels x and y, respectively:

p1 (x) = 2axx · e−a1x
2
, (4)

p2 (y) = 2ayy · e−a2y
2
, (5)

where ax and ay are positive parameters that control the prevailing value and the standard deviation of
the histogram [31]. The range of the brightness values x and y is from 0 to 255. In Fig. 1 the behavior
of p1 and p2 is graphically presented. It can be observed that the distributions p1 and p2 present the
behavior which is assumed for a histogram (a peak at a relatively low tonality and practically null
frequencies at high brightness values). They also present a positive skewness which appears quite
often in digital images [40]. In many cases, the image histogram is approximated by a Gaussian
distribution [41], but this distribution may work efficiently if the pixels have similar characteristics.
In a more general case, the positive skewness should be taken into account.

If x and y brightness values are not correlated, the combined distribution f (x, y) of the tonalities
of x and y channels is the product p1(x)× p2(y), which means that:

f (x, y) = 4axay · e−axx2−ayy2
. (6)

The assumption of a zero correlation between x and y may help in avoiding technical complications
and work, as much as possible, with easy to use mathematical expressions. On the other hand, this
assumption is corroborated by the fact that between near infrared band x and red band y the correlation
may be considerably poorer than that between other spectral bands and the absolute value of the
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Figure 1: A graphical representation of the distributions p1 and p2. The x or y values may be repre-
sented on the horizontal axis, and the p1 or p2 values may be represented on the vertical
axis. a1 = a2 = 0.0001.
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correlation coefficient may be less than 0.5 ([1], pp. 209–212). If there is a strong linear correlation
between the infrared and the red band, the relation (6) can not describe reliably the distribution of
the x and y brightness values. In such a case, TVI and NDVI are expected to have values which do
not differ considerably from pixel to pixel, because of the linear relation between x and y. Small
differences in the values of the vegetation indices produce image histograms with small deviations.
The NIR and Red bands of a satellite image of a broad region, with different land cover types and land
uses, are expected to be highly correlated in certain parts of a region and less correlated in other parts.
In such a case, the overall correlation between these two bands will not be high and the assumption
of the zero correlation may be reasonable.

Based on the bivariate distribution of relation (6) and taking into account well known theorems of
statistics, it can be proved [31] that the distribution g(u) of NDVI is given by:

g(u) = 4λ(1− u2)

[λ(1+ u)2 + (1− u)2]2 . (7)

Parameter λ is defined to be equal to the ratio ax /ay . Since ax and ay are inversely proportional to
the square of the standard deviations σx and σy of the brightness values x and y, respectively, with
the same proportionality constant [31], the following relation may be concluded:

λ = ax

ay

= σ 2
y

σ 2
x

. (8)

From eqns (1) and (3), it can be seen that TVIa is a function of NDVI. More precisely, TVIa may be
expressed as:

u
(
u′

) = √u′ (9)

for a non-negative u′. u and u′ are the values of TVIa and NDVI, respectively.
In the same way, from eqns (2) and (3), it is obvious that TVIb may be expressed in terms of

NDVI, as:
u
(
u′

) = √u′ + 0.5 (10)

for a non-negative u′ + 0.5. u and u′ are the values of TVIa and NDVI, respectively.
According to a well known theorem of statistics [42], the distribution g(u) of u is related with the

distribution g(u′) by:

g(u) = g
[
u′(u)

] · ∣∣∣∣du′

du

∣∣∣∣ , (11)

where g(u′) is given by eqn (7), where u is replaced by u′. When the quantities which are under the
square roots of eqns (9) and (10) are negative, the respective TVIa and TVIb values are equal to zero,
according to eqns (1) and (2). Therefore, the value g(0) of the distribution of TVIa and TVIb is equal
to the percentage of the pixels with negative values of u′ and u′ + 0.5, respectively.

In the case of TVIa, g(0) is given by:

g (0) =
0∫

−1

g
(
u′

)
du′, (12)

where −1 is the minimum value u′ of NDVI.
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In the case of TVIb, g(0) is given by:

g (0) =
−0.5∫
−1

g
(
u′

)
du′. (13)

The integration interval −1 to 0.5 is the range at which the quantity u′ + 0.5 at the right side of eqn
(10) takes negative values.

Combining the eqns (7), (9), (11) and (12), the following relation for the distribution g(u) of TVIa
values may be derived:

g (u) =




8λ
(
1− u2

)
u

(
1+ u2

)3

[
λ+

(
1− u2

1+ u2

)2
]2 (x ≥ y) ,

λ

λ+ 1
(x < y) .

(14)

Combining the eqns (7), (10), (11) and (13), gives the expression for the distribution g(u) of TVIb
values, which is:

g (u) =




8λ
(
1.5− u2

)
u

(
0.5+ u2

)3

[
λ+

(
1.5− u2

0.5+ u2

)2
]2

(
x − y

x + y
≥ −0.5

)
,

λ

λ+ 9

(
x − y

x + y
< −0.5

)
.

(15)

In Fig. 2 the distributions of the values of NDVI, TVIa and TVIb are represented, according to
the eqns (7), (14) and (15), respectively. The values u have been reduced to the tonality range [0, 1].
The value of the parameter λ is less than unity. It can be observed that particularly the peak of the
TVIb distribution is displaced to the right part of the tonality range (high brightness values) and the
percentages of small values u are lower than those of the NDVI and TVIa distributions. Therefore,
the TVIb image has more pixels with high brightness values than the TVIa and NDVI images. This
means that the TVIb image is expected to be brighter than the images of the two other vegetation
indices. If λ is more than unity, the peak of the TVIb distribution is displaced to the left part of the
tonality range (low brightness values).

The standard deviation of the distribution is of particular importance, since it is a measure of the
brightness contrast of the image. The standard deviation σ of the distribution g(u) is defined by:

σ =
√√√√∫

R

(u− µ)2 g (u) du, (16)

where µ is the mean value of g(u) and it is defined by:

µ =
∫
R

u · g (u) du. (17)
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Figure 2: The distributions of the TVIa, TVIb and NDVI values. λ = 0.25.
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Figure 3: The standard deviations of the TVIa, TVIb and NDVI values against λ.

R is the integration interval and it is from −1 to 1 for the NDVI distribution, 0 to 1 for the TVIa
distribution and 0 to

√
1.5 for the TVIb distribution.

In Fig. 3 the standard deviations of the distributions of the three vegetation indices are presented,
against λ. All values are numerically computed according to eqns (16) and (17) and reduced to the
tonality range [0, 1]. The function g(u) is given by eqns (7), (14) and (15), in order to calculate the
standard deviation of the NDVI, the TVIa and the TVIb distributions, respectively.

It can be observed that the standard deviation of the TVIa distribution is considerably bigger than
those of the TVIb and NDVI distributions, when λ does not exceed unity. This means that the TVIa
image is expected to have a better brightness contrast than that of the two other vegetation indices.
The standard deviations of TVIb and NDVI differ very little when λ is a few times less than unity. As
long as λ increases, the standard deviation of TVIb becomes increasingly higher than that of NDVI
and it is the highest of the three vegetation indices, when λ is considerably more than unity.
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The standard deviation is a measure of the brightness contrast of the image. A study of the signal
to noise ratio of the three vegetation indices may give more insight about their sensitivity over targets
of different tonalities.

3 A STUDY OF THE SIGNAL TO NOISE RATIO
The signal to noise ratio of the image of a vegetation index is a measure of how well the vegetation
index responds over regions with a different vegetation cover, in the presence of signals which are
irrelevant to the targets of interest (noise). In this paper, the x (infrared) and y (red) brightness values
are considered to contain a Gaussian noise with a constant standard deviation σn. This standard error
represents the differences in the tonality between pixels, which belong to the same land cover type
but, despite this, they do not have exactly the same spectral signature. This assumption may help in
deducing analytical expressions and making predictions about the signal to noise ratio, which can be
tested by real data.

There are several ways to define the signal to noise ratio. In the present paper, the following
expression is employed [40]:

SNR = σ

σu

. (18)

SNR is the signal to noise ratio of the image of a vegetation index u. u is the function of x and y,
which defines the vegetation index, according to eqns (1), (2) or (3). σu is the standard deviation of
a u value of a certain pixel, which depends on the standard deviations of x and y values of this pixel
and generally it is not constant for every u. σ is the standard deviation of the tonality distribution g(u)
and it is defined according to relation (16).

The parameter σ represents the range of values of the vegetation index in the whole image. As
long as σ increases, the differences in the value of the vegetation index between different regions of
different land cover types are expected to increase. This favors a ‘good’ signal, in the sense that if
the differences in the vegetation index are big the different land cover types may be expressed more
clearly.

The parameter σu expresses the range of the local variations in the value of the vegetation index,
which may occur between pixels of the same region and same land cover type. These local variations
occur because pixels of the same land cover type do not necessarily have exactly the same NIR and
Red tonalities and, consequently, they may have different vegetation index values. As long as σu

increases, it does not favor the recognition of different land cover types.
Taking into account the physical meaning of the parameters that appear in the right part of eqn (18),

σ and σu may be considered as the ‘signal’ and the ‘noise’ of the image, respectively.
It can be proved (see Appendix) that the signal to noise ratio SNR(TVIa) of the image of TVIa is

given by:

SNR (TVIa) = σ (λ) · y
σn

·
√

r − 1

(r + 1)
(
r2 + 1

) · (r + 1)2 for r ≥ 1, (19)

where σn is the standard deviation of the x and y values of a pixel (see Appendix).
r is defined as:

r = x

y
. (20)

The parameter λ in the parenthesis expresses the dependency of the standard deviation σ of the
vegetation index on λ.
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If x < y, the signal to noise ratio cannot be calculated according to eqn (18) and it is defined to be
zero.

SNR(TVIa) = 0 for r < 1. (21)

The physical meaning of eqn (21) is that for x < y, since TVI is equal to zero (according to eqn (1)),
it is not sensitive to changes in x and y values.

In a similar way, we derived the expression for the signal to noise ratio SNR(TVIb) of TVIb, which
is given by:

SNR(TVIb) = σ (λ) · y
σn

·

√√√√ r − 1

r + 1
+ 0.5

r2 + 1
· (r + 1)2 for r ≥ 1/3, (22)

SNR(TVIb) = 0 for r < 1/3. (23)

It can also be proved that the expression for the signal to noise ratio SNR(NDVI) of NDVI is given by:

SNR (NDVI) = σ (λ) · y
2σn

· (r + 1)2

√
r2 + 1

. (24)

In Fig. 4, the signal to noise ratios of the three vegetation indices against λ are presented, for y/σn

equal to unity. The curves have been calculated according to eqns (19), (22) and (24). The standard
deviation σ has been calculated numerically according to eqn (16). It can be observed that the signal
to noise ratios of TVIa and TVIb are higher than that of NDVI, for λ < 2. For λ > 2, the signal to
noise ratio of TVIa is less than that of NDVI and the signal to noise ratio of TVIb is the biggest.

In Fig. 5, the signal to noise ratios of TVIa, TVIb and NDVI against r are presented, for λ and y/σn

equal to unity. For relatively high values of r (more than unity), the signal to noise ratio of TVIa and
TVIb is better than that of NDVI. NDVI has a better signal to noise ratio than that of the two other
indices for low values of r.

It is interesting to study the behavior of the ratios SNR(TVIa)/SNR(NDVI) and SNR(TVIb)/
SNR(NDVI). Combining eqns (19), (21) and (24) gives:

SNR (TVIa)

SNR (NDVI)
= 2σTVIa (λ)

σNDVI (λ)
·
√

r − 1

r + 1
for r ≥ 1, (25)
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Figure 4: The signal to noise ratio of the TVIa, TVIb and NDVI values against λ. y/σn = 1, r = 3.



G.A. Skianis et al., Int. J. Sus. Dev. Plann. Vol. 2, No. 4 (2007) 469

SN
R

SNR(NDVI)

SNR(TVIa)

SNR(TVIb)

r

1 100.1

0.5

1

0

2

3

4

1.5

2.5

3.5

4.5

Figure 5: Signal to noise ratios of TVIa, TVIb and NDVI against r. y/σn = 1, λ = 1.
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Figure 6: A graphical representation of the ratios SNR(TVIa)/SNR(NDVI) and SNR(TVIb)/SNR
(NDVI) against r. λ = 0.217.

SNR (TVIa)

SNR (NDVI)
= 0 for r < 1. (26)

σTVIa and σNDVI are the standard deviations of the distributions of TVI and NDVI values, respectively,
and they depend on λ.

Combining eqns (22), (23) and (24) gives:

SNR (TVIb)

SNR (NDVI)
= 2σTVIb (λ)

σNDVI (λ)
·
√

r − 1

r + 1
for r ≥ 1/3, (27)

SNR (TVIb)

SNR (NDVI)
= 0 for r < 1/3. (28)

σTVIb is the standard deviation of the distribution of the TVIb values.
In Fig. 6, the ratios SNR(TVIa)/SNR(NDVI) and SNR(TVIb)/SNR(NDVI) against r are presented,

for λ less than unity. It can be observed that for r > 2, both ratios are more than unity, which
means that the signal to noise ratios of TVIa and TVIb are better than that of NDVI. The ratio
SNR(TVIb)/SNR(NDVI) is always more than SNR(TVIa)/SNR(NDVI), but at high r values these two
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ratios tend to equalize. This means that the signal to noise ratio of TVIb is better than that of TVIa
but at high r values the signal to noise ratios do not differ considerably.

For λ more than unity, we have found that the signal to noise ratio of TVIb is considerably better
than that of TVIa and NDVI, even for high r values.

The general conclusion of the study of the signal to noise ratio is that TVIa and TVIb have a better
SNR than that of NDVI, for ratio r more than unity. The theoretical predictions about the standard
deviations and the signal to noise ratios of the three vegetation indices have to be tested with real data.

4 EXPERIMENTATION WITH SATELLITE IMAGES
In order to check the theoretical predictions about the behavior of the three vegetation indices, we
used two satellite images with a considerably different spatial resolution: a Landsat 7 ETM image of
Zakynthos island (western Greece), which was taken in August 1999 and a SPOT vegetation image
of the Mediterranean Sea (September 2000). The Landsat image has a 30 m spatial resolution in the
NIR and Red bands. The SPOT vegetation image has a 1km spatial resolution. The experimentation
with the two images was focused on how the three vegetation indices respond over regions with
land covers of a small extension, such as the burnt areas of Zakynthos, as well as over structures
of a much larger scale, such as Nile river zone (Egypt). The response of TVI over burnt areas is of
particular importance, since vegetation indices are used to map burnt areas of Greek territory [43-45].
Quantitative comparisons between the theoretically predicted and actual standard deviations of the
images of the vegetation images were also made. The effect of the atmospheric scattering has been
removed from the first image, applying the technique of relative atmospheric correction [46]. In the
second image, there is a zero offset from the beginning of the axes of the histogram of the Red and
the NIR channels, therefore there is no meaning to apply this technique.

The behavior of the image of Zakynthos is first studied. A fire had taken place shortly before the
acquisition of the image. There is a burnt area at the center of the island, which appears with dark
tones in Figs 7, 8, 10, 11, 13 and 14. The standard deviation σx of the NIR channel is equal to 34.458
and the standard deviation σy of the Red channel is 16.038.

According to eqn (8), the value of λ is:

λ = σ 2
y

σ 2
x

= 0.217. (29)

Figure 7: The NDVI image of the island of Zakynthos.
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Figure 8: The burnt area at the center of the NDVI image.

Figure 9: The northern part of the NDVI image.

In Figs 7, 10 and 13, we can see the images of NDVI, TVIb and TVIa, respectively, over the
whole island. The small rectangle at the center is surrounding the burnt area, which is zoomed out
in Figs 8, 11 and 14. The burnt area was identified by in situ observations and information given by
the municipalities of the island. The location of the burnt area in the satellite images coincides with
that of field data. The larger rectangle at the north of the island (Figs 7, 10 and 13) is zoomed out in
Figs 9, 12 and 15. In these images, we can see curved lineaments, which represent the road network
of the area.

It can be seen that in the images of Figs 7 and 10 there is a diffuse luminance, especially in the sea
around the island, where parallel zones of diverse tonality appear. This luminance does not appear in
the TVIa image of Fig. 13 and the sea is expressed with dark tones. On the other hand, in the zoomed
TVIa images of Figs 14 and 15, the burnt areas, as well as the road network, appear more clearly,
with dark tones. In another Landsat image of Western Peloponnese, TVIa was successful in mapping
the drainage network of a basin.

In Table 1 the theoretically predicted and the actual standard deviation values (stdev) of the images
of the three vegetation indices are presented. The theoretical estimations were made using the curves of
Fig. 4, for λ equal to 0.22 (according to eqn (29)). The actual values were computed using the ERDAS
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Figure 10: The TVIb image of Zakynthos island.

Figure 11: The burnt area at the center of the TVIb image.

Figure 12: The northern part of the TVIb image.

Imagine 8.6 software package and reduced to the [0, 1] range. We can see that the actual standard
deviation of the TVIa image is considerably bigger than that of the two other vegetation indices, in
accordance with the theoretical predictions. On the other hand, the actual standard deviations of the
NDVI and the TVIb images are considerably smaller than the theoretically predicted values.
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Figure 13: The TVIa image of Zakynthos island.

Figure 14: The burnt area at the center of the TVIa image.

Figure 15: The northern part of the TVIa image.

In Figs 16, 17 and 18 the NDVI, the TVIb and the TVIa images of the region of the south east
Mediterranean Sea are presented, respectively. This is part of the SPOT image. We can see the zone
of the Nile River in Egypt, as well as its delta. In all images the river zone and the delta are presented
with very bright tones, because there is considerable vegetation around the river and an arid region
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Table 1: Comparison of theoretical predictions and actual statistical values
of the Landsat 7 image of Zakynthos island.

Vegetation index NDVI TVIb TVIa

stdev actual 0.096 0.098 0.261
stdev theoretical 0.173 0.193 0.301

Figure 16: The NDVI image of Egypt.

Figure 17: The TVIb image of Egypt.

out of the river zone. In the TVIb image, the arid region is expressed in bright tones and the contrast
between the river zone and the surrounding region is less than that of the other two images.

In Table 2 the standard deviations of the vegetation indices of the SPOT image are presented.
There is a generally good agreement between theoretically predicted and actual values. The high-
est percentage deviation between theoretical and actual standard deviation is recorded in the case
of NDVI (25%) and the smallest deviation is recorded in the case of TVIa (5.5%). In all tables,
there is an agreement between theoretical and actual values, in terms of comparing standard devi-
ations of different vegetation indices. For example, in Table 2, the standard deviation of the NDVI
image is more than that of the TVIb image, according to theoretical prediction and actual standard
deviations.
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Figure 18: The TVIa image of Egypt.

Table 2: Comparison of theoretical predictions and actual statistical values
of the SPOT image of the region of Eastern Mediterranean Sea.

Vegetation index NDVI TVIb TVIa

stdev actual 0.134 0.282 0.325
stdev theoretical 0.178 0.240 0.308

We should expect deviations between the theoretically predicted and the calculated image stdev
values, since the distributions p1, p2 and f, upon which we have elaborated the whole probabilistic
approach, are only rough approximations of real image histograms. The reliability of the mathematical
analysis which we have developed in this paper may be evaluated by comparing the behavior of the
theoretically predicted values with that of the actual image values.According to this criterion, we think
that the probabilistic approach works satisfactorily in estimating the statistical performance of the
vegetation indices, since it can predict whether the standard deviation of a vegetation index is bigger
or smaller than that of the other one.

The signal to noise ratio of the NDVI, TVIa and TVIb images of the Landsat scene was then
calculated, for each pixel. This was done according to eqn (18). In the numerator we put the actual
standard deviation of the image of the vegetation index. In the denominator we put the standard
deviation of a 3 × 3 window, in the central pixel of which we attributed the calculated SNR value.
In this way, we produced the SNR(NDVI), the SNR(TVIa) and the SNR(TVIb) images of NDVI,
TVIa and TVIb, respectively. Then, we produced the images of the ratios SNR(TVIa)/SNR(NDVI)
and SNR(TVIb)/SNR(NDVI). The necessary calculations were made using the ‘spatial modeler’ and
other utilities of the ERDAS Imagine 8.6 software package.

Finally, we produced the image of the ratio r equal to NIR/Red and we selected 50 check points,
scattered at the whole image. For each check point, we recorded the values of r, SNR(TVIa)/SNR
(NDVI) and SNR(TVIb)/SNR(NDVI). In Fig. 19, the experimental SNR(TVIa)/SNR(NDVI) and
SNR(TVIb)/SNR(NDVI) values against r, are presented. It is interesting to compare the graphs of
Figs 19 and 6, since the theoretical curves of Fig. 6 were computed for the same value of the param-
eter λ. It can be seen that in both figures the ratio SNR(TVIb)/ SNR(NDVI) is bigger than the ratio
SNR(TVIa)/SNR(NDVI) for relatively low r values. Theoretical predictions and real data show that
the two ratios are less than unity for r less than 2 and more than unity for higher r values. As long
as r increases, the difference between the two ratios decreases. Theoretically, this difference tends
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Figure 19: A graphical representation of the experimental values of the ratios SNR(TVIa)/SNR(NDVI)
and SNR(TVIb)/SNR(NDVI) against r.

asymptotically to zero. The experimental results showed that the two curves coincide at about r = 2.
For r > 2, the SNR(TVIa)/SNR(NDVI) values become higher than the SNR(TVIb)/SNR(NDVI) val-
ues. The physical meaning of these graphs is that when the brightness value at the NIR zone is not
much higher than the respective brightness value at the Red zone, the signal to noise ratio of NDVI is
better than that of TVIa and TVIb. In regions with a dense vegetation cover, where the NIR brightness
value is quite higher than that of the Red zone, the signal to noise ratio of the TVIa and the TVIb
images is better than that of NDVI. The TVIb image has a better signal to noise ratio than the TVIa
image for low r values, but this difference tends to be eliminated, or even reversed, at higher r values.

5 CONCLUSIONS
According to the mathematical analysis and the experimentation with the satellite image, the following
conclusions may be drawn.

The standard deviation of the TVIa image is considerably higher than that of the TVIb and the
NDVI images, if the standard deviation of the NIR channel is not smaller than the standard deviation
of the Red channel. In such a case, the application of TVIa produces images with a good brightness
contrast.

The signal to noise ratio of a vegetation index depends on the standard deviations of the NIR and
the Red channel, as well as the ratio r of the NIR brightness value to the Red brightness value. For
small r values the signal to noise ratio of the NDVI image is better than that of TVIa and TVIb. As
long as r increases, the signal to noise ratio of the TVIa and the TVIb images is better than that of
the NDVI image.

The mathematical analysis has further shown that as long as the ratio of the standard deviation
of the NIR channel to the standard deviation of the Red channel increases, the signal to noise ratio
of the TVIb image gets bigger than the signal to noise ratio of the TVIa image, for high r values.
Therefore, TVIb is more efficient in mapping and recognizing areas with dense vegetation cover
(high r values). TVIa produces images with a good contrast, in such a way that regions with a very
sparse vegetation cover, or burnt areas, appear in dark tones and can be easily distinguished from
the surrounding formations. In satellite images with a relatively good spatial resolution (for example
Landsat images with 15 m or 30 m spatial resolution), the road network or the drainage network of
a river can be quite clearly presented in a TVIa image, with dark tones. In satellite images with poor
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spatial resolution, like SPOT vegetation images (which have a 1km spatial resolution), river zones
and deltas may be expressed with bright tones in TVIa and NDVI images, if the vegetation cover is
considerably dense compared to that of the surrounding formations. The probabilistic approach that
is developed in this paper may be also used in assessing the efficiency, or modifying, other vegetation
indices, which are employed in environmental research.

APPENDIX: DERIVATION OF EQN (19)
The quantity σu is calculated by Spiegel [42]:

σu =
√(

∂u

∂x
σx

)2

+
(

∂u

∂y
σy

)2

. (A.1)

σx and σy are the standard deviations of x and y, respectively. u is the function of x and y by which
the vegetation index is calculated.

The standard deviations of brightness values x and y are assumed to be constant and equal to σn,
according to the equation:

σx = σy = σn. (A.2)

Combining (A.1) and (A.2) gives:

σu = σn

√(
∂u

∂x

)2

+
(

∂u

∂y

)2

. (A.3)

Combining eqns (1) and (A.3), we can find the expression for σu of TVIa when x ≥ y:

σu = σn

y
·
√

(r + 1) · (r2 + 1
)

r − 1
· 1

(r + 1)2 , (A.3)

where r is defined by eqn (20)
Combining eqns (1) and (A.3), it can be easily proved that when x < y, σu of TVIa is:

σu = 0. (A.4)

Combining (18) and (A.5) gives the signal to noise ratio SNR(TVIa) of TVIa, which is:

SNR (TVIa) = σ (λ) · y
σn

·
√

r − 1

(r + 1) · (r2 + 1
) · (r + 1)2 for x ≥ y, (A.5)

For x < y the standard deviation σu is equal to zero, according to eqn (A.5); therefore, the signal
to noise ratio of TVIa can not be calculated according to eqn (18).
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