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ABSTRACT
An SVM (Support Machine Vector) algorithm has been implemented to sense traffic anomalies through a large-
scale IP Network. We have applied this algorithm on data provided by the well-known large-scale American 
IP Network (Abilene Network). The developed SVM algorithm can classify the Network traffic into two cat-
egories of classes namely: normal; and abnormal. The implementation of this algorithm has been performed on 
real collected data thanks to Netflow protocol and has yielded satisfactory results with a classification rate going 
over 96% and a false alarms rate lower than 10%.
Keywords: anomaly detection, genetic algorithms – SMO, IP network- supervised learning, support vector 
machines (SVM), true negative ratio, true positive ratio.

1 INTRODUCTION
In an IP Network, the direct traffic measurement or the estimation of the Traffic Matrix (TM) allows 
to know the traffic volume that goes through the nodes and the links of that Network. Network man-
agement operators use the aggregated data within the TMs in different applications and management 
operations. A typical example of such operations is the detection of anomalies in the Network based 
on the knowledge of the traffic Volume within the nodes and the links where these anomalies can 
occur. In fact, the Anomalies Detection Systems (ADS) have been proposed for the first time by 
Anderson [1], who has exploited the idea that attacks on the systems cause failures and are sources 
of anomalies in it. So, it appears that anomalies can be detected as significant deviations of the global 
network behavior. Since the work of Denning [1], many techniques have been developed, Lakhina, 
[2], has used a specific algorithm named Kernel Based On Line Anomaly Detection ( KOAD). This 
algorithm is based on the recursive least squares kernels, then, Lakhina [3], devised an algorithm for 
detecting anomalies in a Network using the technique of Principal Component Analysis (PCA). 
Mekaoui and Benhamed,[4], took the advantage of the Kalman filter with a threshold to detect 
anomalies in an IP/MPLS Network. Ghosh and Schwartzbard [5, 6], have tried neural networks to 
attain the same goal. Other authors [7–10], have used statistics or seasonal series modeling to detect 
anomalies in a Telecommunications Network. Barford and Kline, [11], have defined four main types 
of anomalies among which they specified the Denial of Service (D.O.S), and the Distributed Denial 
of Service (D.D.O.S.). Lakhina [12], has also been interested by studying other kinds of anomalies 
that may affect the correlation between several links of the traffic within a Network. Anomaly detec-
tion remains a delicate and a complicated operation. In the literature, we can find many authors, 
[1, 13–15] that have tried to use the SVM to detect anomalies. Our approach is to tackle the problem 
of anomalies detection in an IP Network by also using an SVM classifier considering that this detec-
tion should be interpreted as a matter of classification of the Network traffic into two classes, normal 
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and abnormal traffic. To attain this goal, we are using an SVM algorithm but in a way that satisfies 
two major conditions; obtaining a high rate of detected anomalies and getting the minimum false 
alarms rate at a time. This algorithm needs a supervised Learning phase. Before proceeding to this 
latter step, our process performs a phase of pretreatment of the analysed data using genetic algo-
rithms that are able to cross and do the mutation ( transfer) of the data segments. This is done to 
maximise the classification of the SVM algorithm. The paper is organised in such a way that in 
Section 2, we present the used data and the pretreatment on the same data. In Section 3, basics on 
SVM are exposed. Section 4 details our SVM algorithm, whereas in Section 5 our algorithm approach 
is given explaining how simultaneously the process had been applied to the collected data. In Section 
6, we discuss our results and test the robustness. Finally a conclusion is drawn in Section 7.

2 DATA PRETREATMENT

2.1 Data

To evaluate our process, we have used the data provided by the well-known American Abilene 
Network (USA observatory Network). The topology of such a Network is illustrated in Figure 1 
given hereafter. As we can observe in the latter, the Network comprises twelve (12) main nodes which 
imply subsequently 144 Origin-Destination (OD) pairs and 54 physical links between the nodes. The 
data are collected every 5 minutes and correspond to the period from 01-03-2004 to 07-03-2004 (one 
week). So, this allowed us 288 samples a day and 2016 samples a week. These data are provided in 
formats of TMs measured by a specific protocol Netflow protocol in the indicated period.

2.2 Pretreatment

This step is necessary and allows us the calculation of the parameters that are required by the clas-
sification process (e.g.; means, variances …).

Figure 1: Topology of the network under study (Abilene Network).

Table 1 Datasets under study.

Network Date Duration Resolution Size

Abilene March 2004 1 Week 5 mn 144×2,016
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Our objective still remains the anomaly detection of Denial of Service (DOS) and Distributed 
Denial of Service (DDOS) types by the mean of a supervised learning. The supervised learning 
algorithm is based upon a genetic algorithm which is inspired from the biological modeling. As we 
know well in Biology, the genetic algorithm performs three important operations namely: Selection, 
Crossing (Crossing over) and mutation. In our case, the genetic algorithm will perform these three 
important sub-operations on the data segments or vectors. The Selection operation facilitates the 
choice of individuals (days) represented by the measured traffic vectors in the specified day. The 
simple or multiple Crossing operation along with the mutation operation (transfer operation) gener-
ates other individuals where the anomaly can be easily detected like in genetic, see Figure 2.

3 BASICS ON SVM

3.1 Background

The main idea in Support Machine Vectors (SVM) is a supervised classification that allows to draw 
a hyper plan, which maximises the margin between two classes (say positive and negative).

In this case, the hyper plan is optimal and occupies the middle of the geometric configuration as 
depicted in Figure 3. For more details on this, SVM geometric method of data classification and 
other varieties, we kindly refer the reader to [16–18] whose authors expressly state that: If the data 
are linearly separable, then, there exists a Hyper plane whose equation is given by; <W,X> + b = 0; 
such that we get from the geometric configuration ( Figure 3) :

With H1 and H2 as hyper planes and H the optimal hyper plane, [17].

 W.X + b ≥ 0 if yi = +1; (1)

 W.X + b ≤ 0 if yi = −1 (2)

Getting:

 yi (W.X + b) ≥ +1 (3)

Figure 2: Data crossing.
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According to these conditions (See Figure 4), the perpendicular distance from the Origin to the 
Hyper plane satisfies the following conditions:

 H1:W.X+b=1; and x =
−| |

| |

1 b

W
 (4)

 H2:W.X + b = −1; and x =
+| |

| |

1 b

W
 (5)

If the distance between one point located on H1 and the Hyper plane H is given by:

 

| . |

| | | |

W X b
W W

+
=
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Then, the margin between H1 and H2 is : 2

| |W

Maximising the previous quantity consists in minimising the quantity: 
| |W

2
, which can be 

stated as : min 1

2
 wTw with always staying in the limits fixed by the initial condition :

 yi(W.x+b)≥+1 and min(1

2
wTw) (7)

This kind of optimisation problem can be solved by associating a Lagrangian multiplication operator 
ai (ai ≥ 0). It is generally defined by:

 
, ,L w b w w y x .w b 1T

i i iα α( ) = − ( ) +( ) −( )=∑1

2 1i

n
 (8)

Figure 3: Optimal Hyper plane, support vectors and maximal margin.
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Maximising (8) is equivalent to find out the parameters ai and w that made equal to zero the partial 
derivatives of L (w,b,α), then:
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Solving eqns. (9) and (10) will finally yield the expression of the dual Lagrangian, given by:
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The resolution of αi, [17], gives the value of the vector (data vector) and can classify a new target 
following its feature vector x satisfying the function, below:

 
f x sign w x b sign

i

n
( ) ( . )= + = +( )=∑ α i i iy x .x b

1
 (12)

3.2 Non linearly separable case

In the case of non-linearly separable data, we introduce the concept of deviations variables denoted 
ei (i = 1..N) (values of e) with e > 0 and whose constraints become:

 W.X + b ≥ 1 − ε if yi = +1 (13)

 W.X + b ≤ −1 + ε if yi = −1 (14)

Then, the margin between H and Hi becomes: 
| |W

2
+ ( )∑C iε . The parameter C (C ≥ 0) is inter-

preted as a tolerance of the classification noise. For high values of C, only very small values of ε are 
authorised. Consequently, only a small number of data segments (points) will be badly classified, 
this number is usually non-significant. Whereas, if the value of C is too small, values of ε will be 
high enough. In this case, we tolerate more classification errors. In the case of non- linearly separa-
ble data, which mean in fact that the separating surface is non-linear, we transpose the problem in 
another higher dimension space F than the previous one to recover the points linearity and hence 
make again the two classes (Normal and Abnormal) again separable within the points clouds . This 
operation requires the use of a specific Transform denoted f, such as:

φ φ: x F− → ∈Φ

and whose decision function can be defined by the following inner product: 

 Φ ΦT x x( )* ( ),i j  (15)

Eqn. (15) can be substituted by a specific function noted K(xi, yi) and called Mercer kernel 
 function, [17]:

 
K(x x ) x xT

i j i j, ( )* ( )= Φ Φ  
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Generally, the function is of Radial Basis Function (RBF) class and of Gaussian type:

K(x x ) 1/i j, ( )= √2 2s  exp( -||xi - xj||
2 / 2s2 ); 

Where: s is a regulation parameter
Subsequently, we can derive the calculus of the following maximum:

 
Max y y K x xiα α α

i

n

i j i j i jj

n

i

n

= ==∑ ∑∑− ( )( )1 11
,  (16)

It is worth noting that all of the functions that solve (16) are based on Karush-Kuhn-Tucker (KKT), 
[17], satisfying at a time the following constraints:

0 ≤ αi ≤ C i = 1,…., n and α iyii

n
=

=∑ 0
1

 with i = 1,2,……n

To decide whether a data x belongs to the first or the second class; it is enough to find the sign of the 
decision function:

 
f x sign

i

n
( ) ;= +( )=∑ α i i iy K(x ,x) b

1
 (17)

For the learning step, we have implemented the Sequential Minimal Optimization (SMO) algorithm 
to insure the learning and training step.

4 ALGORITHM
Prior to proceed to our algorithm and for adapting our data to it, we first calculate the necessary 
parameters that allow the SVM to perform a sharp and accurate classification between Normal 
and Abnormal traffic. The dynamic flow rate on the Network links is random. To avoid false 
alarms of anomalies, we calculate the flow rate distances that occur in the Network, and we 
 compare, their means and their variances and we also measure the times and instants of 
occurrence.

4.1 Pretreatment

We well know that one specification of the DOS (Denial of Service) or DDOS (Distributed Denial 
of Service) is their continuity as being an overload of the bandwidth. Thus, we consider our evalua-
tion on a three temporal dimensional space (di−1, di, di+1) that will be represented by three time 
instants. (t−1, t, t+1), respectively. So, we have:

• di−1:(measured and muted flow rate – flow rates mean before mutation) at t−1.

• di: (measured and muted flow rate – flow rates mean before mutation) at instant t.

• di+1: (measured and muted flow rate – flow rates mean before mutation) at instant t+1.

For each measurement, every five minutes, we will examine three samples which mean that an 
attack will last at least 15 minutes or more. To these three dimensions, we add another one namely 
the variance that will characterise the stability aspect of the anomaly if it does exist. The variance is 
then symbolised by the acronym Var. *1.0e+006
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4.2 Learning step

This step consists in selecting a model function that belongs to F (f ∈ F see Section III). So, the 
principle is based on finding an estimation of the Lagrangian coefficients αi and the scalar b of the 
optimal classifying Hyper plane. The selection of these parameters is insured by a learning algorithm 
called Sequential Minimal Optimization algorithm (SMO) that receives as input the set of the N-data 
of the training phase. The distances (di-1, di, di+1) of one OD pair represent each class (xi) along 
with the target vector yi (+1 or -1) which indicates the class for which each traffic measure of one 
OD« xi » is belonging. The target vector yi also indicates a set of learning parameters with a tolerance 

of about 1

| |W







, s, the parameter of regulation, the tolerance parameter to the classification noise 

C and the type of the kernel function that has to be used if the data are linearly separable. The 
 algorithm steps are given below:

Initial step
Extraction of Data from traffic Matrix X(i,j);
For i=0 to 144 do;
Abnormal=false;
While Abnormal= false do;
Step 1
Crossing Data;
Mutation (generate random traffic between the mean traffic of the day and the 
maximum traffic flux of the OD link).

Step 2
Compute the distances (di-1, di, di+1) and the variance.
If ((di-1>0 and di>0 and di+1>0 and VAR<variances of the day)
Then
Proclaim normal traffic
Call SVM (SMO) training
Else
Proclaim abnormal traffic

Table 2: Sample of data preprocessing result within 
 extraction of parameters.

Di−1 Di Di+1 Var.

0.3571 0.6137 1.0181 1,110

0.6137 1.0181 0.5450 6,538

0.181 0.5450 0.0183 2,500

0.2406 0.2028 0.5354 3,316

0.5774 0.3385 0.1835 3,940

0.3385 0.1835 0.6047 4,541
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Call SVM (SMO) training
End If
Call the classifier f(x)
If f(x)=-1
Abnormal=true
End while
End For

5 RESULTS AND DISCUSSION
In order to validate the implemented algorithm, we have used universal metrics. These metrics con-
sist in the anomalies detection ratio and the false alarm sensitivity ratio. These two metrics are 
symbolised by the following acronyms namely; TPR, True Positive Rate and TNR, True Negative 
and are given by the following equalities:

 
TPR

TP

TP FN
TNR

TN

TN FP
=

+
=

+( )
;

( )
;and  (18)

Where: TP is the True Positive; FP is the False Positive; TN the True Negative and FN the False 
Negative.

In our case, we consider that the value of C is high enough, and it varies from 600 to 1,400 so that 
we get only a limited number of classification errors and authorise only kernel RBF (Radial Basis 
Function) based SVM whose width s = 1 and an acceptable error rate of 0.1%. We have obtained 
many significant results. The result depicted in Table 3 given hereafter is only one sample among 
many. This table is clearly showing that our algorithm had yielded good results in the process of 
classification with a rate of classification that goes over 96%. We can observe from the same table 
that the false alarm ratio reaches a level lower than 1% and can attain in some cases (see in the table 
the result for OD(Origin-Destination pair #89) 0.11% with a classification rate of about 97.92%. In 
fact, the figures in Table 3 reveal the robustness of the SVM algorithm in the detection of Abnormal 
Traffic. Even for a false alarms rate of about 9.8%, the SVM classification rate remains satisfactory 
around 96%.

Table 3: Sample of results.

OD number Error rate C s Classification Rate (%) False Alarm rate (%)

49 0.001 900 1 97.0910 5.71

50 0.001 900 1 96.0938 6.17
51 0.001 800 1 97.0938 5.82
52 0.001 600 1 97.2554 0.18
53 0.001 1,000 1 96.4039 5.71
54 0.001 800 1 96.1985 0.11
55 0.001 1,300 1 95.0943 3.52
56 0.001 1,100 1 97.0599 5.13
57 0.001 1,100 1 97.9238 0.11
58 0.001 900 1 96.8494 3.52
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OD number Error rate C s Classification Rate (%) False Alarm rate (%)

59 0.001 1,400 1 96.0738 5.31

60 0.001 1,200 1 98.2275 9.11
61 0.001 1,500 1 96.6753 9.82
62 0.001 1,300 1 97.7182 5.81
63 0.001 1,200 1 96.0634 2.90
64 0.001 1,000 1 97.5610 5.71
65 0.001 1,100 1 96.2774 0.72
66 0.001 900 1 97.8088 5.71
67 0.001 900 1 96.6333 6.17
68 0.001 700 1 96.0146 5.82
69 0.001 800 1 97.2610 0.16
70 0.001 600 1 96.9054 5.71
71 0.001 900 1 96.7483 9.11
72 0.001 700 1 96.2201 5.82
73 0.001 800 1 96.0721 2.90
74 0.001 600 1 96.4193 5.03
75 0.001 300 1 97.7321 0.72
76 0.001 100 1 96.4961 5.71
77 0.001 1,000 1 96.5272 6.17
78 0.001 800 1 97.9809 5.82
79 0.001 1,000 1 96.3855 0.16
80 0.001 800 1 96.1156 5.71
81 0.001 700 1 95.7964 0.11
82 0.001 500 1 96.2574 3.52
83 0.001 200 1 96.9054 5.13
84 0.001 100 1 96.7483 9.11
85 0.001 1,300 1 96.2201 9.81
86 0.001 1,100 1 96.0721 0.82
87 0.001 1,900 1 96.0193 3.52
88 0.001 1,700 1 96.4393 5.13
89 0.001 2,100 1 97.7321 0.11
90 0.001 1,900 1 96.4961 3.52

6 CONCLUSION
We have proposed in this paper a novel approach based on the pretreatment of the processed initial 
data using genetic algorithms for anomalies detection of the traffic throughout an IP Network. In 
presence of noise, certain false alarms can occur with a rate lower than 10% blurring sometimes the 
real detection of real anomalies, but the detection of abnormal ( real DOS or DDOS anomalies) 
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traffic remains satisfactory. Nevertheless, this method presents a certain disadvantage when we com-
pare it with those in literature developed by other authors and reported in references [15, 19, 20]. 
Ours is experiencing a longer learning time in our learning step and hence requires a bigger and 
wider memory space. This is in fact, the main drawback of our SVM classifier. Otherwise, once the 
learning is achieved, then classification takes a very short time. Work is in progress to devise and 
realise a more precise classifier that may use many SVM classifiers in a tree structure.
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