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ABSTRACT
In light of the fact that building envelope design and construction are critical for building performance as well 
as the fact that architects and engineers rarely collaborate in the early phases of design processes, the Facade 
Laboratory at The University of Texas at Austin was established. The laboratory exists as a physical chamber to 
allow testing in the areas of daylighting, thermal exchange, ventilation, and the use of direct and indirect solar 
energy. The full-scale size of the Facade Laboratory helps provide particularly accurate data, as the prediction 
of a structure’s lighting and thermal behavior is inherently dependent on the use of real-scale testing facilities. 
Simultaneously, the data collected through experimentation with the Facade Laboratory is used in the calibra-
tion of energy simulation software. Physical facade mock-up tests inspire new speculative simulated tests and 
vice versa. An initial shading structure, Prototype 1, was designed, built, and tested virtually and physically. 
A second scheme, Prototype 2, tested only virtually thus far, expands upon the fi rst scheme by proposing 
speculative hybrid light/ventilation fi lters which incorporate passive daylight to optimize building energy con-
sumption, thus allowing for improved interior lighting conditions while simultaneously creating improved 
indoor air quality. The Facade Laboratory offers the opportunity to develop an integrated approach to problem 
solving by an interdisciplinary team of architectural and engineering students as well as professionals. Initial 
facade construction design and mock-up experiments as well as corollary virtual experiments have yielded 
interesting qualitative and quantitative results, warranting a larger discussion regarding their implications.
Keywords: Daylighting, interdisciplinary collaboration, shading device.

1 INTRODUCTION
In the evolutionary advancement of sustainable design considerations, building enclosure design 
and construction have become increasingly critical in the execution of optimal performance in 
terms of quantifi able sustainable effi ciency as well as phenomenological performance. We spend an 
average of 90% of our time indoors, and the built environment that immediately surrounds us is 
infl uenced by many factors, including scale, proportion, materiality, light, and color. Historically, 
architectural research at universities has focused primarily on these physical aspects, while issues 
related to the performance of buildings was conducted by architectural and structural engineers and 
only rarely connected to spatial explorations. As buildings continue to consume nearly 40% of all 
the energy produced [1] and as our natural resources are becoming increasingly scarce, the archi-
tectural profession has recognized the need for more sustainable building practices. Practitioners 
have identifi ed the potential impact that climatic conditions and the resulting performance require-
ments can have on the aesthetic qualities of our buildings, and are beginning to open a new venue 
for research in this fi eld.

The ever-pressing issue of energy effi ciency must also be balanced with consideration of the 
human condition and the critical relationship between the human body and the external environment. 
The human body has evolved around the conditions of natural daylight. Our circadian rhythms are 
rooted in the natural cycle of light and dark [2]. The best way forward for architectural design is to 
look back at our origins while testing and incorporating the latest technologies to optimize building 
envelope performance. The building envelope must strike an optimal balance between energy effi -
ciency and spatial/formal perception. In terms of minimal internal energy use, the most ‘effi cient’ 
building might have no openings at all, although such an internal environment would be far from 
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desirable due to a complete lack of natural light and views. To maximize effi ciency and perception 
of space, the transparent elements of a building are the most critical points for consideration, as these 
transparent surfaces are the primary conduit for thermal exchange as well as sunlight and daylight 
transmission. In addition to performing as the primary defi ning aesthetic feature of a building, the 
envelope provides an opportunity to enhance and expand upon our relationship with nature in terms 
of light, air, and views.

Air and light are two of the most fundamental elements to the existence of mankind, and both 
require a degree of fi ltration for human consumption in many cases. ‘Filtration’ is technically 
a removal or containment of at least a portion of elements before penetration of a given surface [3]. 
Two thousand years ago, Roman industries acknowledged and mitigated the dust problem, and cali-
brated daylight screens have existed since the Moorish Ahlambra of the 15th Century, with similar 
techniques of diffusing light tracing as far back as the 11th century in Islamic architecture. The 
Islamic screens, known as masharabiyyas, combine functionality with aesthetic and symbolic quali-
ties, creating spatial separation, while the porosity of the screen allow cross-ventilation and light 
fi ltration [4]. The fi ltered light varies throughout the day both in direction and shape, adding com-
plexity to the adjacent surfaces that capture the light and shadow, while varying lighting conditions 
within the space. Though air and light fi ltration developed as separate entities historically, they have 
not developed as a hybridized air/light modulation technique. Over the years, air quality control has 
fallen into the hands of engineers and daylight management into the realm of the architect, with no 
cross-pollination between the fi elds despite the interdependent relationship of the two.

However, in most facade design processes, aesthetic issues have been the primary concern of 
architects, while energy-effi ciency optimization has been almost exclusively the role of architectural 
engineers, and even that rigorous analysis is extremely new to the profession in relative terms. 
Simulation software has begun to bridge that gap as a collaborative tool, and now the Facade Labo-
ratory at The University of Texas has been established as a physical full-scale facade testing tool to 
compliment its digital counterparts. Balance and interaction between the two establishes a synergy 
and a loop between virtual and physical test scenarios for a singular design, as well as an interdisci-
plinary tool for both architects and engineers in the academy and the profession, to affect positive 
change in facade design energy optimization in addition to establishing parameters which can act as 
inspiration in formal and aesthetic decisions within tolerance margins.

2 THE UNIVERSITY OF TEXAS FACADE LABORATORY: 
A QUANTITATIVE FACADE TESTING TOOL

Based on the need to facilitate experimental research related to the improvement of building enve-
lope performance and to compliment virtual simulation data, the Facade Laboratory was established 
at The University of Texas in late 2009 to allow testing of innovative building components and 
systems, pairing the quantitative analysis of energy performance with the qualitative analysis of 
space, aesthetics, and design (see Fig. 1). The Facade Laboratory consists of a full-scale, single 
room space with a south-facing facade, which allows for thermal experiments as well as testing in 
the areas of daylighting, ventilation, and the use of direct and indirect solar energy. The small test 
box with exterior dimensions of approximately 4 × 5 × 3 m (w/d/h) is located on top of a campus 
building. The facility is able to measure the effects of innovative cladding materials and shading 
systems, which inform the fi eld of experimental research as it relates to sustainable building in two 
signifi cant ways. First, as an important subsystem within a building, the building envelope’s pri-
mary task is to regulate the external climate conditions to provide comfortable internal conditions 
for the occupants. As a result, the envelope’s performance has a signifi cant impact on a building’s 
overall energy consumption and dramatically infl uences the load on mechanical building services. 



 M. Fajkus, Int. J. of Design & Nature and Ecodynamics. Vol. 7, No. 4 (2012) 341

Second, predicting a structure’s thermal behavior is inherently dependent on the use of real-scale 
testing facilities, since the relationship between building volume and surface area is a crucial factor 
with regard to thermal gains and losses as well as energy demand, thus affecting internal comfort.

The Facade Laboratory allows for careful analysis of each interior plane (wall) of a space with 
a matrix of sensors which together provide remote readings of thermal and daylight data, as affected 
by any combination of shading device and climatic instance in time (see Fig. 2). For example, the 
ceiling plane, when properly illuminated by a light shelf or other refl ective shading device, can carry 
light deep into a space, which is particularly important in commercial buildings with deep fl oor 
plates.

The laboratory also allows for experiments with different materials that yield varying results in 
terms of thermal property capacities. Metal, wood, and plastic have very different properties in terms 
of thermal storage capacity as well as refl ectance, as noted by Schittich [5], which can be measured 
quantifi ably by the laboratory. For this particular research and prototypical design, daylight was the 
measured element of focus, as thermal impact calculations were not performed.

2.1 Basis for experimental physical test case (prototype 1)

As an initial example of The University of Texas Facade Laboratory’s potential as a tool for design 
and experimentation, a shading device prototype was designed and developed by Stefan Bader, a 
student in the Master of Sustainable Design Studies program, under advisor Professor Dr. Werner 
Lang. Starting in early 2010, the design set out to achieve a shading structure which would maximize 
effi ciency as well as internal comfort, daylight, and views. In addition to phenomenological aspects, 

Figure 1: View of Facade Laboratory on platform.
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the project aimed at high standards in regard to low energy use, by limiting cooling loads and 
demands for artifi cial lighting, while avoiding glare and winter heat loss. More specifi cally, the shad-
ing structure was intended to be a patterned array of fi xed shading components, sharing an overall 
geometric logic but varying in size and proportion to fulfi ll desired criteria, such as views, transpar-
ency, as well as the aesthetic appearance of the structure itself in addition to its solar and thermal 
implications.

2.2 Benchmarking to establish baseline parameters for prototype 1

The Facade Laboratory allows for quantitative full-scale testing of conventional facade and shading 
systems, to establish baselines within the existing built environment. To be able to design optimized 
and innovative structures, it is critical to specifi cally understand conventional shading structures. Six 
generic benchmark shading structure types (see Fig. 3) were tested for solar radiation in the specifi c 
hot, humid Austin climate in which the Facade Laboratory exists, via digital simulation processes, 
and the results were documented in the research of Bader [6].

2.2.1 Horizontal louvers (type A)
The type of horizontal louvers tested in this study consists of blinds which are perpendicular to the 
surface. They have a depth and a distance between each blind of 30 cm. They span over the entire 
width of the window (see Fig. 3a). The horizontal shading devices had a small improvement of 
3.24% compared to southwest and 10.55% to the west. Horizontal louvers on the southwest 

Figure 2: View of Facade Laboratory interior with remote sensor equipment.
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allow 7.31% more solar radiation than for a west-orientated surface. Horizontal louvers have a min-
imum shading coeffi cient (sc) of 0.47 (west) (see Fig. 4).

2.2.2 Vertical louvers (type B)
The design of the vertical blinds has a depth and a distance between each blind of 30 cm and covers 
the entire height of the window wall (see Fig. 3b). Vertical shading devices on west-orientated sur-
faces provide 10.10% less shading than on the south and also 2.85% less than on the southwest. 
Compared to horizontal louvers, vertical blinds can only provide a minimum sc of 0.68 (west), no 
matter the orientation (see Fig. 4).

2.2.3 Eggcrate shading structure (type C)
Eggcrate shading structures are a combination of the horizontal and vertical blinds as described 
before. The square type is designed with an opening of 30 cm width/height and a depth of 30 cm 
(see Fig. 3c). South-orientated eggcrate shading structures deliver the best results with regard to 
shading. With 4.84% more shading in south than southwest and even 11.57% more shading than 
west, eggcrate shading structures show a minimum shading coeffi cient (sc) of 0.39 (west) in all 
orientations (see Fig. 4).

2.2.4 Horizontally orientated shading structures (type D)
The honeycomb structure consists of symmetrical hexagonal components with a depth of 
30 cm. They have a diameter of 30 cm and a circumference of 9 cm, resulting in 20 cm long 
edges. The maximum component height is 34 cm. These honeycombs are wider than tall. They 
have two horizontal edges (see Fig. 3d). Similar to eggcrate structures, this type performs best 
in south. It provides 5.12% more shading than southwest and 10.70% more shading than west. 
With a minimum sc of 0.38 (west), this type of honeycomb has a similar behavior as an eggcrate 
type (see Fig. 4).

Figure 3: Generic conventional shading device benchmarks.
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2.2.5 Vertically orientated shading structures (type E)
This structure is similar to a horizontally orientated honeycomb but rotated by 90 degrees. Thus, the 
components are taller than wide and have two vertical edges (see Fig. 3e). This honeycomb, orientated 
toward south, performs best of all honeycomb structures in type and orientation. With a sc of 0.27, it 
is slightly better but performs similar on south as the horizontally orientated type. It performs 
4.50% (southwest) and 10.65% (west) better than in the other orientations. The minimum sc is 
0.38 (west). Comparing the percentages of horizontally and vertically orientated honeycomb structures, 
it can be concluded that a change of its orientation has a slight impact on the shading performance. 
In general, vertically orientated honeycombs perform better than horizontally oriented types (see Fig. 4).

2.2.6 Vertically orientated honeycomb w/1.4 m circumference (type F)
The third variation of the honeycomb structure has a circumference equal to the sum of the sides of the 
square openings of the eggcrate structure, which is 1.4 m. Thus, this honeycomb structure is actually 
bigger than types 4 or 5 (see Fig. 3f). Similar, but with 3.69% (type 4) and 3.91% (type 5) less provided 
shading than other honeycomb types, this type also has its best performance on a south-orientated 
surface. As expected, it performs in every direction slightly worse than the other types. Compared to 
the south, this type provides 5.49% less shading in southwest and 11.64% in west (see Fig. 4).

3 DESIGN METHODS/GOALS FOR PROTOTYPE 1 
(OPTIMIZED HONEYCOMB VARIANT)

The design of the experimental shading device (prototype 1) began with thorough research includ-
ing a rigorous analysis of the times when sun shading is needed at the given geographic coordinates 
and south-facing orientation, and the surface needs of a shading device, based on an understanding 

Figure 4: Monthly solar radiation comparison of benchmark shading devices.
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of the local sun path, as spelled out by Bader [6]. In the hot, humid climate of Austin, Texas, the 
summer exterior temperature is above the comfort level more often, and thus direct summer solar 
radiation frequently leads to overheating. In contrast, direct winter sunlight is desired to reduce 
heating loads and electrical consumption by artifi cial lighting. Therefore, the fi rst shading proto-
type was designed to provide full shading in the summer and direct solar exposure in the winter, 
while existing as a static structure, as well as optimizing views out from the inside.

After carefully considering the advantages and disadvantages of each generic benchmark shad-
ing device type, a honeycomb variant was chosen as the general shape of the unit or module of the 
experimental prototypical shading device (see Fig. 5). This decision took into consideration solar 
performance as well as construction material assembly. First, the honeycomb form loosely mimics 
the semicircular daily path of the sun. Second, the hexagon shape is structurally more rigid than a 
rectangular form, due to its diagonal members which utilize the structural principle of triangula-
tion. The pattern also uses a minimal amount of surface area to create a lattice of cells within a 
given volume and the hexagonal forms stack well to reduce material. Lastly, the novelty of the form 
was a driver in the pursuit to explore undocumented territory in shading device design, as noted by 
Bader [6].

3.1 Prototype 1: Fabrication and comparative performance results

The experimental prototype was cut out of polypropylene sheets with a Computer Numerical Con-
trol (CNC) Router and assembled in units (see Figs. 6–8). Results showed that the optimized 
honeycomb experimental prototype structure provides the lowest sc for south relative to conven-
tional counterparts, but performs best for southwest and west. For south, the sc is provided by the 
vertically oriented honeycomb structure. With a sc of 0.27 the structure provides almost 43% more 
shading than the optimized honeycomb structure. On southwest, the optimized honeycomb structure 
provides 15% more shading than the vertically orientated honeycomb structure, which provides the 
second best sc. Similar results are seen for west, where the optimized honeycomb shading structure 
provides a sc of 0.29, which is 21.2% better than the second best shading structure, again the verti-
cally orientated honeycomb shading structure. But again, the results could also show that the 
optimized structure only provides more diffuse solar radiation than the others and thus, it simply 
allows a higher degree of visual comfort with full shading from March until September, the critical 
months with regard to high temperatures.

Figure 5: Virtual development of experimental prototype structure.
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4 DESIGN METHODS/GOALS FOR VIRTUAL LIGHT/AIR FILTER WALL
Expanding upon the process and fi ndings of prototype 1, prototype 2, a hybridized air/light fi lter 
wall, is proposed as a continued speculative design study. Prototype 2 was compared to the control 
variables of a conventional punched windows and a curtain wall system (see Figs. 9–11). An iterative 
software analysis process was implemented to test radiosity, daylight distribution, and resultant 
required energy loads for prototype 2. Using AutoCAD 2010, a single three-dimensional test house, 
of 40 m2, was digitally modeled, with a representative table height surface and a seating surface, 

Figure 6: Construction and assembly of experimental prototype structure.
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to evaluate illuminance levels at those critical heights. A 3D Studio Max was used to simulate radi-
osity renderings. Most critically, Energy Plus was used as a rigorous software tool to analyze 
daylighting performance in a series of illuminance maps, which show precise amounts of daylight 
in plan. Illuminance mapping was performed to provide fi ne grain visual data analysis set in 
abstracted graph form. The digital test house experiments were set on the spring/fall equinox, 

Figure 7: View of experimental prototype shading structure on Facade Laboratory.

Figure 8: View of experimental prototype shading structure on Facade Laboratory.
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Figure 10: Comparison of daylight coeffi cient between shading and no shading.

Figure 9:  Facade system diagrams. (a) Conventional punched window wall, (b) conventional curtain 
wall, and (c) hybridized air/light fi lter wall (prototype 2).
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at latitude 37.795 and longitude −122.394 to most closely capture an average day, at a moderate 
latitude in the middle of the continental United States. The test house was modeled with conven-
tional stud wall construction, R-30 roof, and an R-19 fl oor. The hybridized fi lter panels allow 15% light 
transmission, and the default interior surfaces were set as a moderate level of refl ectivity. This pas-
sive daylighting analysis relates to specifi c shading devices in case studies, such as Helmut Koster’s 
Thermolux shading device analysis in Dynamic Daylighting [2]. The uniqueness of prototype 2 is 
based on its integral use of fi ltration devices to modulate daylight, allowing for cross ventilation in 
addition to light management.

Figure 11: Effect of experimental prototype structure on daylight distribution.
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5 RESULTS
Prototypes 1 and 2 were measured individually to gauge results, using the respective parameters 
relating to their basis. Lux was used as the unit of measurement for light, where ~300–600 Lux is 
considered a target quantity of interior daylight for performing a wide range of tasks (see Fig. 10). 
Cross ventilation is assumed to occur by natural wind and convective forces in case of the experi-
mental hybridized wall system, although no in-depth analysis was conducted to measure the ideal 
amount of openings and/or area of fi ltration, which was considered beyond the scope of this 
investigation.

5.1 Prototype 1 results

Prototype 1 performed well in terms of daylight coeffi cient compared to the control condition with-
out shading in terms of stabilization (see Fig. 12), and due to the minimized use of material, the 
optimized honeycomb shading structure is highly competitive with the other generic shading devices. 
The experimental shading device strongly distributes and controls daylight level (see Fig. 13). Ulti-
mately, it even performs third on area of unrolled shading structure and performs best on total 
volume of shading structure. Even though it has a slightly larger area of visible shading structure 
than the honeycomb shading structure with a circumference of 4′, it provides a high degree of visual 
contact due to the enlarged openings in defi ned regions, which provide the same sc as smaller com-
ponents. Though qualitative, it can be argued that the optimized honeycomb is more interesting and 
aesthetically intriguing (due to climatic specifi city) than conventional louver types (see Fig. 8).

Figure 12: Illuminance simulation map results. (a) Conventional punched window wall, 
(b) conventional curtain wall, and (c) hybridized air/light fi lter wall (prototype 2).
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5.2 Prototype 2 results

Energy Plus daylighting analysis shows that the experimental hybridized air/light fi lter wall 
(prototype 2) provides a more moderate overall illuminance and passive daylight than either of the 
conventional wall and glazing types. The experimental scenarios provides a gradient of various 
lighting conditions, to allow the occupant to choose different areas in the space for different tasks, 
depending on the amount of light needed or desired, and/or to allow the occupant to reside in multi-
ple temperature zones in different areas throughout the day within the singular space, reducing the 
need for mechanical and artifi cial thermal control.

Figure 13: Radiosity rendering daylight simulations. (a) Conventional punched window wall, 
(b) conventional curtain wall, and (c) hybridized air/light fi lter wall (prototype 2).
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6 DISCUSSION
Daylight is a versatile asset in the design process, as it can be designed to produce a variety of light-
ing conditions through natural modulations in intensity, diffusion, and direction over time. Research 
suggests that levels of natural light, which have shorter wavelengths than electric lighting, can be 
a suppressant of melatonin, thereby affecting the human biological system positively [7]. Although 
direct sunlight can result in glare issues, methods of controlling and diffusing light can alleviate such 
issues to produce comfort within a space.

Prototype 1 suggests that shading structures can achieve optimal daylight performance, while 
maximizing views and introducing novel architectural forms. Prototype 2 suggests that a hybridized 
fi lter may be a feasible answer to a common problem with cross ventilation. For example, architec-
tural projects designed in hot, arid, desert climates would benefi t from cross ventilation as 
air-exchange strategy, but buildings encounter the problem of inviting in the heat, sand, and pollution 
along with wind. In addition, if fi lters were applied in a skyscraper condition, an inconsistent gradi-
ent would result when increasing elevation due to shifting daylighting conditions and the potential 
for greater pollution at higher altitudes. Such a hybridized fi lter could be used to allow the movement 
of air but keep out the unwanted elements and also double as a partial shading device.

7 CONCLUSIONS
Amidst increasing pressure to improve building sustainability, there exists a dire need for collabora-
tion between architects and engineers to optimize quantitative and qualitative building performance, 
including merging between the two disciplines. By increasing our quantitative understanding of the 
cause and effect relationship between shading device design and daylight transmission, qualitative 
design processes can be rigorously measured in an integrated manner, thus creating some overlap 
between the roles of the architect and engineer. This research suggests that there can exist a new 
middle working ground toward the quantifi able and qualitative design alternative building envelope 
design solutions with improved functional, ecological and aesthetic properties which can be adapted 
and applied in future developments in various climatic conditions.

The experimental honeycomb variant shading device (prototype 1) designed by Stefan Bader is a 
promising start, both qualitatively and quantitatively, and is indicative of the potential of the Facade 
Laboratory to act as a powerful experimentation tool for design studies to manage annual solar 
radiation and expand upon options for high performance facades by developing a variety of shading 
structures for building skins. The physical reality of the mock-up on the Facade Laboratory and its 
measured results, coupled into a design loop with simulation software, allow for an unparalleled 
positive synergy between the virtual and physical testing, ultimately enhancing design processes.

As prototype 2 suggests, there also exists a great capacity for further investigation on the coupling 
of air and light fi ltration. In the future, the fundamental process of air fi ltration may have a place in 
architectural design processes as early as the schematic design phase. By considering fi ltration as a 
design concept, indoor air quality issues are much more likely to be taken seriously in architectural 
design processes and seen as a featured device, rather than a back-of-house technical eyesore to be 
placed out of sight. Thus, hybridized fi lters on display in building facades could raise awareness of 
indoor air quality issues in architectural spaces. Prototype 2 could potentially become more practical 
if it performed triple duty as a sponge which also absorbs the water, allowing it to be collected, 
stored, and pumped through the facade, in turn creating a water wall that cools the air while fi ltering 
it. The sponge fi laments could even contain a gas that expands when exposed to sunlight, decreasing 
the amount of direct light allowed in. Though development of light fi ltration and air fi ltration has 
occurred over time, the development of an integrated design could provide a new range of fl exibility 
in building facades.
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The Facade Laboratory at the University of Texas at Austin School of Architecture, and the spec-
ulative design it inspires, clearly offers the opportunity to develop an integrated approach to 
problem-solving by interdisciplinary teams of scientists and students from architecture, engineering, 
natural sciences, and other fi elds. The value of this experimental facility will be further amplifi ed 
through its dynamic and integrated use by architects, planners, designers, and engineers.
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