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ABSTRACT
Mud and debris fl ows are natural phenomena representing serious hazard for population and structures 
in mountain zones, because of their rapid occurrence and the diffi culty in forecasting the phenomena 
initiation. Numerical models can however be useful in predicting the peak discharge and the strength of 
fl owing mass, helping administrations in preparing risk mitigation measures. In this work, a numerical 
model for hyperconcentrated fl ows is presented. It is based on shallow water equations, with a particu-
lar source terms treatment which translates into an increased numerical stability and makes the model 
highly versatile. The test case applications focus on some fundamental characteristics necessary for 
debris- and mud-fl ow representation. In particular, classic dam-break problems have been used to test 
wave celerity and wet-dry fronts propagation, while a mud-fl ow dam-break problem has been chosen 
to investigate model sensibility to different rheological schemes. Then, the model has been applied 
to two real events that occurred in Northern Italy. The fi rst one is a debris fl ow which took place at 
Acquabona, near Cortina d’Ampezzo. This event is extensively documented, since it has been observed 
by a monitoring station prepared by the University of Padua. The second one is a tragic event, during 
which the little town of Stava has been stricken by a destructive mud fl ow caused by the collapse of 
two earth dams.
Keywords: debris fl ow, mud fl ow, numerical simulation, source terms.

1 INTRODUCTION
Mud fl ow and debris fl ow are similar terms used to identify hyperconcentrated fl uids, com-
posed by a mixture of sediments and water, fl owing over steep topography. The difference 
mainly lies in the sediment fi ne fraction, which is determinant for the fl uid rheological behav-
iour [1, 2]. The use of the correct rheological scheme provides the basis for the reliable 
modelling of the phenomenon. Mud fl ows, characterised by high fi ne particles content, are 
well represented by yield-stress viscoplastic fl uid models, among which the best known and 
widely used is the Bingham model [3]. On the other hand, granular debris fl ows dynamic can 
be described by granular fl uid models such as the Bagnold model of inertial regime [4]. This 
is just a rough classifi cation, deeper information can be found in the literature from the works 
of several authors [5–7]. However, even the most detailed classifi cation is generally not suf-
fi cient to completely describe these kinds of events, since the sediment–water mixture is 
usually variable in time and space inside the same fl ow, and therefore the rheological behav-
iour is not homogeneous too.

One feature that surely is common to all hyperconcentrated fl ows is the destructive power. 
Though the dynamics of such fl uids can be similar to that of water fl oods, their kinetic energy 
is up to one order of magnitude higher than that of clear water. This depends partially on the 
mixture density, which is almost double, and mainly on the fl ow velocity, which can be up to 
fi ve times greater. The high destructive power translates into a risk which must be adequately 
defi ned and measured.

In general terms, two different points of view can be assumed when defi ning the acceptable 
risk level: the social point of view and the individual point of view [8]. Synthetically, the total 
risk associated with the different activities involving population can be assumed to be similar 
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to what is accepted at an individual scale. In the specifi c situation of debris fl ows occurrence, 
the worst and less sustainable damages are related to buildings and road services destruction, 
since in both cases, the loss of human lives is frequent. In the fi rst case, protection and debris 
diversion works are preferable for buildings protection, since the probability of people’s pres-
ence inside buildings is very high. In the second case, the effective risk is related to the 
contemporary presence of people on the road, and therefore the risk can be assumed as 
acceptable if protection works are not present.

Nevertheless, the forecasting of sediment volumes moving and depositing over the inter-
ested areas during possible events, is fundamental in order to have reference scenarios and to 
evaluate the associated risk. The main task is therefore the prediction of fl ow parameters, 
among which the most important are the volume magnitude, the run-out distance, the momen-
tum, and the impact force.

The aim of the present work is the setting-up of a numerical model suitable for the simula-
tion of hyperconcentrated fl ows in channels of complex geometry. To fulfi l this purpose, the 
model should have some specifi c features that will be examined in detail, such as the correct 
treatment of wet-dry fronts, the handling of complex geometries and steep bottom slopes, and 
the possibility of changing the model application fi eld from Newtonian to non-Newtonian 
fl uids, simply by changing the resistance law.

The proposed model is based on an alternative formulation of conservative balance equa-
tions, which includes a particular mathematical expression of source terms ideated for natural 
channels, and which has already demonstrated important stability features under the numeri-
cal point of view [9, 10]. This formulation is kept in the present work, while the innovation 
stands in the numerical implementation, since a fi nite volume method based on Roe’s scheme 
is used instead of the MacCormack fi nite difference method [9, 10]. The main reason is the 
necessity of correctly capturing front wave propagation speed in case of initially dry bed, for 
which Riemann solvers-based techniques are recommended [11–14]. The second reason is 
the intention to verify if the model stability features are kept even if the numerical implemen-
tation radically changes.

Finite volume schemes are largely diffused in mud-fl ows treatment [15–18], and, among 
Riemann solvers, the Roe’s approximation is often preferred [15, 17]. The presented model 
uses the same approach, paying careful attention in conserving a general formulation suitable 
for channels of complex geometry. This leads to a particular expression of the wave propaga-
tion celerity, which does not depend directly on water depth and cross-section width. For 
irregular cross-sections, these hydraulic parameters are often corrected or mediated to be 
representative. Alternatively, cross-section shape can be parameterised to be numerically 
handled with simplicity [18]. In order to avoid geometric simplifi cations or approximated 
parameters in this work, celerity is determined referring to the cross-section wetted area and 
static moment. This ensures the formulation generality.

For what concerns the source terms treatment, one should distinguish between pressure 
terms and friction terms. The pressure source terms, induced by the channel irregular geome-
try have been treated mathematically transforming the longitudinal derivative of the static 
moment in order to eliminate the explicit dependence from the channel bed slope [9, 10]. Fric-
tion source term mainly depends on the rheological behaviour of the mixture. Like most of 
numerical models [19], the proposed model setup permits to easily change the resistance law 
and therefore to use the best fi tting rheological model for each test case. Finally, source term 
numerical implementation has been kept as simple as possible, to put in evidence the stability 
features coming from the basic mathematical model. Source terms are therefore computed 
with the Euler’s method and handled using the splitting technique [11].
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All the mentioned features have been investigated choosing specifi c test cases. The classic 
frictionless dam-break test has been used to verify the correctness of waves speed propaga-
tion and the capability of treating wet-dry fronts. A non-prismatic frictionless ideal channel 
has been used to evaluate the model response to abrupt changes in cross-sections width and 
bed elevation. Then, the effect of friction terms addition has been checked using a mud-fl ow 
dam-break, for which the analytical solution is available. This test permits to consider and 
compare different resistance formulas, and can also be used as a testing ground for the intro-
duction of different rheological schemes inside the model. It is also useful for testing the 
wave front propagation speed and the liquid–solid discharge stopping conditions. The model 
has been further tested using laboratory experiments on mud-fl ow dam-break over a sloping 
plane. Finally, it has been applied to two real events that occurred in Northern-Eastern Italy. 
The fi rst one is a debris fl ow which took place in 1998 in the Upper Valley of River Boite, 
near Cortina d’Ampezzo. The second one is a mud fl ow event that occurred in the Stava 
Creek Valley in 1985.

2 MATHEMATICAL MODEL
The model is based on shallow water equations, written in conservative form for one-
dimensional fl ows in natural channels of complex geometry. We assume a one-phase model. 
State variables are the wetted cross-section area A and the discharge Q [12, 20].
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where t is time, x is the distance along the channel, q is the lateral infl ow per channel unit 
length, α is the Coriolis coeffi cient (for the sake of simplicity it is herein assumed to be equal 
to unity), g is the gravitational acceleration, ϑ is the angle between the bottom line and the 
horizontal, I1 is the static moment of the wetted area, I2 is the variation of I1 along the 
x- direction, S0 is the bottom slope, and Sf is the friction slope.
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where z is the vertical coordinate, b(x, z) is the local cross-section width, h(x) is the local 
water depth, and zb(x) is the bottom elevation.

The resistance formula approach deals with the shear stress formulation, which in turn 
depends on the rheological model. Generally speaking, the friction term can be computed 
according to three different schemes: (a) one-phase model, accounting for the overall resistance 
behaviour of the solid–fl uid mixture; (b) two-phase model, considering separately the contribu-
tion to the resistance force associated with liquid and solid phases; (c) multi-layer model, 
assuming a number of superimposed fl owing layers, each one with a specifi c fl ow resistance 
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behaviour. An appreciable review of these models can be found, as an example, in [13], whereas 
signifi cant information about two-phase models can be found in [15].

In the present model, a lumped rheological model is assumed. As a consequence, the 
hyperconcentrated fl ow is treated as a continuum, and the basic shear stress is adopted inside 
the depth-averaged momentum equation:

 
fS gR
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where R is the hydraulic radius, defi ned as A/P (P being the wetted perimeter), r is the 
 mixture density, and t is the shear stress.

Let us consider the longitudinal derivative of the static moment of the wetted area I1:
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by applying the Leibniz integral rule, we obtain:
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Accounting for the product rule:
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where z is the local vertical coordinate and does not depend on x, therefore ∂z/∂x = 0 and
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Accounting for the defi nition of the wetted area and of I2, the longitudinal derivative of the 
static moment I1 results as the sum:
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On the other hand, the reference plane (datum), from which the water surface elevation zw 
is measured, is completely arbitrary, and can be assumed to be equal to local channel bottom 
elevation z0. In this way, we have:
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and therefore the derivative of the static moment is:
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Accounting for the defi nition of water depth, we have:
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Combining eqns (12), (14), and (15), we obtain:

 

1 1
0 2

w

w w

w z

z zI I
A AS I
x z x x

∂ ∂∂ ∂
+ + = +

∂ ∂ ∂ ∂
 

(16)

Since:

 

1 1

w

I I
A

z h
∂ ∂

= =
∂ ∂  

(17)

we fi nally obtain:
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The substitution of eqn (18) inside eqn (2) brings to:
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Considering the momentum balance eqn (20), it is worth noting the presence of the “reduced 
bottom slope” S0(1 – cosϑ). Nevertheless, comparing the reduced bottom slope S0(1 – cosϑ) 
with the friction slope Sf, it is clear that the latter has a different order of magnitude if com-
pared with the former. This is true in particular in case of ϑ less than 30°, being cosϑ > 0.87. 
Therefore, for the sake of simplicity we assume gAS0(1 – cosϑ) + gASf  ≈ gASf and cosϑ  ≈ 1.

3 NUMERICAL MODEL
Shallow water equations have been numerically implemented using the fi rst-order fi nite volumes 
Godunov scheme. Numerical fl uxes are computed with Roe’s method and source terms are 
evaluated with Euler’s approach and taken into account adopting the splitting technique. Details 
on the different components of the numerical model can be found in [11]. The resultant scheme 
is explicit, fi rst-order accurate, and has a very uncomplicated structure, since it is built choosing 
the simplest solution technique for every component of the partial differential equations system. 
This approach has the intention to illustrate the intrinsic stability features of the mathematical 
model, which could otherwise be hidden by more sophisticated numerical schemes.

In order to write the shallow water equation in a compact form, three vectors can be 
 introduced:
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U is the vector representing the system unknowns, varying in time, which are in fact the state 
variables of balance equations.
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F is the fl uxes vector, representing the hydraulic quantities stored inside each cell. The fl ux 
terms vary along the x coordinate, and their variation expresses the mass and pressure 
exchanges between adjacent cells.
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S is the source terms vector, accounting for side mass addition, channel shape variation, and 
fl ow resistance, that are the main external driving forces for fl uid motion.

Indicating with the subscript t and x the derivatives with respect to time and space, the 
entire equations system is summarised as:

 ( ) ( )t x+ =U F U S U  (24)

Referring to this compact formulation, the splitting approach for the treatment of source 
terms consists in separately solving the homogeneous partial differential equation system 
(25) and then the ordinary differential eqn (26), adopting the solution of eqn (25) as initial 
condition.
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The solution of eqn (25) is found applying a Godunov type scheme, in which numerical 
fl uxes F are computed by means of the Riemann problem solution between adjacent cells. 
Considering the borderline between cells i and i+1, and assigning to it the position x = 0, the 
local Riemann problem is an initial value problem posed as:
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One of the most used numerical methods to solve the Riemann problem is the Roe’s 
approximation, which linearises the initial system of conservation laws by means of a coef-
fi cient matrix which substitutes the fl uxes vector:

 ( ) 0t x+ =U J U U  (28)

Therefore, the Roe’s scheme requires the defi nition of the so-called Jacobian matrix:
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In particular, the Roe’s approach consists in defi ning a constant coeffi cient matrix, based 
on the Riemann initial value problem for every computational cell:

 1( , )i i+=J J U U  (30)

Most of models proposed in the literature, which include the solution of shallow water 
equations for debris fl ow or for natural channels, by means of approximate Riemann solvers, 
adopt the same simplifi cation in the evaluation of the term ∂I1/∂A [15, 21], assuming
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Similarly, in Zanuttigh and Lamberti [18], a prismatic channel confi guration has been 
assumed, in order to simplify the source term inside balance equations, and get a more stable 
behaviour of the numerical model.

In the present model, in order to keep the formulation generality and to ensure the applica-
bility to natural and complex channel geometries, the static moment derivative is explicitly 
computed as the ratio between the variations of I1 and A, considering a water depth variation 
range h ± Δh close to the actual water depth h:
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The celerity c is therefore defi ned as:
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The new equations system (28) is still an hyperbolic system, it will therefore have m real 
eigenvalues lj(Ui, Ui+1) and m real eigenvectors K(Ui, Ui+1), with m = 2 when considering 
one-dimensional fl ow. It is possible to project the initial problem vectors Ui and Ui+1 along 
these eigenvectors by means of the wave strength coeffi cients aj.
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The Roe’s numerical fl ux can fi nally be expressed in three equivalent ways:
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The expressions for eigenvectors, eigenvalues, and wave strengths are:
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Another important aspect of Godunov fi nite volume method application to natural geom-
etries is the quantifi cation of cells water volume V and the defi nition of the relation between 
the state variable A and V. For every computational cell, A is defi ned as:
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Referring to Fig. 1, Vi is computed as the volume of a truncated pyramid, where bases are 
irregular polygons, since the water profi le is assumed to be parallel to channel bed.
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Figure 1: Computational scheme for Vi.
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4 SOURCE TERMS NUMERICAL TREATMENT
Source terms are numerically included in computations by splitting, and they are simply 
computed by Euler’s method considering no lateral infl ows.
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The momentum balance source term is composed of two parts: the friction term and the 
pressure term. The latter is represented by the static moment variation along channel, taking 
the water surface elevation as a constant.

This particular formulation requires the assumption of a horizontal water surface with a 
constant water level in every computational cell, differently from the parallel water profi le 
confi guration assumed for the solution of the homogenous system.

The constant value of zw is obtained by fi nding the horizontal water elevation which gives 
the same cell fl uid volume as that computed by eqn (44).

The computational scheme for the pressure term quantifi cation in represented in Fig. 2, 
and the variation of I1 is computed as:
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Adopting this computational scheme, particular situations can arise when water depth is 
small and bottom slope is high, as it happens for example to cell i in Fig. 2. In this case, in 
fact, the term I1(hi–1/2) is equal to zero. This problem is overcome by reducing the cell length 
Δx proportionally to the wet cell portion.

Figure 2: Computational scheme for momentum balance pressure source  term.
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5 NUMERICAL TESTS
Five test cases have been selected to investigate the performances of the proposed mathe-
matical model and numerical scheme. Test cases 1 and 2 are idealised problems of dam-break 
in a rectangular channel with dry bed and wet bed, respectively. These examples have been 
chosen in order to check the model capability to address wet-dry fronts and to compute the 
correct wave speed propagation. The third test case proposes the simulation of water at rest 
inside a non-cylindrical frictionless idealised channel, and is used to check the model 
response to geometrical and pressure source terms. With test case 4 the attention is shifted 
to non-Newtonian fl uids, with a mud-fl ow dam-break over horizontal bed. In this test case, 
the aim is to verify the correctness of the rheological model and the role of friction source 
terms. Finally, test case 5 refers to laboratory experiments about mud-fl ow dam-break over 
a sloping plane.

After the testing phase, the model has been applied to two real events. The fi rst one is a 
natural debris fl ow event, due to intense rainfall, surveyed at the Acquabona site in Northern 
Italy. It is of particular interest thanks to the large amount of available fi eld data. The second 
is the Stava mud fl ow, a tragic episode occurred in a little town of Italian Alps. This event was 
caused by the collapse of two tailing dams, which released a huge quantity of water into the 
Stava Creek channel, causing the formation of a mud fl ow wave with an enormous destructive 
power.

6 IDEALISED DAM-BREAK PROBLEM IN A RECTANGULAR 
CHANNEL WITH DRY BED

Let us consider a 10 m long rectangular channel, with horizontal and frictionless bed. A dam 
is located in the middle, 5 m far from upstream and downstream ends. Water depth upstream 
the dam is 1.5 m, while downstream the bed is dry. In the simulations, Δx = 0.1 m is set, while 
Δt is determined by the Courant–Friedrichs–Lewy stability condition assuming a CFL num-
ber equal to 0.9.

In Fig. 3a, the comparison between analytical and numerical solution is shown at time t = 
0.7 s. The classical Ritter’s solution can be found in Toro [11]. Wave front velocity is slightly 
underestimated, but it is coherent with the adopted numerical scheme. The use of the partial 
derivative of the static moment I1 with respect to wetted area A in the defi nition of the celerity 

Figure 3:  Comparison between analytical and numerical solution for the dam-break problem 
over dry bed (a) and over wet bed (b).
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(eqn (33)), instead of the water depth h, does not affect the effi ciency of the numerical 
scheme. The water profi le discontinuity at x = 5 m is related to the need of an entropy fi x cor-
rection for the Roe’s approximated Riemann solver. In this case, the Harten–Hyman entropy 
fi x has been used.

7 IDEALISED DAM-BREAK PROBLEM IN A RECTANGULAR 
CHANNEL WITH WET BED

The channel geometry is same as the previous test case, but the downstream water depth is 
set at 0.1 m. In this case, the element to check is the propagation velocity of the downstream 
shock wave. The analytical solution can be found in Stoker [22]. In Fig 3b, the comparison 
between analytical and numerical solution is shown at time t = 0.4 s. The essential features of 
the fl ow, such as front location, shock wave height, and front speed are well captured. As it is 
expected from the adopted fi rst-order scheme, a slight diffusivity is present at solution dis-
continuity points. As in the previous case, the Harten–Hyman entropy fi x correction has been 
added to reduce water profi le discontinuity at x = 5 m.

8 NON-CYLINDRICAL RECTANGULAR CHANNEL TEST 
This test case, proposed by Goutal and Maurel [23], presents a hypothetical frictionless chan-
nel, in which width and bottom elevation vary discontinuously along the longitudinal profi le. 
Every cross-section is rectangular in shape. As shown in Fig. 4a and b, this test presents 
abrupt bottom slope variations and sudden bank narrowing or widening, in particular at sta-
tion x = 800 m, channel breadth changes rapidly from 40 to 5 m. The geometry is completely 
described by 29 cross-sections, the total length is 1500 m, and it has been divided into 1500 
computational cells, assuming a constant cell dimension of 1 m. The simulated fl ow condi-
tion is water at rest. Null discharge is imposed upstream (QM = 0 m3/s) and a constant level 
zwV = 12 m is kept downstream, as boundary conditions. The initial condition is still water 
with constant level zw0 = 12 m and zero discharge Q0 = 0 m3/s at every cross-section. Com-
putation has been performed accounting for the Courant–Friedrichs–Lewy stability condition, 
using a Courant number equal to 0.85.

The same test case has been treated by the authors in a previous work [9] in which the 
proposed mathematical model has been implemented with the McCormack numerical 
scheme, obtaining for both discharge and water surface elevation with a computational 

Figure 4:  Non-cylindrical rectangular channel test: bed profi le (a), channel plan (b), and 
numerical simulation errors on Q (c) and on zw (d).
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 precision of 10–14. The application of the fi rst-order Roe’s scheme leads to computational 
errors around 10–11, but it can be considered as a satisfactory result if compared with the 
results of Garcia-Navarro and Vazquez-Cendon [21] model on the same test case. In their 
work, the Roe’s approximate solver and the fi nite volume numerical scheme were applied in 
association with another source terms treatment. The comparison with the results reported in 
Garcia-Navarro and Vazquez-Cendon [21] highlights the role of the proposed mathematical 
treatment of pressure source terms.

9 MUD-FLOW DAM-BREAK ON A HORIZONTAL BED
The fourth test case has the double function to shift the attention from Newtonian to non-
Newtonian fl uids and to verify the insertion of friction source terms inside the numerical 
model. To this end, the Hungr [24] test case has been selected. Hungr gives a solution for a 
plastic fl uid based on an approximated energy solution for a dam-break problem on a hori-
zontal bed 1500 m long, with the dam positioned at x = 305 m far from upstream. The initial 
water depth upstream the dam is 30.5 m, while downstream the bed is dry. The stopping loca-
tion for the water–solid mixture is expected to be at x = 1896 m, under Hungr’s assumption 
for yield stress and density. This test is usually employed to compare different fl ow resistance 
relations, since it furnishes an analytical reference solution [19]. In this work, three rheo-
logical models have been implemented and inserted into the model. The formulations and 
used parameters are summarised in Table 1.

For the numerical simulations the cannel has been divided into 1500 cells of constant 
width. Results are shown in Fig. 5. Except for slight differences in the fi nal fl ow profi le, the 
analytical stopping position is satisfactorily approached. The aim of this test case, however, 
is not the specifi c verifi cation of different rheological models, but of the general model 
response to their implementation. This aim can therefore be considered as fulfi lled. Another 
important confi rmation is the model fl exibility, since various fl ow resistance relationships can 
be indifferently used. In further testing, there will be the possibility of choosing the best 
fi tting rheological model.

Table 1: Flow resistance relations and parameters.
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Figure 5: Mud-fl ow dam-break results for different resistance formulae.

10 MUD-FLOW DAM-BREAK ON A SLOPING PLANE
In this test case, numerical results are compared with the experimental results of Laigle and 
Coussot [17]. The experimental device consisted of a 4 m long and 0.6 m wide fl ume, in which 
a sluice, positioned at 0.85 m from the upstream end was rapidly pulled up reproducing a 
quasi-instantaneous dam-break for the solid–liquid mixture. Flow depths were measured by 
three ultrasonic gauges positioned at 1.65, 2.75, and 3.85 m far from the upstream end, during 
the experiments. Several tests have been performed changing the plane slope from 6% to 31%. 
During the simulated experiment, the fl ume had a 16% slope. The mixture had a measured 
density r = 1410 kg/m3 and yield stress ty = 19 Pa. The rheological model adopted is the same 
proposed by Laigle and Coussot [17] in their work. Mixture behaviour can in fact be described 
by the Herschel–Bulkley model, which, for simple shear conditions, can be written as:

 c K ht t g= +  (48)

where K and h are rheological parameters. In the selected experiment, K results to be 
3.5 Pa·s1/3, while h has been empirically set equal to 1/3. Numerical and experimental results 
are compared in terms of peak height hP, residual height hR, and front arrival time tF in Table 
2, while Fig. 6 shows the mixture profi le development at different time steps (a) and the com-
puted hydrographs corresponding to the three measuring gauges (b). In general, peak height 
is slightly underestimated, while the residual height is sensibly overestimated for gauge 3. 
The wave front shows a little delay for gauges 1 and 3, while it is just in time at gauge 2. 
However, measured hydrographs are generally correctly captured for what concerns their 
shape, dimension, and position in time.

11 ACQUABONA DEBRIS FLOW
The Acquabona debris fl ow has been widely surveyed and documented in the context of the 
Debris Flow Risk project of the European Commission (ENV4-CT96-0253). In particular, the 
research concentrated on some debris fl ow-prone watersheds in the Upper Boite Valley  (Eastern 
Dolomites, Southern Alps) near the municipality of Cortina d’Ampezzo [25]. A large quantity 
of fi eld data is therefore available since an automatic, remotely controlled monitoring system 
has been installed at Acquabona in June 1997. The Acquabona site is characterised by one or 
more debris fl ow every year, which usually occur in summer and in early autumn and are asso-
ciated with intense but spatially limited rainfall events. Acquabona debris fl ow, although 
classifi ed as hill-slope-type, according to the defi nition by Brunsden [26] and Costa [27], is 
currently deeply channelised in the scree, and its fl ow path is well defi ned. This results in high 
risk for the national road and the factories in the valley bottom.
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The upper drainage basin of Acquabona is characterised by dolomite rocks and by a deep 
channel cut in heterogeneous deposits. The steep rock basin is almost entirely made up of 
moderately fractured dolomite, but is not affected by karst phenomena. It has an effective 
drainage area of 0.30 km2, average slope of 38°, and maximum length of only 1300 m. These 
characteristics translate into a rapid hydrological response to intense rainfall: collected water 
quickly reaches the outlet of the basin and meets a narrow rocky channel, full of debris. If 
rainfall intensity is suffi ciently high, the fl ow may exceed the relatively limited drainage 
capacity of the channel bed material and surface fl ow occurs. The whole process starts 30–45 
minutes after the peak intensity of precipitation and ends in the following 20–40 minutes, 
indicating a rapid hydrological response of the system in which the contribution of ground-
water fl ow is negligible. The monitoring system installed at Acquabona was fully automatic 
and remotely controlled. It consisted of three on-site monitoring stations and an off-site 

Table 2:  Comparison between experimental and numerical 
results for the mud-fl ow dam-break experiments by 
Laigle and Coussot.

Variable Experimental Computed

Gauge 1
tF (s) 0.48 0.58
hP (cm) 2.56 2.53
hR (cm) 1.06 0.97

Gauge 2
tF (s) 1.38 1.38
hP (cm) 2.12 2.08
hR (cm) 0.94 0.97

Gauge 3
tF (s) 2.13 2.24
hP (cm) 1.87 1.73
hR (cm) 0.69 0.92

Figure 6:  Mud-fl ow dam-break experiments by Laigle and Coussot: (a) mixture profi le 
evolution in time; (b) fl ow depth vs time at three measuring gauges.
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 master collection station. Every station was equipped with a geophone, and at Station 3 a 
superfi cial pressure transducer and an ultrasonic sensor was present too.

In this work, we refer to the event that occurred on 17 August 1998. The event was origi-
nated by a very intense rainstorm: 25.4 mm of rain were measured in 30 minutes by the rain 
gage at Station 1. The volume of the deposits available for debris fl ow generation has been 
estimated to be around 8000–9000 m3. The overall duration of the event was of approxi-
mately 38 minutes and more than 20 different surges have been surveyed at Station 3.

The geometry of the channel is available thanks to 19 surveyed transversal cross-sections. 
The global channel length is 1120 m and the altitude difference is 245 m. The longitudinal 
slope ranges from 10% to 55%. For model application, a constant spatial step of 1 m has been 
adopted. Numerical simulations were performed using the rainfall hydrograph reconstructed 
by Orlandini and Lamberti [28], which covers a period of about 2.5 hours and presents a peak 
discharge of 2.3 m3/s. An open-type boundary condition is imposed at the downstream end. 
For the debris fl ow the bulk concentration is assumed to be equal to 0.6 and the mixture den-
sity equal to 1850 kg/m3, according to Zanuttigh and Lamberti [18].

The Acquabona debris fl ow transports gravely sandy poorly sorted material, ranging in 
size from silt and clay to big boulders (up to 1–2 m in diameter). The material is essentially 
cohesionless. The rheological model adopted for simulations is the Herschel–Bulkley model 
(eqn (48)). Referring to the simulations carried out by Fraccarollo and Papa [16] on the same 
event, K is assumed to be 150 Pa·s1/3, tc is equal to 925 N/m2, and h has been empirically set 
equal to 1/3.

In Fig. 7, the computed fl ow height is compared with measured data collected by the ultra-
sonic sensor at Station 3. The model satisfactorily captures height and shape of the waves, but 
it underestimates their duration, overestimating as a consequence, their number. Results are, 
however, encouraging and comparable with those obtained by Fraccarollo and Papa [16] and 
Zanuttigh and Lamberti [18].

The average velocity of the different fl ow surges has been estimated through geophones log 
recordings, which have been used to identify the instants of surges’ transition on each survey-
ing station. Available data refer to two 100 m long channel reaches located in the lower part of 
the channel, before and after Station 3 (which corresponds to the surveyed cross-section 8). 
Comparison is shown in Fig. 8. In the upstream reach, computed velocities compare well with 
fi eld data, while in the downstream reach they are generally overestimated.

It is interesting to note that the fl ow regime is mainly characterised by the formation of roll 
waves, as it is evident by observing the longitudinal distribution of discharges and fl ow depths 
at two subsequent time steps (Fig. 9). Nevertheless, numerical solution is not affected by 
relevant numerical instabilities.

Figure 7: Comparison between the fl ow depth measured and calculated at Station 3.
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Figure 8:  Comparison between measured and computed wave speed upstream and downstream 
Station 3.

Figure 9: Longitudinal discharge distribution and fl ow depth profi le.

It is important to point out that a physically based numerical model, once rheological 
parameters have been accurately chosen and calibrated using one or more signifi cant events, 
could be used as a prediction tool for the same kind of phenomena in neighbouring mountain 
basins, characterised by a similar orography and debris composition.

Debris fl ow prediction remains however a challenging task, because of the rapid fl ow trig-
gering and of the mass fl ow velocity. A real-time alert system would therefore require a rapid 
response both from the local civil protection system and from the population itself. A more 
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effective way of using numerical prediction model results would be to recognise and delimit 
risk-prone areas by identifying the debris run-out length.

12 STAVA MUD FLOW
On 19 July 1985, two tailing dams suddenly collapsed at Tesero, a little town in the Italian 
Alps, near Bolzano. The stored water, together with the dam body material, fl owed down to 
the Stava River as a big mud fl ow, claiming 268 human lives and destroying 47 houses. As 
reported by Takahashi [4], the Stava River before the disaster fl owed with an approximately 
uniform slope of 5°. Although the mud fl ow had such an intensive destructive power, as well 
as fl uidity, the Stava River channel itself had not suffered much erosion or deposition, and it 
can therefore be simulated as a fi xed bed stream. Probably, no erosion occurred because the 
solid fraction inside the water–sediment mixture was so high (estimated to be about 0.48) that 
the fl ow could not easily become denser by erosion.

In his report, Takahashi gave important references about particles size, which was so fi ne 
that the relative depth, R/d, was about 105. In this condition, the resistance to fl ow is similar to 
that of a plain water fl ow and the Manning’s equation can be applied. Takahashi obtained a 
Manning’s roughness coeffi cient in each section by reverse calculation from the data on veloc-
ity computed with the Lenau’s formula applied to measure fl ow superelevations at bends.

The channel description is taken from Takahashi [5] too. It includes 24 surveyed cross-
sections, their plan location, and the longitudinal profi le. In this case, bed slope ranges from 
5% to 12%. The simulated reach is 3500 m long and a constant spatial step of 1.25 m has been 
used. A longitudinal variability in the fl ow cross-section shape is noticeable: beyond the 
natural unevenness, a decreasing tendency of channel width is recognisable in the down-
stream direction between Station 4 and Station 10, then the cross-section abruptly increases 
in the proximity of Station 10 and 10′, then it keeps approximately constant downstream.

In Fig. 10, discharge and depth computed hydrographs are compared with Takahashi’s 
numerical results obtained with the kinematic wave theory [5]. Referring to cross-section 10, 
located about 3000 m downstream the dams, there is a good accordance between the computed 

Figure 10: Depth and discharge hydrograph at different cross-sections.
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peak discharge and the value estimated by Takahashi (3500 m3/s), as the result of the product 
between the wetted cross-section area is measured in situ (about 500 m2) and the maximum 
velocity is derived by the fl ow superelevation at the nearest bend (7 m/s). Attenuation of peak 
water elevation and discharge in such an abrupt fl ow of short duration is considerable.

The correct estimation of peak discharge and water depth, together with mass front veloc-
ity, are among most important parameters to identify when protection structures are planned.

The initial water profi le condition reproduces the same hypothesis adopted by Takahashi, 
that is, a uniform slide of the mud mass until Section 4, from which the mud fl ow is assumed 
to develop. The initial condition and further development of the fl ow surface profi le are 
shown in Fig. 11.

Figure 12 shows the comparison between computed and measured front arrival instants at 
different distances along the channel. The measured values are estimated on the basis of a 
seismograph located at Cavalese, a nearby town. The computed times are in good agreement 
with the estimated ones along the entire channel.

Figure 12:  Comparison between computed and measured front arrival times at different 
locations.

Figure 11: Initial conditions and fl ow profi les along the channel during the simulation.
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13 CONCLUSIONS
A numerical model useful in predicting mud fl ow and debris fl ow natural events is presented. 
It is based on a mathematical model, in which main features are concerned with the propaga-
tion of the wet-dry fronts, the treatment of irregular and variable cross-sections shape, and the 
applicability to steep channels. Different test cases have been selected in order to verify these 
features. The classic frictionless dam-break test has been used to test the correctness of waves 
speed propagation and the capability of treating wet-dry fronts. The source terms treatment 
has been verifi ed independently, analysing the infl uence of pressure terms with a non-pris-
matic frictionless idealised channel, while the role of friction terms has been tested with a 
mud-fl ow dam-break, for which the analytical solution is available. This test has been per-
formed using different resistance laws, and also permitted to check model fl exibility for what 
concerns the adopted rheological model. Eventually, the model has been tested using labora-
tory experiments on mud-fl ow dam-break over a sloping plane. Numerical results compare 
favourably with experiments in terms of front wave speed, peak height, and residual front 
thickness. After this fi rst phase of model validation, in which all the fundamental features 
have been investigated and ascertained, two real events have been chosen to fi nally test the 
model. The fi rst one is a natural debris fl ow event that occurred at Acquabona. In this case, a 
large quantity of fi eld data was available, allowing the comparison with simulation outputs. 
Model results compared well with wave peak height and propagation velocities. The second 
test case refers to the Stava mud fl ow tragic event, originated by the collapse of two tailing 
dams. Good accordance between observed data and measured mud fl ow front propagation 
speed has been obtained. Simulation results have been also compared with the Takahashi’s 
analysis of the same event, showing good accordance for what concerns the evaluation of 
peak discharge at different cross-sections.

The model represents a useful tool in forecasting hyperconcentrated fl ows. It leads to the 
prediction of fl ow parameters, among which the most important are the volume magnitude, 
the run-out distance, the momentum, and the impact force (derived from the fl ow hydro-
graphs).

The presented model performs satisfactorily in natural irregular streams. The source term 
rearrangement avoids any problem in modelling adverse or very steep slopes, since the pres-
sure term is evaluated for a constant water surface elevation. The lumped rheological model 
seems particularly suitable for representing a large variety of hyperconcentrated fl ows.
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