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Coal structure could be roughly divided into four types. Among them, the two kinds of 

tectonic coal face a high risk of heat-induced gas outburst, which arises from the 

unfavorable temperature conditions in the coal structure. However, there is not yet an 

efficient way to identify the type of coal structure. The adjacent types of coal structures are 

often misjudged. The lack of an efficient identification method hinders the prevention of 

heat-induced gas outburst, making it difficult to realize energy-efficient and safe mining. 

To solve the problem, this paper first theoretically analyzes the ultrasonic properties of 

different types of coals, and applies backpropagation neural network (BPNN) to build up 

an intelligent identification model for the type of coal structure. Specifically, the 

characteristic parameters of ultrasonic signal were taken as the basis for judging the type 

of coal structure, the identification algorithm of BPNN was adopted to accurately identify 

the structure type of coal, and then the heat-induced gas outburst risk of the coal was 

evaluated preliminarily. Experimental results show that the proposed model could 

accurately identify the type of coal structure, and even differentiate between adjacent types 

of coals. The research results provide a reference for effective prevention of heat-induced 

gas outburst, and realization of energy-efficient and safe mining. 
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1. INTRODUCTION

Coal is a valuable resource to economic development. 

However, heat-induced gas outburst occurs occasionally in 

coalmining, bringing serious property losses and casualties. 

Heat-induced gas outburst refers to the gas outburst caused by 

the unfavorable temperature conditions in the coal structure. 

To safeguard production and realize energy-efficient mining, 

it is important to prevent heat-induced gas outburst in a 

scientific and effective manner. 

Heat-induced gas outburst may arise from complex reasons. 

From different angles, many scholars have expounded the 

mechanism of heat-induced gas outburst, according to the 

main factors of this disaster [1, 2]. Despite holding different 

views, they agree that heat-induced gas outburst is closely 

associated with tectonic coal. Therefore, the detection and 

identification of tectonic coal is of great significance to the 

prevention of heat-induced gas outburst and realization of 

energy-efficient mining. 

Studies [1, 2] have shown that coal could be divided into 

four types: primary structure coal (type I), fractured coal (type 

II), pulverized coal (type III), and mylonitic coal (type IV). 

The four types of coal differ in the level of heat-induced gas 

outburst risk. Among them, type I coal has no risk of heat-

induced gas outburst, type II coal has low to moderate risk, 

while types III and IV coals have high risk. Conventionally, 

types I and II coals are referred to as non-outburst coals, while 

types III and IV coals are called outburst coals, a.k.a., tectonic 

coal. 

Currently, tectonic coal is mainly detected on a regional 

basis [3-6]. But there is a severe lack of detection of tectonic 

coal in the small area before the workface, not to mention the 

accurate discrimination between different types of coal. In this 

case, it is easy to misjudge the coal type, which negatively 

affects the prevention of heat-induced gas outburst. 

Scholars like Shumskii et al. [7-9] pioneered the application 

of ultrasonic technology to coal structure research, and 

obtained fruitful results on the ultrasonic features of disturbed 

coal, attenuation of acoustic wave in coal, and the ultrasonic 

estimation of coal structure and fissures. Ultrasonic testing has 

also been introduced to non-destructive testing [10-15], and 

achieved success in detecting internal damage of concrete and 

inspecting human organs [16-19]. 

In recent years, neural network has attracted much attention 

from the academia. Song and Miao [20] implemented 

backpropagation neural network (BPNN) in damage 

prediction and risk assessment, and demonstrated the good 

effect of BPNN in predictive analysis and intelligent 

discrimination [21, 22]. By improving the backpropagation 

algorithm, Chang et al. [23-25] further enhanced the accuracy 
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of BPNN in self-learning, prediction, and decision-making. 

This paper carries out theoretical and experimental research 

into the ultrasonic properties of coals with different types of 

structure, and clarifies the relationship between the main 

parameters of ultrasonic signal and the types of coal structure. 

On this basis, a BPNN-based intelligent identification model 

was established for the type of coal structure, which 

intelligently distinguishes between different types of coal, 

although adjacent types of coal structures have partly 

overlapped identification parameters. The research results 

provide a strong support to the prevention of heat-induced gas 

outburst and energy-efficient mining. 

This paper mainly includes three parts: Firstly, the 

ultrasonic properties of each type of coal structure were 

theoretically summarized, the relationship between the main 

parameters of ultrasonic signal and the types of coal structure 

was clarified, and the primary parameters of the identification 

model were determined; Next, BPNN technology was applied 

to build up an intelligent identification model for the type of 

coal structure; Finally, the ultrasonic properties of different 

types of coals were investigated through experiments, the 

experimental results were adopted for BPNN learning and 

training, and the accuracy and reliability of our model were 

verified. 

 

 

2. ULTRASONIC PROPERTIES OF COAL 

 

The propagation of ultrasound in the medium depends 

directly on the structural features of the medium. Different 

types of coal have significant differences in internal structure. 

From type I to type IV, the degree of damage gradually 

deepens, the porosity continues to increase, and the density 

and strength decrease significantly. These structural 

differences bring marked variations in ultrasonic properties. 

Therefore, it is technically feasible to identify the type of coal 

structure through ultrasonic detection. 

 

2.1 Ultrasonic velocity 

 

Ultrasonic velocity is an important physical parameter of 

ultrasound. It refers to the velocity at which the ultrasound 

propagates in elastic media. There are two kinds of ultrasonic 

velocity: transverse velocity and longitudinal velocity. The 

latter is more frequently used in practice. According to the 

wave equation of ultrasonic wave in coal, the longitudinal 

ultrasonic velocity can be expressed as: 

 

𝑉𝑝 = √
𝛿 + 2𝜇

𝜌
 (1) 

 

where, 𝛿 =
𝐸𝜎

(1+𝜎)(1−𝜎)
 is the elastic coefficient, a.k.a. Lamé 

coefficient, of the medium; 𝜇 =
𝐸

2(1+𝜎)
 is the shear coefficient 

of the medium; E is the elastic modulus, a.k.a. Young’s 

modulus, of the medium; σ is the Poisson’s ratio of the medium. 

These elastic parameters have close correlations with the 

properties of the coal. There is the following relationship 

between E, μ and σ: 

 
𝐸

2𝜇
= 1 + 𝜎 (2) 

Sorting (1) and (2), the longitudinal ultrasonic velocity can 

be rewritten as: 

 

𝑉𝑝 = √
𝐸(1 − 𝜎)

𝜌(1 + 𝜎)(1 − 2𝜎)
 (3) 

 

Formula (3) shows that the ultrasonic velocity is closely 

related to the elastic modulus, Poisson’s ratio, and the density 

of the medium, all of which are key parameters to characterize 

the internal structure of coal. 

The medium density has a greater influence on the elastic 

modulus than on the ultrasonic velocity. Therefore, the greater 

the density of coal, the faster the ultrasonic velocity. The two 

factors have an approximately proportional relationship [19]. 

Different types of coal have sharp differences in elastic 

modulus and density. Thus, the same ultrasound must 

propagate at different velocities in different coal structures. 

The velocity difference is particularly prominent between 

outburst coals and non-outburst coals. As a result, the 

ultrasonic velocity in coal can serve as a primary criterion for 

identifying the type of coal structure.  

 

2.2 Ultrasonic attenuation coefficient 

 

The attenuation of ultrasound in the medium is an important 

aspect of ultrasonic research. The degree of attenuation has a 

close relationship with the internal structure and performance 

of the medium material [18]. Hence, the study on ultrasonic 

attenuation in coal helps to detect the internal structure and 

performance of the medium. 

By the cause of the weakening of sound intensity, sound 

wave attenuation can be divided into three categories: 

absorption attenuation, scattering attenuation, and diffusion 

attenuation. Only absorption attenuation ar, and scattering 

attenuation as are associated with the structural features of the 

medium. Thus, diffusion attenuation is generally not 

considered in the discussion on the relationship between sound 

wave and coal properties. The total attenuation coefficient for 

ultrasound in coal can be expressed as: 

 

𝑎 = 𝑎𝑟 + 𝑎𝑠 = 𝑎𝑓 + 𝑏𝑓2 + 𝑐𝑓4 (4) 

 

where, f is the frequency of ultrasound; a, b, and c are the 

absorption and scattering constants of the medium. Formula (4) 

shows a significant positive correlation between ultrasonic 

attenuation coefficient and ultrasonic frequency: the higher the 

frequency, the larger the attenuation coefficient. 

As the ultrasound passes through the coal, the sound 

pressure attenuates exponentially with the growth in distance 

x: 

 

𝑝 = 𝑝0 ⋅ 𝑒−𝑎𝑥 (5) 

 

where, p0 is the sound pressure at x＝0, i.e., the sound source; 

p is the sound pressure at the position with a distance of x to 

the sound source; e=2.71828 is the base of the natural 

logarithm. Formula (5) shows the important role of attenuation 

coefficient in ultrasound propagation. Without considering 

diffusion, the attenuation coefficient solely hinges on coal 

properties. The value of a represents how much coal affects 

the ultrasonic attenuation. Taking natural logarithm on both 

sides of formula (5): 
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𝑎 =
1

𝑥
𝑙𝑛

𝑝0

𝑝
 (6) 

 

Since the sound pressure is directly proportional to the 

amplitude of the vibration displacement of the medium 

particle, p and p0 in formula (6) can be substituted by the 

corresponding vibration displacements A and A0. Then, 

formula (6) can be transformed into: 

 

𝑎 =
1

𝑥
𝑙𝑛

𝐴0

𝐴
 (7) 

 

In a word, the attenuation coefficient a is closely related to 

the internal structure of coal, and different structures of coal 

are bound to have varied a values [17]. Therefore, attenuation 

coefficient could serve as a key parameter in the identification 

of the type of coal structure. In addition, formula (4) reflects 

the close association between attenuation coefficient and 

ultrasonic frequency. This means the impact of ultrasonic 

frequency must be considered while applying the attenuation 

coefficient. 

 

 

3. BPNN-BASED IDENTIFICATION MODEL 

 

3.1 Basic model 

 

Through the above analysis on ultrasonic properties of coal, 

it was confirmed that the coal structure has much to do with 

the velocity and attenuation coefficient of ultrasound in coal. 

Owing to their associations with coal structure, the two 

parameters provide the basis for identifying the type of coal 

structure. However, the parameter values are partly overlapped 

for adjacent types of coal structures, sowing the seed for 

misjudgment. 

Thanks to its complex algorithm and powerful self-learning 

ability, artificial neural network (ANN) is very suitable for the 

classification of complex objects. Therefore, this paper 

attempts to establish an accurate identification model for the 

type of coal structure based on the ANN. 

BPNN is the most mature and popular feedforward network. 

The network adopts the backpropagation algorithm: in most 

cases, the information flows forward layer by layer; during 

weight learning, however, the error between the expected and 

actual outputs is propagated backward to modify the weight of 

each layer [21].  

BPNN is known for its good robustness and fault tolerance. 

For a large network, the overall result of BPNN will not be 

affected if some nodes or edges fail. In addition, the network 

could continuously improve itself through self-learning. 

Considering these advantages, this paper constructs a BPNN-

based identification model (Figure 1) for the type of coal 

structure, in view of the ultrasonic properties of coal.  

 

 
 

Figure 1. The structure of the BPNN-based identification 

model 

BPNN typically contains an input layer, an output layer, and 

a hidden layer. As shown in Figure 1, the BPNN-based model 

takes the ultrasonic parameters that are closely associated with 

coal structure as the evaluation indies, including the velocity 

and attenuation coefficient of ultrasound in coal, as well as the 

auxiliary index of ultrasonic frequency. Meanwhile, the model 

outputs the type of coal structure. Hence, the input layer has 

three nodes, and the output layer has one node. The number of 

nodes in the hidden layer was preliminarily selected by 𝑗 =

√𝑚 + 𝑛 + 𝑙 , where m and n are the number of input layer 

nodes and output layer nodes, respectively; l is a constant in 

[1, 10]. The preliminary number was adjusted gradually 

through repeated tests. Finally, it was determined that the ideal 

result could be achieved, when the hidden layer has 10 nodes. 

 

 
 

Figure 2. The topology of the BPNN-based identification 

model 

 

The topology of the BPNN-based identification model is 

illustrated in Figure 2, where Xi (i=1, 2, 3) is the input (X1, X2, 

and X3 are ultrasonic velocity, attenuation coefficient, and 

ultrasonic frequency, respectively); Y is the output (the ideal 

values of Y is 1, 2, 3, or 4, which represent the four types of 

coal structures; if Y=1 or 2, the coal has a low risk of heat-

induced gas outburst; if Y=3 or 4, the coal has a high risk of 

heat-induced gas outburst). 

 

3.2 Backpropagation algorithm and improvement 

 

BPNN is a feedforward network supporting mapping 

transform. The basic idea of backpropagation algorithm is as 

follows: the error between output and fact during network 

learning are attributed to the faults of the connecting weights 

and thresholds between the nodes of different layers, the 

reference errors of each connected node are calculated by 

apportioning the output error reversely towards the input layer, 

and the connection weights are adjusted to make the network 

adapt to the mapping requirements. The connection weights 

and thresholds are corrected by the generalized delta rule [22]. 

That is, the weight coefficients are corrected by: 

 

𝑊𝑘+1 = 𝑊𝑘 + 𝜂 ⋅ (𝑏𝑘 − 𝑊𝑘
𝑇 ⋅ 𝑋𝑘) ⋅ 𝑋𝑘  𝑜𝑟 Δ𝑊𝑘

= 𝜂 ⋅ 𝛿𝑘 ⋅ 𝑋𝑘 
(8) 

 

where, 𝛿𝑘 = (𝑏𝑘 − 𝑊𝑘
𝑇 ⋅ 𝑋𝑘)  is the difference between the 

expected output b and the actual output; η is the learning factor. 

Under certain conditions, with the growing number of 

iterations k, δk gradually approaches zero to ensure network 

convergence. 

Despite its various advantages, backpropagation algorithm 

faces several defects. The most prominent defect is the slow 

convergence, especially in complex networks. The network 

converges slowly because the error is a complex nonlinear 

function of time. In essence, backpropagation algorithm is a 

841



 

simple steepest descent method. Each weight is adjusted based 

on the partial derivative of the error to the weight, that is, in 

the direction of the smallest error rate. As the network is about 

to converge, the convergence slows down due to F’(x)=0. 

Meanwhile, the weight increment Wij=ηδiXi, where the 

coefficients correct the weight to different degrees, while the 

η value remains the same. In this case, some coefficients might 

be overcorrected. Thus, the network only converges at a very 

small η. 

In backpropagation algorithm, the key difficulty is the 

section of step length. If the step length is too long, the learning 

process will oscillate, failing to obtain convergent network 

weights; if the step length is too short, the learning will slow 

down.  

To overcome these defects, the backpropagation algorithm 

needs to be improved. Most of the improvements are based on 

linear search or Newton’s iteration [24, 25]. These methods 

could reduce the learning cycles and shorten the learning time. 

But the optimal step length should change significantly over 

time, and the change should be related to the steepness of the 

error surface and the curvature of the energy surface. Let θ be 

an included angle. Then, the included angle between the n-th 

and n-1-th cycles can be expressed as: 

 

𝑐𝑜𝑠 𝜃 =
∑ 𝑑𝑂𝑖𝑑𝑙𝑖𝑐

(∑ 𝑑2𝑂𝑖𝑐 )(∑ 𝑑2𝑙𝑖𝑐 )
 (9) 

 

where, 𝑑𝑄𝑖 =
𝜕𝐸

𝜕𝜔𝑖
|

𝑛=𝑛−1
; 𝑑𝑙𝑖 =

𝜕𝐸

𝜕𝜔𝑖
|

𝑛=𝑛
; c is the set of all 

weights in the network. 

The step length should be controlled under the following 

principles: 

(1) For the area where the error surface is relatively flat, the 

search path is relatively straight and cos θ is greater than zero; 

in this case, the step length should be increased. 

(2) After encountering a valley (cos θ<0), it is possible to 

prevent oscillations, but impossible to judge whether the 

valley is the local minimum or the desired global minimum; in 

this case, the search speed should be slowed down.  

Under the above principles, ηt was set to exp(u cos θ)ηt-1. 

Experimental results show that the best effect was achieved at 

u=0.1. 

Moreover, since any search method is risky, the minimum 

and maximum of η were determined through experiments. To 

prevent the oscillation caused by excessive η, the momentum 

factor α can be added to the weight coefficient correction 

formula: 

 

𝑊𝑖𝑗(𝑡 + 1) = 𝑊𝑖𝑗(𝑡) + 𝜂𝑡 ⋅
𝜕𝐸

𝜕𝑊𝑖𝑗

+ 𝛼𝛥𝜔𝑖𝑗(𝑡) (10) 

𝜃𝑖𝑗(𝑡 + 1) = 𝜃𝑖𝑗(𝑡) − 𝜂𝑡 ⋅
𝜕𝐸

𝜕𝜃𝑖𝑗

+ 𝛼𝛥𝜃𝑖𝑗(𝑡) (11) 

 

In this way, the previous weight change was introduced to 

the weight coefficient. The role of the momentum is equivalent 

to filtering the higher-order components of the error surface in 

the weight space. If there is a long gentle valley with steep 

walls in the weight space, oscillations will occur in the valley. 

The momentum factor helps to increase the step length, thus 

speeding up the learning. So far, the authors have completed 

the construction of the BPNN-based identification model for 

the type of coal structure. 

 

 

4. EXPERIMENTS 

 

4.1 Ultrasonic velocity experiments 

 

This subsection studies the ultrasonic velocities in different 

types of coal structure through experiments, aiming to clarify 

the relationship between the velocity and each type of coal 

structure. As shown in Figure 3, the ultrasonic velocity 

experiments were conducted by the thru-beam method. During 

the experiments, the ultrasonic transmitter and receiver were 

deployed at the two ends of the coal sample, respectively. 

Then, the computer-controlled power supply generated an 

oscillating current that matches the transmitter to excite the 

ultrasonic signal. After the ultrasonic wave passed through the 

coal sample, the ultrasonic velocity was calculated by dividing 

the sample length by the propagation time. 

 

 
 

Figure 3. The system structure for ultrasonic velocity 

experiments 

 

According to the experimental contents and principles, coal 

samples were collected from different mines for ultrasonic 

velocity experiments. The ultrasonic velocity of each sample 

group was determined as the average of repeated 

measurements, and round to the nearest integer. Some of the 

experimental data are listed in Table 1.  

 

Table 1. The ultrasonic velocities of some coal samples 

 

Sample source 
Type of coal 

structure 

Sample length  

L (cm) 

Interval between transmission 

and reception times t (µs) 

Ultrasonic velocity V 

(m/s) 

Jiaozuo Jiulishan Mine I 50 232 2155 

Anyang Longshan Mine I 40 171 2340 

Hebi 6# Mine I 45 223 2018 

Pingdingshan 6# Mine II 40 242 1653 

Jiaozuo Jiulishan Mine II 55 350 1571 

Anyang Longshan Mine III 40 441 907 

Hebi 6# Mine III 40 415 964 

Pingdingshan 8# Mine IV 35 465 753 

Jiaozuo Jiulishan Mine IV 30 472 636 
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From the above experimental data, the ultrasonic velocities 

in different types of coal structure have the following features: 

(1) The ultrasonic velocity varied clearly between types of 

coal structure. 

From type I coal to type IV coal, the ultrasonic velocity 

gradually slowed down. In type I coal, the ultrasonic velocity 

was mostly above 2,000m/s, and reached 3,300m/s in some 

samples; In type II coal, the ultrasonic velocity mainly fell in 

1,500m/s and 2,000m/s; In type III coal, the ultrasonic velocity 

mostly appeared in 800m/s-1,000m/s; In type IV coal, the 

ultrasonic velocity primarily remained below 800m/s. 

Furthermore, the ultrasonic velocities in different types of coal 

structure had overlapping areas. Hence, the adjacent types of 

coal structure cannot be easily differentiated based on 

ultrasonic velocity alone.  

(2) The ultrasonic velocity varied between the same type of 

coal samples collected from different sources. 

This variation mainly comes from the differences in 

geological environment. Under different tectonic stresses, the 

coal samples disagree in density, elastic modulus, Poisson’s 

ratio, as well as rank, which affect their sound properties. That 

is why coal samples in the same type had different ranges of 

ultrasonic velocity. 

(3) The wave velocities differed significantly between 

outburst and non-outburst coals. 

The ultrasonic velocities of samples in different types from 

the same mine obeyed the basic law in feature (1): from type I 

coal to type IV coal, the ultrasonic velocity gradually slowed 

down. Besides, there was a significant difference between 

outburst coals (types I and II) and non-outburst coals (types III 

and IV) in velocity. The ultrasonic velocity in non-outburst 

coals was at least 2-3 times that in outburst coals. 

 

4.2 Attenuation coefficient experiments  

 

The attenuation coefficient is another key parameter for coal 

medium detection. The value of the coefficient directly reflects 

how the coal attenuates the ultrasonic signal. Hence, the 

attenuation coefficient plays an important role in the selection 

of the working frequency of the ultrasonic probe, and the study 

on the attenuation law of the ultrasonic signal in coal. This 

subsection attempts to clarify the relationship between 

attenuation coefficient and each type of coal structure through 

experiments, providing a guide for selecting the working 

frequency of the ultrasonic probe. 

As mentioned before, the attenuation coefficient of coal 

mainly contains two parts: absorption attenuation and 

diffusion attenuation. Since the two parts are not easy to 

measure, the mean attenuation coefficient was measured 

directly in our experiments. Previous research [17, 18] shows 

that the attenuation coefficient of coal can be solved from the 

amplitude difference ΔB and travel difference (x2-x1) of the 

received ultrasonic signals: 𝑎 =
1

𝑥2−𝑥1
⋅ 𝑙𝑛

𝐴1

𝐴2
=

2.3Δ𝐵

20(𝑥2−𝑥1)
. 

As shown in Figure 4, a set of ultrasonic transmitter and 

receiver was deployed along the radial direction of the test 

sample, in addition to the system for ultrasonic velocity 

experiments. During the experiments, the travel difference of 

ultrasonic signal was calculated as the difference between the 

axial length and radial length of the sample; the attenuation 

coefficient of the sample was calculated by the said formula, 

based on the measured amplitude difference between the 

signals received in two directions. Some of the experimental 

data are recorded in Tables 2-5. 

 

 
 

Figure 4. The system structure for attenuation coefficient 

experiments 

 

Table 2. The attenuation coefficients of different types of 

coal structures at 20kHz 

 

Type of 

coal 

structure 

Length-width 

difference of 

samplex(m) 

Transverse 

amplitude 

A1(dB) 

Longitudinal 

amplitude 

A2(dB) 

Attenuation 

coefficient 

a 

I 0.2 86.3 85.8 0.251 

II 0.25 78.6 77.2 0.626 

III 0.15 66.4 60.9 4.18 

IV 0.1 54.3 50.3 9.05 

 

Table 3. The attenuation coefficients of different types of 

coal structures at 25kHz 

 

Type of 

coal 

structure 

Length-width 

difference of 

samplex(m) 

Transverse 

amplitude 

A1(dB) 

Longitudinal 

amplitude 

A2(dB) 

Attenuation 

coefficient a 

I 0.2 79.5 78.9 0.341 

II 0.25 71.3 69.5 0.783 

III 0.15 61.2 53.8 5.61 

IV 0.05 49.6 44.6 11.45 

 

Table 4. The attenuation coefficients of different types of 

coal structures at 50kHz 

 

Type of 

coal 

structure 

Length-width 

difference of 

samplex(m) 

Transverse 

amplitude 

A1(dB) 

Longitudinal 

amplitude 

A2(dB) 

Attenuation 

coefficient 

a 

I 0.2 76.2 75.0 0.681 

II 0.25 66.7 63.3 1.567 

III 0.15 52.1 37.5 11.22 

IV 0.05 42.1 32.9 20.91 

 

Table 5. The attenuation coefficients of different types of 

coal structures at 100kHz 

 

Type of 

coal 

structure 

Length-width 

difference of 

sample x(m) 

Transverse 

amplitude 

A1(dB) 

Longitudinal 

amplitude 

A2(dB) 

Attenuation 

coefficient a 

I 0.2 71.5 69.1 1.362 

II 0.25 61.7 54.9 3.134 

III 0.15 47.3 18.1 22.43 

IV 0.05 27.5 7.8 45.2 

 

After analyzing the experimental data, the following 

conclusions were drawn: 

(1) Different types of coal structure had different 

attenuation coefficients. 

In general, the attenuation coefficient increased 

significantly from type I coal to type IV coal. 

(2) Outburst coals differed significantly from non-outburst 

coals in attenuation coefficient.  

The larger the difference in type of coal structure, the 

greater the variation in attenuation coefficient. According to 

the experimental data, the attenuation coefficient of type IV 

coal was more than 100 times that of type I coal. This echoes 
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with the conclusions that non-outburst coals are more 

favorable than outburst coals for the propagation of ultrasonic 

signal. 

(3) There was a close relationship between attenuation 

coefficient and ultrasonic frequency. 

As shown in Figure 5, attenuation coefficient increased with 

the ultrasonic frequency; the higher the frequency, the larger 

the increment. 

To better reflect the relationship between the working 

frequency of ultrasonic probe and the attenuation coefficient 

of coal, the attenuation coefficients of different types of coal 

structures were fitted as shown in Figure 5. 

 

 
Note: Curves 1-4 are the fitted curves for types I-IV coals, respectively 

 

Figure 5. The fitted curves between attenuation coefficient 

and working frequency 

 

Two obvious trends could be inferred from the four curves 

in Figure 5: 

(1) In all four types of coal structure, the attenuation 

coefficient increased at a growing rate with working frequency. 

(2) Under the same working frequency, the attenuation 

coefficient increased as the type of coal structure changed 

from type I to type IV; the higher the frequency, the larger the 

difference between the four types of coal structure in 

attenuation coefficient. 

The experimental results confirm the close correlation 

between the attenuation coefficient and the working frequency 

of ultrasonic probe: the higher the frequency, the larger the 

coefficient, and the faster the attenuation of the ultrasonic 

signal. During the design of detection scheme, the working 

frequency should be rationalized after comprehensive 

consideration of the attenuation coefficient, detection purpose, 

and detection requirements. For our research, the working 

frequency of ultrasonic probe should be minimized to ensure 

the detection distance of ultrasonic signal in coal. 

 

4.3 Model training and verification 

 

To optimize its parameters, BPNN needs to self-learn lots 

of experimental data. Here, the massive experimental data are 

divided into learning samples and verification samples [26, 27]. 

The learning samples were used for the self-learning and 

training of the network (Table 6). BPNN relies on gradient 

descent for self-learning. Before the learning, the input data 

must be normalized. The learning rate, minimum mean 

squared error, momentum coefficient, and maximum number 

of iterations were set to 0.4, 0.001, 0.8, and 15,000, 

respectively. After the learning samples were imported, the 

network converged after 5,960 iterations. 

The trained BPNN was verified with the verification data 

(Table 7). The verification results show that the network 

output was basically the same with the actual type of coal 

structure. This means our model could correctly and reliably 

identify the type of coal structure. 

 

Table 6. Some samples for BPNN learning and training 

 
Number of 

sample group 

X1 X2 X3 
Yi Y 

Type of coal 

structure vp (m/s) a (dB/m) f (Hz) 

1 

2,340 0.251 20,000 1.01 1 I 

1,896 0.626 20,000 1.77 2 II 

753 9.05 20,000 3.84 4 IV 

2 
2,130 0.295 20,000 0.97 1 I 

907 4.18 20,000 3.25 3 III 

3 

2,151 0.341 25,000 1.24 1 I 

1,659 0.783 25,000 2.03 2 II 

1,120 5.61 25,000 3.08 3 III 

4 

2,236 0.681 50,000 0.94 1 I 

1,578 1.567 50,000 1.93 2 II 

875 11.22 50,000 3.11 3 III 

5 
1,470 1.085 25,000 2.15 2 II 

647 11.45 25,000 3.94 4 IV 

6 
970 10.87 50,000 2.91 3 III 

651 20.91 50,000 3.91 4 IV 

7 
2,018 1.362 100,000 1.26 1 I 

1,723 3.134 100,000 1.80 2 II 

8 
1,029 22.43 100,000 3.02 3 III 

750 33.65 100,000 4.16 4 IV 
Note: Y is the actual type of coal structure; 1-4 are the four types of coal 
structure, respectively; Yi is the output of the BPNN-based identification 

model.  

 

Table 7. Some samples for BPNN verification 

 

Number of 

sample group 

X1 X2 X3 
Yi Y 

Type of coal 

structure vp(m/s) a(dB/m) f(Hz) 

1 

 

2,152.9 0.2395 20,000 1.316 I I 

887 4.09 20,000 3.18 3 III 

769 8.972 20,000 4.217 4 IV 

2 

2,163 0.324 25,000 1.153 1 I 

1,672 0.845 25,000 2.017 2 II 

628 10.97 25,000 4.09 4 IV 

3 
1,546 1.584 50,000 2.163 2 II 

1,042 10.68 50,000 2.973 3 III 

4 
1,019 24.75 100,000 3.102 3 III 

695 41.69 100,000 3.831 4 IV 

 

 

5. CONCLUSIONS 

 

This paper firstly theoretically analyzes the ultrasonic 

properties of different types of coal structure, and then 

establishes an intelligent identification model for the type of 

coal structure, based on the ultrasonic parameters of coal. The 

following conclusions were drawn from the research: 

(1) Different types of coal structure differed significantly in 

internal structure. The structural differences lead to marked 

variation in ultrasonic velocity in coal. Besides, the ultrasonic 

velocities in different types of coal structure partly overlap 

each other. Thus, it is easy to misjudge the type of coal 

structure based on ultrasonic velocity alone. 

(2) The types of coal structure correspond with the 

attenuation coefficients of ultrasonic wave. From type I to type 
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IV, the attenuation coefficient increased significantly. The 

greater the structural difference, the more significant the 

change in the attenuation coefficient. 

(3) The attenuation coefficient is closely related to 

ultrasonic frequency. The higher the frequency, the larger the 

coefficient, and the faster the ultrasonic signal attenuates. This 

means the impact of ultrasonic frequency must be considered 

while applying the attenuation coefficient. 

(4) The BPNN-based identification model recognizes the 

type of coal structure through comprehensive analysis of 

multiple parameters of the ultrasound passing through the coal: 

velocity, attenuation coefficient, and frequency, providing an 

effective way to differentiate between similar types of coal 

structures. Experimental results show that the proposed model 

can accurately identify the type of coal structure, laying a solid 

basis for preventing heat-induced gas outburst and promoting 

energy-efficient mining. 
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