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ABSTRACT. The present study is based on the Least Squares Support Vector Machines (LS-SVM) 

approach for simulating the boronizing kinetics of Armco iron. This work adopts the Least 

Square Support Vector Machine for the growth kinetics of FeB and Fe2B layers. This approach 

uses the regression technique with the theory of statistical learning LS-SVM has been used to 

simulate the thickness of each boride layer (FeB or Fe2B), the input data of the simulation 

model are the process temperature and the treatment time. The LS-SVM results are compared 

to experimental data. The good agreement between the two results confirms the validity of the 

mathematical model. After the validation, the root mean square error and coefficients of 

determination are calculated to achieve a good performance and a better accuracy. In this 

work, the comparison results in a value of root mean square error of 0.14 µm for Fe2B and 

0.16 µm for FeB. Furthermore, an equation has been proposed to estimate the thickness of 

boronized layer as a function of time and temperature using the present model. 

RÉSUMÉ. La présente étude se base sur l’approche machine à vecteurs de support au sens des 

moindres carrées (MVS-MC) pour simuler la cinétique de boruration du fer Armco. Ce travail 

adopte la machine à vecteurs de support au sens des moindres carrées pour la cinétique de 

croissance des couches FeB et Fe2B. Cette approche utilise la technique de régression avec la 

théorie de l’apprentissage statistique. Elle a été utilisée pour simuler l’épaisseur de chaque 

couche (FeB ou Fe2B) et les données à entrer dans le modèle de simulation sont la température 

du procédé et la durée du traitement. Les résultats de l’approche (MVS-MC) ont été comparés 

aux données expérimentales. Le bon accord entre les deux résultats confirme la validité du 

modèle mathématique. Après validation, l’erreur quadratique moyenne et le coefficient de 

détermination ont été calculés pour parvenir à une bonne performance et meilleure précision. 

La comparaison des résultats a donné les valeurs de l’erreur quadratique moyenne égales à 

0.14 µm pour Fe2B et 0.16 µm pour FeB. De plus, une  équation a été proposée pour estimer 
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l’épaisseur de la couche borurée en fonction du temps et de la température en utilisant le 

présent modèle. 
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1. Introduction 

Boronizing is a thermochemical surface treatment for hardening the metallic 

surfaces. It allows obtaining highly resistant layers to corrosion and produces a hard, 

wear resistant boride layer. The hardness of the treated surface can attain about 2000 

Hv (Allaoui et al., 2006). This treatment is applied to ferrous materials, but also to 

some nonferrous materials (Keddam et al., 2010). The boronizing is carried out 

between 850°C and 1050°C for 0.5 to 12h (Mebarek et al., 2012). In this process, 

active boron atoms diffuse into the surface of substrate metal or alloy in order to 

produce a layer of borides (Campos et al., 2003). 

The source of boronizing can be solid, liquid or gaseous (Matuschka, 1980). The 

boronizing process depends generally on the nature of the source that provides the 

boron (Mebarek et al., 2015). The boronizing is based on the diffusion of the boron 

atoms on the iron’s matrix, with the possibility of chemical reactivity to give borides 

(Ueda et al., 2000). 

According to the Fe-B equilibrium phase diagram, the dispersion of boron in the 

crystal lattice of iron results in the formation of two kinds of iron borides (FeB and/or 

Fe2B) (Kubaschewski,1982). The formation of the Fe2B and/or FeB layer depends on 

the activity and the chemical concentration of boron (Jain & Sundararajan, 2002). For 

a low boron potential, only the formation of Fe2B phase occurs. In the case of a higher 

boron activity, we notice the existence of two phases: FeB and Fe2B. The quality and 

the thickness of boronized layer depend on the boronizing techniques employed 

(Ozbek & Bindal, 2011), the chemical composition of the boron source, the 

temperature and the treatment duration (Mebarek et al., 2016; Keddam, 2004).   

Mathematical models have been used by several authors for studying the growth 

kinetics of boride layers duration. One of those mathematical approaches has been 

developed by Campos et al. (Campos et al., 2010) to study the boronizing process. 

Their model requires the knowledge of the influence of different parameters: 

temperature, time, and boron concentration. It is based on Fick’s second law, and the 

mass balance equations of Fe2B and FeB phases. However, they rely on experimental 

data, and they are highly sensitive to the measurement of the boride layer thicknesses. 

In practice; it is very hard to experimentally measure the thickness of the boride layer 

(Bouaziz et al., 2009).  

To deal with the error caused by the experimental measurements, a variety of 

prediction models have been suggested in the literature (Ozdemir et al., 2009; Campos 

et al., 2007), for example, Campos et al. have used an artificial neural network model 

(ANN) to evaluate the thickness of borided layer according to the thickness of boron 
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paste; while other authors have employed a fuzzy logic (FL) method for the same 

objective.  

To predict the hardness of boronized layer consisting of FeB and Fe2B during the 

boronizing process, Genel et al. (Genel et al., 2002) have used the method of artificial 

neural networks.  

Recently, the SVMs approach (Support Vector Machines) has been gaining more 

and more attention thanks to its ability to solve a large number of classification and 

regression problems. This approach takes advantage of the algorithms already 

developed in the machine learning community (Vapnik., 2005). Training an SVM 

involves solving a constrained quadratic optimization problem (Wang et al., 2005). 

They are not affected by the problem of local minima because their training is 

equivalent to a convex optimization. 

The LS-SVM (Least-Square Support Vector Machine), proposed by Suykens and 

Vandewalle (Suykens et al., 2001), is a simplification of the SVM approach. The LS-

SVM has the same advantages as the SVM, in addition to the fact that it requires 

solving only a set of linear equations, which is much easier and computationally 

simpler.  

The flexibility of this approach is due to the use of kernel functions (Mishra et al., 

2014, Tian et al., 2017). It is a more powerful alternative to parametric methods.  

The hyper-parameters of SVMs approach (kernel function and regularization 

parameter) are very influencing on the LS-SVM performance (David and Sánchez, 

2003).   

In this paper, a LS-SVM regression model is proposed to estimate the boronizing 

kinetics of Armco iron by determining the boride layer thickness. The main objective 

of this study is to predict the influence of the process temperature and the treatment 

time on the kinetics of formation of Fe2B and FeB layers at the surface of Armco iron 

based on the literature data.  

2. LS-SVM model 

This section of the paper presents the principle description of the LS-SVM method. 

More details on the LS-SVM method can be found in references (Steinwart & 

Christmann, 2008; Anandhi et al., 2008).  

The present LS-SVM model is an alternate formulation of SVM regression 

proposed in (Tripathi et al., 2006).  

Consider a given training set of N data points {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, K, 𝑁} 

Where 𝑥𝑖 is the “i-th” input data (x= [𝑥𝑖 , K, 𝑥𝑛] 𝑅𝑛) the 𝑥𝑖 constitutes the input 

of the model, and 𝑦𝑖𝑅
  is the value of the desired output. 

The input data used for our LS-SVM model are t (time) and T (temperature), x =
[t, T], and the output is the thickness of boride layer  , y = [ ].  
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In feature space LS-SVM models take the form: 

                                  𝑦(𝑥) = ∑ 𝑤𝑗𝑗(𝑥)
ℎ
𝑗=1 + 𝑏 = 𝑤𝑇(𝑥) + 𝑏               (1) 

Where:  

φ(x): Non-linear mapping function. 

𝑤 : is the weight vector, 𝑤 ∈ RN, 

and: is the bias term ,  𝑏 ∈ r ;  

The goal of the support vector machine training is to find the particular hyperplane 

that minimize the training error (Suykens et al., 2002).  

The training phase involves estimating the appropriate values of the set of 

parameters 𝑤. These parameters are estimated and adjusted by minimizing the cost 

function 
𝐿
(𝑤,e), this problem of optimization can be represented as follows: 

Minimize:               


𝐿
(𝑤, e) =

1

2
wTw+

1

2
γ∑ ek

2
 

N
i=1                             (2) 

𝑦𝑖 − �̂�𝑖 = 𝑒𝑖     , i=1,..N 

Subject to:           y(x) = wTφ(xi) + b + ei , i = 1, … , N              (3) 

Where  

𝑒𝑖  = error variable. 

γ : is a regularization parameter, and �̂�𝑖 is the actual model output.  

The first term of the cost function (eq.2), representing the weight decay, is 

responsible of finding a smooth solution, which is used to regularize the weight sizes 

and penalize the large weights.  

The second term of the cost function, representing the penalty function, is the 

regression error for all training data. 

The following equation for layer thickness () prediction has been obtained by 

solving the above optimization problem. 

With the restriction of equation (3), the solution of the optimization problem can 

be obtained from the Lagrangian function as:  

𝐿(𝑤, 𝑏, 𝑒, 𝛼) =  
1

2
||𝑤||2 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑁
𝑖=1 − ∑ 𝛼𝑖{𝑤

𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖}
𝑁
𝑖=1   

(4) 

Where αi, i = 1…N are the Lagrange multipliers, and 𝑏 is the bias term. 

The following equations represent the optimality condition:  
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𝜕𝐿

𝜕𝑊
= 0 →   𝑤 = ∑ 𝛼𝑘𝜑(𝑥𝑘)                                               

𝑁
𝑘=1

 
𝜕𝐿

𝜕𝑏
= 0 →  ∑ 𝛼𝑘 = 0                                                         

𝑁
𝑘=1

     
𝜕𝐿

𝜕𝑒𝑘
= 0 →  𝛼𝑘 =  𝑒𝑘   , 𝑘 = 1…𝑁                                     

    

𝜕𝐿

𝜕𝑘
= 0 →  𝑤𝑇𝜑(𝑥𝑘)+ 𝑏+ 𝑒𝑘 − 𝑦𝑘 =   , 𝑘 = 1…𝑁

 (5) 

Then: 

                𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)
𝑁
𝑖=1 = ∑ 𝛾𝑒𝑖𝜑(𝑥𝑖)

𝑁
𝑖=1                                      (6) 

Where a positive definite Kernel is used as follows: 

                            𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗)                                             (7) 

An important result of this approach is that the weights (𝑤) can be written as linear 

combinations of the Lagrange multipliers method with the corresponding training data 

(𝑥𝑖).  

By substitution of (6) into (1), the following result is obtained: 

                                 𝑦 = ∑ 𝛼𝑖𝜑(𝑥𝑖)
𝑇𝜑(𝑥 )

𝑁
𝑖=1 + 𝑏                                   (8) 

For a given point, yi can be evaluated by: 

                           𝑦𝑖 = ∑ 𝛼𝑖𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗 )

𝑁
𝑖=1 + 𝑏                                  (9) 

The above conditions of optimality can be expressed as the solution to the 

following set of linear equations after eliminating w and ei.  

                            [
𝐾 +

1

𝛾
1𝑁

1𝑁
𝑇 0

] [
𝛼
𝑏
] = [

𝑦
0
]                                      (10) 

Where 𝐾 denotes the kernel matrix with i,jth element given by equation (7). 1𝑁 =
[1, . .1]𝑇, Hence, the solution is given by: 

                          [
𝛼
𝑏
] = [

𝑦
0
] [
𝐾 +

1

𝛾
1  𝑁

1𝑁
𝑇 0

]

−1

                                       (11) 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑇(𝑥𝑖)
 (𝑥𝑗) is the kernel function, from the estimation function, we 

represent the model as the following equation: 

𝑦(𝑥) =∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏
𝑁

𝑖=1
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For a point xj to be evaluated it is: 

                  𝑦𝑗(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏
𝑁
𝑖=1                                       (12) 

In our LS-SVM model case-study, the radial basis function (RBF) kernel is chosen 

to map the input data. The RBF function is selected thanks to its simplicity and 

accuracy. It is given by: 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 {− 
‖𝑥−𝑥𝑖‖

2

𝜎2
} , k=1,…,N 

Where, σ is a constant representing the “width” of this Gaussian. It can be adjusted 

to control the expressivity of RBF. The 𝑥𝑖  determines the centre of this function. The 

choice of a kernel function depends on the problem at hand; it depends on what we 

are trying to model. There are several choices of kernel functions: linear, polynomial, 

sigmoid, splines or radial basis function (RBF).  

It is worth mentioning that accuracy of LS-SVM model with RBF kernel is related 

to the choice of parameters (the width σ of the RBF kernel and the parameter ). 

The result (y) is the weighted sum of the values of the 𝐾(𝑥, 𝑥𝑖) kernels, where the 

weights are the calculated 𝛼𝑘 Lagrange multipliers.  

The above LS-SVM has been adopted to determine the boronizing kinetics of Armco 

iron in case of a bilayer configuration (FeB and Fe2B).  

3. The collection of the data 

The data used for the training and the testing of the method were collected from 

the literature (Brakman et al., 1989). An application to calculate the boronized layer 

thickness based on the mathematical model of (Keddam & Chentouf, 2005) is also 

used. The data have been divided into two sub-sets; a training dataset to construct the 

model, and a testing dataset to estimate the model performance.  

3.1. Experimental data  

The validation of the simulation in this study is based on the Brakman et al. 

experimental data. Brakman et al used the technique of powder-pack boronizing for 

treating the Armco iron substrate. 

The chemical composition of Armco iron to be pack-borided is given in Table 1. 

Table 1. Chemical composition of Armco iron samples 

Elements Fe C Mn Ni 

%(wt) Balance 0.005 0.0013 0.004 

 

Boronizing in powders is advantageous because of its simplicity and cost-

effectiveness in comparison to the other processes. 
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The selected temperature interval is from 850 to 1050°C, and that of the treatment 

time is between 0.5 and 10 h. 

The bilayer configuration FeB and Fe2B was observed after the boronizing. The 

experimentally determined thickness of each boride layer (FeB or Fe2B) was averaged 

from 20 measurements made in different points on the cross-sections of treated 

samples.  

4. Results and discussions 

In this part, the proposed approach with Radial Basis Function (RBF) kernel is 

implemented in (Scilab environment version 6.0) and tested on selected datasets. In 

the simulation we assume that the experimental data of Fe2B growth layer follows the 

relationship y = k.t½ (where t is boronizing time (s), and k is the growth rate constant).  

As mentioned earlier, this study uses radial basis function as a kernel function. So in 

order to get a good optimization of results, we are proceeding by varying the two 

parameters:  and σ during the training of LS-SVM.    

Figure 1 shows the variation of Fe2B boride layer thickness calculated by 

simulation (LS-SVM methods) as a function of the process temperature and the 

treatment time. We notice that the simulation results are in a good agreement with the 

experimental measurements.  

Using the numerical model, the thickness of the Fe2B layer and the rate kinetic 

constant can be easily estimated. 

 
Figure 1. Comparison between the experimental data and the estimated values of 

the Fe2B layer thickness. The symbols denote the experimental values 
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Figure 2 shows the variation of FeB boride layer thickness calculated according to 

the same parameters: the temperature and the treatment time. We can also notice the 

good agreement between the simulation and the experimental data. This allows us to 

confirm the validity of the LS-SVM approach. 

 

Figure 2. Comparison between the experimental data and the estimated values of 

the FeB layer thickness. The symbols represent the experimental values 

From figures 1 and 2, we note that the LS-SVM approach can be used to determine 

the optimal conditions to control the process. From the obtained results, we can say 

that the LS-SVM approach can be considered as a very powerful alternative to 

modelling the boronizing process. For example, compared to the mathematical model 

based on Fick’s law that uses several parameters (temperature, time and boron 

concentration), the LS-SVM approach uses only the learning base. This presents a 

limitation for the validity interval of the mathematical model based on Fick’s law.   

The validity and accuracy of LS-SVM approach is checked, by calculating the 

average error made during the calculation of the thickness of each boride layer (FeB 

or Fe2B) for different temperatures and treatment durations.  
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The mean error made in the calculation of the thickness of boronized layer for 

different treatments temperature is plotted on figure 3. While the prediction error of 

the Fe2B layer thickness is limited between 1 and 3.75 µm, that of the FeB layer varies 

in an even narrower interval: between 0.4 and 1.35 µm. That is the case for all the 

considered processing temperatures. 

 

Figure 3. The error between the experimental data and the estimated values 

To analyze further the validity and the performance of LS-SVM model, a 

comparison between the predicted results and the experimental values was performed 

based on two statistical parameters.  

The root mean square error (RMSE) and coefficient of determination R2  are 

calculated using the following equations: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑖  𝑒𝑥𝑝 − 𝑋𝑖  𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1                              (13) 

𝑅2 = 1 −
∑ (𝑋𝑖  𝑒𝑥𝑝−𝑋𝑖  𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

∑ (𝑋𝑖  𝑝𝑟𝑒𝑑−𝑋)
2𝑛

𝑖=1

                                       (14) 

Where 

n: is the number of the data samples 
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 Xiexp and Xipred are the experimental value (desired) and the predicted value.  

 X : is the mean of the experimental data values. 

Table 2. The performance evaluation of the LS-SVM approach (for T=1000°C) 

Phase Fe2B  FeB  

Root mean square error (RMSE) 0.141 0.160 

Coefficient of determination (R2)  0.993 0.992 

From table 2, the results show that the LS-SVM is very powerful in predicting the 

boronized layer thickness. The proposed approach has a good root mean square error 

(RMSE) and R2 value. 

The interpolation equations of the LS-SVM model results for each temperature are 

shown in Table 3. The validity domain of each interpolation equation listed in Table 

3 is between 1 and 12 h of treatment time at a given boriding temperature. 

Table 3. Interpolation equations of the boronized layer thickness calculated with the 

LS-SVM model 

Temperature °C Thickness interpolation of  boride layer λ(t) en μm 

850 λFeB = 27 × 10
−5t4 + 0.0044t3 + 0.12t2 + 3.8t + 5.9 

λFe2B = 0.0011t
4 − 0.018t3 − 0.47t2 + 15t + 24 

900 λFeB = −0.0042t
4 + 0.12t3 − 1.4t2 + 10t + 10 

λFe2B = 0.0016t
4 − 0.026t3 − 0.68t2 + 22t + 46  

1000 λFeB = −0.0072t
4 + 0.21t3 − 2.5t2 + 20t + 11 

λFe2B = −0.039t
4 + 1.1t3 − 12t2 + 79t + 26  

5. Conclusions 

In this paper, the least squares support vector machine was applied to predict the 

growth kinetics of FeB and Fe2B layers formed at the surface of Armco iron. It was 

also used to estimate of each boride layer thickness (Fe2B or FeB) for the given 

boriding conditions.  

The main advantage of this technique was the ability of LS-SVM method for self-

learning. The training of LS-SVM method was based on data from the literature.  

The good agreement between the predictions of the proposed approach and the 

experimental results confirmed the validity of the LS-SVM model. In fact, the 

comparison results in n root mean square error of 0.14 µm for the Fe2B phase and 0.16 

µm for the FeB phase. 
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This study showed that the developed LS-SVM approach could be considered as 

a robust tool for the determination and the prediction of boronizing kinetics of Armco 

iron.  
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