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 An Integrated Fault Evaluation (IFE) process is proposed in this study. It includes Sensor 

Validation (SV), Fault Detection (FD) and Fault Source Identification (FSI). The proposed 

algorithm employs data fusion algorithm enhanced by Kalman filter (KF). As the case study, 

vibration signals representing different aging states of an induction motor are used. The 

vibration data collected from two identical sensors with different measurement and process 

noises are achieved. Through the statistical and frequency domain characteristics, IFE is 

realized. The most prominent contribution of the study is the capability of distinction 

between the aging of the system and the process problems. For this aim, a rate representing 

the healthiness, which can discern the impact of the process noise and system aging, is 

calculated. 
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1. INTRODUCTION 

 

Kalman filter (KF) which is initially proposed in 60’s, first 

employed as state estimator thanks to its iterative nature [1, 2]. 

Then the algorithm is adapted to different applications such as 

target motion analysis [3], real-time thermal monitoring of an 

induction machine [4], etc. 

In the recent years KF raises its popularity as a fusion 

algorithm in many practical applications such as, remote 

sensing, object tracing, battle-field surveillance [5], etc. The 

major advantage of KF is the outstanding operation capability 

in real time applications through its robustness to high signal 

to noise ratios (SNR). Hence, this method is preferred widely 

as a fusion algorithm to be employed by multiple sensor 

information [6]. 

 Moreover, as a result of filtering property of KF, fusion 

algorithms become very powerful for fault detection (FD) 

applications [7-9]. For example, in the reference [8], a KF-

based FD technique is proposed for DC motors using residuals. 

In this paper, current and speed signals are assumed as state 

vectors. Variation between the real and the estimated states is 

indicated as residuals. The study also detects overload fault in 

presence of several uncertainties which are isolated 

successfully using KF. However, in reference [10], FD is 

achieved through residuals in linear dual motor system, despite 

the existence of noise. The residual signal is generated based 

on KF, then a threshold is determined to detect the sensor fault 

and actuator fault. Kalman filter is widely used in controller 

applications for electric machinery. It is usually employed as 

the observer algorithm. For example, in literature [11] a 

predictive direct torque controller is enhanced by KF which is 

used to estimate flux. KF is used as an estimator for secondary 

current and induced flux linkages of a linear IM [12]. By the 

estimation of KF a total least square EXIN neuron is trained as 

the observer. KF is also used for sensorless vector control for 

IMs. According to Boukhnifer et al. [13], a KF based fault 

tolerant control algorithm is proposed for an IM to eliminate 

the speed sensor failure. 

It is well-known that FD techniques can be applied using 

various types of signals for electric machinery. For example, 

in papers [14-17], phase current [18], angular velocity or 

temperature [19]. Vibration signal is widely used for FD 

applications in electrical machinery. Because of its stochastic 

nature, it is very favorable for both the statistical and spectral 

investigations [20-23]. Various types of failures such as 

bearing fault, rotor related faults and winding faults are 

mentioned in surveys to be detected through vibration signal 

[24]. Bearing faults is the most common fault in EMs, which 

can be detected easily either by the electrical or vibration 

signals [25-27]. Further, vibration signals carry lots of 

information on the bearing health of the EM that is why it is 

preferred for such mechanical faults [28]. Bearing FD using 

vibration signal is studied in the literature widely through 

various methods and algorithms [29-32]. For instance, 

Reference [33] uses vibration signals to diagnose bearing fault 

through an intelligent filter (adaptive linear neuron) by 

extracting features and running classification algorithms. 

Since the bearing fault arises between 2-4 kHz, in Reference 

[34], it is detected through a neural network which is trained 

by the coherence of vibration and stator current signals. 

On the other hand, FD through KF using vibration signal is 

very limited in the literature. For example, in Reference [35], 

first, the model of flux switching permanent magnet motor 

using electrical and mechanical equations is presented and 

then an observer system empowered by KF is designed to 

generate the residual function from predicted and measured 

vibration for FD and localization purposes. 

In spite of that much knowledge and application of FD and 

KF, data fusion through KF using vibration signals has not met 

by the authors in the literature. 

In this study, an application employing data fusion 

algorithm empowered by KF is proposed. Vibration signals 

acquired for different aging states on an induction motor 

(seven cases from healthy to aged) are employed as the case 

study. An Integrated Fault Evaluation (IFE) application is 

realized including Sensor Validation (SV), Fault Detection 
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(FD) and Fault Source Identification (FSI). FSI determines 

whether the fault is originated by the system, process, or 

sensors.  

The proposed method has two major parts; the first part 

observes the effect of measurement noise. Measurement data 

is duplicated with different noises representing sensor 

information acquired from different sensors. As a result, IFE 

and sensor validation (SV) applications are proposed by 

observing the statistical and frequency domain characteristics 

aiming a contribution on impact of measurement noise. Then, 

in the second part, process noise is investigated deeply which 

is totally new for the literature. In order to distinguish the 

process noise and the aging of the system, a health rate is 

proposed through vibration signals. 

The study provides a brief mathematical background of KF 

in Section II. Section III, accounts for the experiment with its 

outputs and data acquisition system. Section IV, presents a FD 

application utilizing data fusion through KF under different 

measurement noises. In section V, a health rate is proposed to 

distinguish between the process noise and the aging in the 

system. Finally, the paper concludes at section VI with original 

contributions. 

 

 

2. MATHEMATICAL BACKGROUND 

 

In this section a brief mathematical background for KF and 

data fusion through KF algorithm is presented [36-38]. 

 

2.1 Kalman filter equations 

 

In the KF model, the pervious state of a system is used to 

calculate the next state by Eq. (1): 

 

𝒙𝑘 = 𝑭𝒙𝑘−1 + 𝑮𝒖𝑘−1 + 𝒘𝑘−1  (1) 

 

where, x is the state vector, F is the state matrix, G is the input 

matrix, u is input vector and w is the process noise vector. The 

output vector also, can be obtained by the measurement and it 

can be expressed as a function of the state vector 𝒙 as seen in 

Eq. (2): 

 

𝒚𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘  (2) 

 

where, y is the output vector, v is the observation matrix and v 

is the measurement noise vector. 

Note that, w and 𝒗 are normal distributed Gaussian noises 

with covariance matrix Q and R, respectively [38]. 

The KF algorithm contains the prediction stage and the 

measurement updates. The equations of these stages are 

presented as below [36-38]. 

Prediction stage: 

 

𝒙𝑘|𝑘−1 = 𝑭𝒙𝑘−1 + 𝑮𝒖𝑘−1 (3) 

 

𝑷𝑘|𝑘−1 = 𝑭𝑷𝑘−1𝑭𝑇 + 𝑸𝑡 (4) 

 

Measurement update: 

 

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑇(𝑯𝑷𝑘|𝑘−1𝑯𝑇 + 𝑹𝑘)−1 (5) 

 

𝒙𝑘 = 𝒙𝑘|𝑘−1 + 𝑲𝑘(�̂�𝑘 − 𝑯𝒙𝑘|𝑘−1) (6) 

 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯)𝑷𝑘|𝑘−1  (7) 

 

where, 𝒙𝑘 is predicted state vector, 𝑷𝑘 is state error covariance 

matrix, 𝑲𝑘 is Kalman gain matrix, �̂�𝑘 is measurement output 

and 𝑰 is identity matrix. 𝒙0  and 𝑷0which are the initial state 

estimation matrix and the initial state error covariance matrix, 

respectively. 

First, the state vector 𝒙𝑘  and the state error covariance 

matrix 𝑷𝑘 are estimated in the prediction stage. Thereafter, the 

values of the Kalman Gain matrix 𝑲, predicted state vector and 

the state error covariance matrix are updated in measurement 

update stage. 

 

2.2 Data fusion through Kalman filter 

 

In fusion algorithm, the assignment of the observation 

matrix is crucial. To map the state vector into the output vector, 

observation matrix H is used. Hence, H matrix ensures a linear 

transformation in linear KF algorithm. H matrix indicates 

which state variables are included and which are not. 

Moreover, it represents dependence of the output vector to the 

state vector. Furthermore, H matrix can be used for state 

combination which serves as a fusion tool. For example, in a 

system which the measured output depends on two states, the 

observation matrix is assigned as seen in Eq. (8), providing the 

linear combination of input states [37]: 

 

𝑯 = [1 1]; (8) 

 

𝒚𝑘 = 𝑯𝒙𝑘 ⟹ 𝒚𝑘 = [1 1] [
𝒙1

𝒙2
] = 𝒙1 + 𝒙2 (9) 

 

Kalman algorithm satisfies small sample theory [39] but 

Kalman filter fusion algorithm may not work properly in small 

samples. Consequently, the fusion algorithm is run with 

different sized data. It is noticed that the algorithm does not 

succeed in small sized data. The outputs for a small sample (29 

data points) and larger data are given in the Figure 1. 

 

 
 

Figure 1. (a) Kalman algorithm with large data (b) Kalman 

algorithm with small data points 

 

 

3. EXPERIMENTAL SETUP AND DATA 

ACQUISITION SYSTEM 

 

The vibration data, is collected from an accelerated aging 

experiment having 7 cycles. At the end of the seventh cycle, 

the motor is completely defective. In this process, two methods 

are applied to achieve aging on the system. These are thermal-

chemical aging (chemical) and electrical discharge machine 

976



 

(mechanical). In the chemical method the induction motor 

(IM) is exposed to severe thermal conditions. In the 

mechanical method, 30 V is applied to the shaft of the motor, 

to create a bearing fault. The experiment is verified on three 

identical 5 HP squirrel cage induction motors to validate the 

process. The test motors are loaded by a 3 kW, 1,800 rpm 

dynamometer, excited by 0-2 A, 0-200 V dc and loaded with 

21.63 Ω resistance. The technical information about the test 

motors is mentioned in Table A.1 which exists in Appendix 

[24]. 

The vibration data are acquired through NISCXI signal 

conditioning interface. They are also, sampled with 12 kHz 

sampling rate. The antialiasing filter which is utilized in the 

DAQ system is NISCXI-1142 eight-order elliptic low pass 

filter with 4 kHz cutoff frequency, -80 dB stop band and 135 

dB/octave roll-off [24, 40]. 

 

Table 1. Basic statistical properties of aging cycles 

 
Aging cycles I. Means II. Std Dev Variances 

Initial 0.0016 0.1135 0.0129 

Cycle 1 0.0014 0.1553 0.0241 

Cycle 2 0.0012 0.2082 0.0433 

Cycle 3 0.0013 0.2894 0.0837 

Cycle 4 0.0009 0.3275 0.1073 

Cycle 5 0.0010 0.3548 0.1259 

Cycle 6 0.0005 0.4147 0.1720 

Cycle 7 0.0030 0.6040 0.3648 

 

Statistical properties for each aging cycle are presented in 

Table 1. Moreover, time domain and spectral representations 

of the all signals are demonstrated in Figure 2. During the 

aging process, mean values do not vary, however, enormous 

changes are observed in standard deviations (Std Dev) and 

variances (Table 1). Consequently, the amplitude of the 

vibration signals in time domain increases in each cycle. 

Furthermore, the amplitudes of the frequency components 

between 2-4 Hz increase which indicates the bearing fault 

(Figure 2). 

 

 
 

Figure 2. Time and frequency domain representations of the 

vibration signals  

4. INTEGRATED FAULT EVALUATION 

 

Integrated Fault Evaluation (IFE) process can be presented 

in two section. The first one is SV and FD.  

Distinguishing the fault which is originated whether from 

the sensors or the system is an original contribution. It requires 

to observe both statistical - spectral properties of the sensor 

outputs. For this reason, the proposed algorithm cannot be 

mention as a simple FD operation which relies on a signal only. 

For a system with two different sensor information, fusion 

algorithm supported by KF is used to eliminate the faulty 

sensor. By this way, the possibility of fault for the sensors is 

deducted. 

 

 
 

Figure 3. The flowchart of the study 

 

 
 

Figure 4. The pseudo code for the algorithm  
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The second part is focused on the distinction of process fault 

and system fault. Since the process fault also increases the 

variance and standard deviation, so it can easily be confused 

with aging dynamics. This kind of discrimination study is very 

original and unique for the literature. The schematic seen in 

Figure 3 summarizes the flow of the study and in Figure 4 the 

pseudo code is presented. 

Authors have presented a KF fusion study with current 

signals [41]. The SV is executed using statistical analysis 

while FD is done through the spectral analysis. The current 

signal’s deterministic nature does not permit any further 

interpretation like aging or the determination of health status 

for the system. However, in this study, through the stochastic 

nature of vibration signals, Kalman algorithm provides more 

information to use different tools. Statistical, spectral 

investigations are supported with coherences to succeed SV 

and FD. Additionally, discrimination of process problems and 

aging becomes possible by the defining a rate representing 

healthiness. 

 

4.1 Sensor validation and fault detection through data 

fusion supported by Kalman filter 

 

The purpose of this section, revealing the sensor 

performance and to detect the aging while one or all sensors 

are damaged. In other words, SV and FD are achieved together. 

For this aim, various measurement noises are applied to 

sensors for different aging cycles. In addition, FD is supported 

by the sensor fusion algorithm which is empowered by KF. 

The flow for the method is illustrated step by step in Figure 5. 

 

 
Figure 5. DF through KF algorithm for FD and SV 

applications 

In fusion algorithm, the original signal (𝑥) can be obtained 

from sensors with or without noise. Regarding Eq. (9), the 

fused signal is 𝑥𝑓 while the first and second sensor information 

are 𝑥1 and 𝑥2. In order to create the process and measurement 

noises, authors assume that there are two sensors with 

duplicated information including deformations such as offsets 

or unexpected phase differences and biases. According to the 

proposed method, the outputs of the sensors; 𝒙𝒕𝟏, 𝒙𝒕𝟐 are fused 

together by KF supported FD algorithm. Thereupon, FD is 

actualized by evaluating the statistical and spectral properties 

of the fused signal 𝒙𝒇 and the sensor outputs. 

 For fusion algorithm, two vibration sensors with 

measurement noises (as biases +b and –b) are considered. 

Then, the fused signal 𝒙𝒇, which is assumed to estimate the 

original signal, is obtained through fusion algorithm. Three 

different scenarios are planned to be applied on vibration 

signals for each cycle. Scenarios and their aims are given in 

Table 2. 

Each scenario is executed for the first (healthy case), third 

and seventh aging cycles (aged case). Statistical and spectral 

results of them are investigated. 

Tables 3, 4 and 5 present the statistical analysis of the 

collected and the fused signals for three different aging cycles 

respectively. In these tables, Q represents the process noise, 

while R1 and R2 represent the measurement noises which 

associate Sensor 1 and Sensor 2, respectively. Furthermore, 

MSE1 and MSE2 are mean square errors, RMS1 and RMS2 are 

root mean square error between fused signal and the output of 

the sensor 1 and 2, respectively. In the tables below, 

std𝒙1 ,  std𝒙2 ,  std𝒙𝑓  are standard deviations; 𝑀 𝒙1 , 𝑀 𝒙2 , 

𝑀 𝒙𝑓  are mean values; 𝐾𝑢𝑟𝑡 𝒙1 , 𝐾𝑢𝑟𝑡 𝒙2 , 𝐾𝑢𝑟𝑡 𝒙𝑓  are 

kurtoses of  𝒙1 , 𝒙2  and 𝒙𝑓 , respectively. 𝑲𝑥1 and 𝑲𝑥2  are 

Kalman gain of the first and the second sensor, respectively. 

In these tables Test #0 is supposed as the reference test 

associated with a system with minimum measurement and 

process noises. 

First and second scenarios are applied to the data and given 

in Tables 3, 4 and 5. When the measurement noises of two 

sensors are increased equally, the error values remain constant 

even in third and seventh aging cycles. Moreover, the Kalman 

gains (KG) for the sensors decrease with higher measurement 

noises. 

In the second part of the tables, which present the results of 

the second scenario, it is assumed that only one of the sensors 

is faulty. The mean values of the fused signal converge to the 

signal which is obtained from the healthy sensor. Furthermore, 

the standard deviation of the fused signal remains constant 

because the algorithm eliminates the faulty sensor. However, 

the kurtosis scales up, while, the difference between the noises 

of the sensors increment. In addition, the KG of the faulty 

sensor decreases distinctly. According to the tables, 

monitoring KG is very useful for detecting measurement 

noises. However, by the aging of the system KG does not alter, 

hence, it is not suitable for neither aging detection nor FD. 

 

Table 2. Detailed information on the scenarios 

 
Scenarios Simulation Aim Definition Action 

1st Measurement problems Faulty (noisy) sensor outputs are dealt. The measurement noise of all sensors is 

increased equally. 

2nd Sensor problems Only one of the sensors is assumed to be faulty. The measurement noise of one sensor is 

increased only. 

3rd Faulty process (Aging) The noise is originated from the process (either 

electrical or mechanical) 

The measurement noise is kept minimum 

while the process noise is increased. 
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Table 3. Statistical properties of the first aging cycle (healthy case) vibration signal under measurement noises 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

1st Scenario 

#0 0.01 0.01 0.005 0.31 0.31 25 25 5 5 0.17 0.17 0.12 5 -5 0 3 3 3 
#1 0.02 0.02 0.005 0.25 0.25 25 25 5 5 0.19 0.19 0.12 5 -5 0 3 3 3 

#2 0.04 0.04 0.005 0.19 0.19 25 25 5 5 0.24 0.24 0.12 5 -5 0 3 3 3 

#3 0.08 0.08 0.005 0.15 0.15 25 25 5 5 0.31 0.31 0.12 5 -5 0 3 3 3 
#4 0.16 0.16 0.005 0.11 0.11 25.14 25.14 5 5 0.42 0.42 0.12 5 -5 0 3 3 3 

#5 0.32 0.32 0.005 0.081 0.081 25.3 25.3 5 5 0.58 0.58 0.13 5 -5 0 3 3 3 

#6 0.64 0.64 0.005 0.058 0.058 25.6 25.6 5 5 0.81 0.81 0.15 5 -5 0 3 3 3 
#7 1 1 0.005 0.048 0.048 25.9 25.9 5.1 5.1 1 1 0.16 5 -5 0 3 3 3 

2nd Scenario 

#8 0.1 0.005 0.001 0.017 0.35 90.7 0.23 9.5 0.5 0.34 0.14 0.093 5 -5 -

4.5 

3 3 107 

#9 0.5 0.005 0.001 0.004 0.356 98.5 0.017 9.93 0.13 0.72 0.14 0.093 5 -5 -5 3 3 139 

#10 1 0.005 0.001 0.002 0.357 100 0.01 10 0.1 1 0.14 0.093 5 -5 -5 3 3 143 

#11 0.005 0.1 0.001 0.347 0.017 0.23 90.8 0.5 9.5 0.14 0.34 0.093 5 -5 4.5 3 3 20 
#12 0.01 0.2 0.001 0.263 0.013 0.24 90.85 0.5 9.5 0.15 0.46 0.084 5 -5 4.5 3 3 28 

#13 0.01 0.4 0.001 0.266 0.007 0.072 95.5 0.27 0.97 0.15 0.64 0.084 5 -5 4.7 3 3 35.8 

 

Table 4. Statistical properties of the third aging cycle vibration signal under measurement noises 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

1st scenario 

#0 0.01 0.01 0.005 0.31 0.31 25 25 5 5 0.31 0.31 0.23 5 -5 0 3 3 3 
#1 0.02 0.02 0.005 0.25 0.25 25 25 5 5 0.33 0.33 0.2 5 -5 0 3 3 3 

#2 0.04 0.04 0.005 0.19 0.19 25 25 5 5 0.36 0.36 0.18 5 -5 0 3 3 3 

#3 0.08 0.08 0.005 0.15 0.15 25 25 5 5 0.41 0.41 0.16 5 -5 0 3 3 3 
#4 0.16 0.16 0.005 0.11 0.11 25.2 25.2 5 5 0.5 0.5 0.15 5 -5 0 3 3 3 

#5 0.32 0.32 0.005 0.081 0.081 25.35 25.35 5 5 0.64 0.64 0.15 5 -5 0 3 3 3 

#6 0.64 0.64 0.005 0.058 0.058 25.7 25.7 5 5 0.85 0.85 0.16 5 -5 0 3 3 3 
#7 1 1 0.005 0.048 0.048 25.9 25.9 5.1 5.1 1 1 0.17 5 -5 0 3 3 3 

2nd scenario 

#8 0.1 0.005 0.001 0.017 0.35 90.84 0.27 9.5 0.5 0.43 0.3 0.16 5 -5 -

4.5 

3 3 14.6 

#9 0.5 0.005 0.001 0.004 0.356 98.5 0.052 9.9 0.23 0.76 0.3 0.16 5 -5 -

4.9 

3 3 18.8 

#10 1 0.005 0.001 0.002 0.357 100 0.044 10 0.2 1 0.3 0.16 5 -5 -5 3 3 19.4 
#11 0.005 0.1 0.001 0.347 0.017 0.27 90.84 0.5 9.5 0.3 0.43 0.16 5 -5 4.5 3 3 4.8 

#12 0.01 0.2 0.001 0.263 0.013 0.28 90.9 0.5 9.5 0.31 0.53 0.13 5 -5 4.5 3 3 7 

#13 0.01 0.4 0.001 0.266 0.007 0.12 95.66 0.34 9.8 0.31 0.7 0.13 5 -5 4.7 3 3 8 

 

Table 5. Statistical properties of the seventh aging cycle (aged case) vibration signal under measurement noises 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

1st scenario 

#0 0.01 0.01 0.005 0.31 0.31 25 25 5 5 0.62 0.62 0.38 5 -5 0 3 3 3 

#1 0.02 0.02 0.005 0.25 0.25 25.15 25.15 5 5 0.62 0.62 0.32 5 -5 0 3 3 3 

#2 0.04 0.04 0.005 0.19 0.19 25.22 25.22 5 5 0.64 0.64 0.26 5 -5 0 3 3 3 
#3 0.08 0.08 0.005 0.15 0.15 25.3 25.3 5 5 0.67 0.67 0.21 5 -5 0 3 3 3 

#4 0.16 0.16 0.005 0.11 0.11 25.4 25.4 5 5 0.73 0.73 0.18 5 -5 0 3 3 3 

#5 0.32 0.32 0.005 0.081 0.081 25.6 25.6 5 5 0.83 0.83 0.16 5 -5 0 3 3 3 
#6 0.64 0.64 0.005 0.058 0.058 25.8 25.8 5 5 1 1 0.16 5 -5 0 3 3 3 

#7 1 1 0.005 0.048 0.048 26.25 26.25 5.12 5.12 1.17 1.17 0.17 5 -5 0 3 3 3 

2nd scenario 

#8 0.1 0.005 0.001 0.017 0.35 90.99 0.43 9.5 0.65 0.68 0.61 0.23 5 -5 -4.5 3 3 5.47 
#9 0.5 0.005 0.001 0.004 0.356 98.74 0.2 9.94 0.46 0.93 0.61 0.23 5 -5 -4.9 3 3 6.4 

#10 1 0.005 0.001 0.002 0.357 100.13 0.2045 10 0.45 1.17 0.61 0.23 5 -5 -4.9 3 3 6.7 

#11 0.005 0.1 0.001 0.347 0.017 0.43 91 0.65 9.5 0.61 0.68 0.24 5 -5 4.5 3 3 3.4 
#12 0.01 0.2 0.001 0.263 0.013 0.47 91.10 0.7 9.5 0.61 0.75 0.18 5 -5 4.5 3 3 4 

#13 0.01 0.4 0.001 0.266 0.007 0.31 95.84 0.56 9.8 0.6 0.87 0.18 5 -5 4.76 3 3 4.46 

 

The spectral density results and coherences (Figures 6-11) 

illustrates more supporting features. Note that, Test #0 in 

Table 3 is the reference test for healthy system (1st cycle). It 

does not contain significant amount of measurement and 

process noises. Figures 6 and 7 are the reference figures for 

spectral representation of each aging cycle. They demonstrate 

the ability on estimating dominant frequencies of the proposed 

sensor fusion application.  

Figure 8(c) and Figures 10(b-c) clearly demonstrate that, in 

spite of the defected sensors, the fused signal is able to detect 

the aging indications which are noticeable between 2-4 kHz. 

Moreover, as a result of Kalman algorithm filtering 

characteristics, the data fusion supported by KF can eliminate 

the faulty sensor. Thus, the faulty sensor becomes 

distinguishable. As regards, when only one of the sensors is 

damaged or faulty (Figure 10), the fused signal converges to 

the original signal and calculating an accurate estimation. 

In order to support spectral findings, coherences between 
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the fused signal and the original signals are also shared in 

Figures 8 and 11 for different tests. According to the Figures 

8 and 11, when the system is aged, the coherence of the fused 

signal with the original one grows in the 2-4 kHz frequency 

range. In addition, when all of the sensors are damaged (Figure 

9), the coherence decrease in the lower frequency range. 

As a consequence, in spite of the existence of the faulty 

sensors, the source of the faults (either one sensor or all sensors) 

can be easily identified. Thus, the SV is executed very 

successfully. Moreover, since the KF fusion algorithm 

imitates the frequency components between 2-4 kHz, FD can 

be performed simply. To sum up, the outputs of the spectral 

and the statistical analyses justify each other. 

 

 

 

Figure 6. Spectral results of Test #0 (The reference test) for different aging cycles 

 

 
 

Figure 7. Coherences of the reference test for different aging cycles 

 

 
 

Figure 8. Spectral results of Test #7 
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Figure 9. Coherences of Test #7 

 

 
 

Figure 10. Spectral results of Test #13 

 

 
 

Figure 11. Coherences for Test #13 

 

4.2 Fault detection under severe process noise 

 

In the third scenario, in order to observe the effect of the 

process noise, authors apply various process noises for each 

aging cycle. The statistical and spectral results related to the 

healthy condition, third and seventh cycles are presented here 

also under the impact of process noise. 

Tables 6-8 demonstrate that the process noise (Q) has a 

significant effect on the standard deviations of the measured 

signals and the fused signal. Process noise influences similarly 

on the both sensors and the fused signal. Consequently, the 

errors remain constant while the standard deviation increases 

equally. Moreover, impact of aging is detectable on the 

standard deviation values. Under the significant process noise, 

the Kalman gain of all sensors saturate to the same value (0.5). 

Figures 12 and 13 illustrate the spectral and coherence 

analyses, respectively. The fused signal does not show any 

information expect for the very dominant frequency 
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components for different aging cycles, as seen in Figure 13. 

There exists some limited information about aging in seventh 

cycle since these components are dominant. However, if the 

process noise increases more and more, the information about 

the aging which exist in the fused signal, is vanished. Figure 

13 represents a better perspective about the fault component of 

the system (aging indications). The amplitude of the frequency 

components between 2-4 KHz increases. Consequently, the 

fault is detected through coherences, while the process noise 

is dominant. Nevertheless, to obtain a relationship between the 

process noises and the aging cycles, a health information is 

proposed in the next section. 

 

Table 6. Statistical properties of the first aging cycle (healthy case) vibration signal under process noise 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

#1 0.005 0.005 0.005 0.36 0.36 25 25 5 5 0.15 0.15 0.12 5 -5 0 3 3 3 
#2 0.005 0.005 0.01 0.41 0.41 25 25 5 5 0.17 0.17 0.14 5 -5 0 3 3 3 

#3 0.005 0.005 0.02 0.44 0.44 25 25 5 5 0.19 0.19 0.17 5 -5 0 3 3 3 

#4 0.005 0.005 0.04 0.47 0.47 25 25 5 5 0.24 0.24 0.22 5 -5 0 3 3 3 
#5 0.005 0.005 0.08 0.48 0.48 25 25 5 5 0.31 0.31 0.30 5 -5 0 3 3 3 

#6 0.005 0.005 0.16 0.492 0.492 25 25 5 5 0.42 0.42 0.41 5 -5 0 3 3 3 

#7 0.005 0.005 0.32 0.496 0.496 25 25 5 5 0.58 0.58 0.57 5 -5 0 3 3 3 
#8 0.005 0.005 0.64 0.498 0.498 25 25 5 5 0.81 0.81 0.81 5 -5 0 3 3 3 

#9 0.005 0.005 1 0.498 0.498 25 25 5 5 1 1 1 5 -5 0 3 3 3 

 

Table 7. Statistical properties of the third aging cycle vibration signal under process noise 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

#1 0.005 0.005 0.005 0.36 0.36 25 25 5 5 0.3 0.3 0.25 5 -5 0 3 3 3 
#2 0.005 0.005 0.01 0.41 0.41 25 25 5 5 0.31 0.31 0.27 5 -5 0 3 3 3 

#3 0.005 0.005 0.02 0.44 0.44 25 25 5 5 0.33 0.33 0.3 5 -5 0 3 3 3 

#4 0.005 0.005 0.04 0.47 0.47 25 25 5 5 0.36 0.36 0.34 5 -5 0 3 3 3 
#5 0.005 0.005 0.08 0.48 0.48 25 25 5 5 0.41 0.41 0.4 5 -5 0 3 3 3 

#6 0.005 0.005 0.16 0.492 0.492 25 25 5 5 0.5 0.5 0.49 5 -5 0 3 3 3 

#7 0.005 0.005 0.32 0.496 0.496 25 25 5 5 0.64 0.64 0.63 5 -5 0 3 3 3 
#8 0.005 0.005 0.64 0.498 0.498 25 25 5 5 0.85 0.85 0.85 5 -5 0 3 3 3 

#9 0.005 0.005 1 0.498 0.498 25 25 5 5 1.04 1.04 1.04 5 -5 0 3 3 3 

 

Table 8. Statistical properties of the seventh aging cycle vibration signal under process noise 

 
Test R1 R2 Q Kx1 Kx2 MSE1 MSE2 RMS1 RMS2 Std 

x1 

Std 

x2 

Std 

xf 

M 

x1 

M 

x2 

M 

xf 

Kurt 

x1 

Kurt 

x2 

Kurt 

xf 

#1 0.005 0.005 0.005 0.36 0.36 25 25 5 5 0.6 0.6 0.4 5 -5 0 3 3 3 

#2 0.005 0.005 0.01 0.41 0.41 25 25 5 5 0.62 0.62 0.51 5 -5 0 3 3 3 
#3 0.005 0.005 0.02 0.44 0.44 25 25 5 5 0.62 0.62 0.56 5 -5 0 3 3 3 

#4 0.005 0.005 0.04 0.47 0.47 25 25 5 5 0.64 0.64 0.60 5 -5 0 3 3 3 

#5 0.005 0.005 0.08 0.48 0.48 25 25 5 5 0.67 0.67 0.65 5 -5 0 3 3 3 
#6 0.005 0.005 0.16 0.492 0.492 25 25 5 5 0.73 0.73 0.71 5 -5 0 3 3 3 

#7 0.005 0.005 0.32 0.496 0.496 25 25 5 5 0.83 0.83 0.82 5 -5 0 3 3 3 

#8 0.005 0.005 0.64 0.498 0.498 25 25 5 5 1 1 1 5 -5 0 3 3 3 
#9 0.005 0.005 1 0.498 0.498 25 25 5 5 1.17 1.17 1.16 5 -5 0 3 3 3 

 

 
 

Figure 12. Spectral results under severe process noise (Test #9) for each aging cycle 
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Figure 13. Coherences under severe process noise (Test #9) for each aging cycle 

 

 

5. HEALTH INFORMATION CALCULATION 

 

The health information (HI) is proposed considering two 

purposes.  

1. To distinguish the process noise from the aging: This 

topic is totally new for the literature. The problem in the 

system might be caused by the system itself (as aging) or the 

sensors (as measurement noises) or the remaining system 

components (as process noise). 

2. To provide an accurate FD under process noise: 

As the nature of the algorithm, with the raise of the process 

noise, a proper and correct FD becomes impossible. Because 

of that a threshold is presented to specify the possible 

maximum level of the process noise which allows an accurate 

FD. 

For these aims, two parameters are defined to illustrate the 

effect of the different process noises on each aging cycle. The 

calculated parameters (K and P) are given in Table 9 and Table 

10. 

 

𝐾 ≜
𝑆𝑁𝑅(𝐹𝑢𝑠𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑆𝑁𝑅(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙)
=  

𝑆𝑁𝑅(𝑥𝑓)

𝑆𝑁𝑅(𝑥)
 (10) 

 

𝑃 ≜
𝑃2𝑃(𝐹𝑢𝑠𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑃2𝑃(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙)
=

𝑃2𝑃(𝑥𝑓)

𝑃2𝑃(𝑥)
 (11) 

 

K factor is the signal to noise ratio (SNR) while P factor is 

the peak to peak (P2P) value of the fused signal over the 

original one. Figures 13-14 are graphical representations of the 

Tables 9 and 10, respectively. Note that, in these tables Cyci 

represents ith Cycle. 

According to Figures 14 and 15, K factor goes to the 

saturation while P factor raises with the process noise 

increment. Furthermore, in each aging cycle, the amplitude of 

both factors decreases. However, these factors are not practical 

individually. Hence, the following statement (Eq. (12)) is 

proposed in this study which is called as health information 

(HI). Table 11 represents HI values for each aging cycle under 

various process noise levels.  

 

𝐻𝑒𝑎𝑙𝑡ℎ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐻𝐼 ≜ log (
𝐾

𝑃
) (12) 

 

Figure 16 gives better perspective on HI. The rate of HI 

drops down when the process noise grows.  

The authors noted that, a threshold is required to 

discriminate the aged system and a system with process noise. 

This threshold is needed to comprehend the behavior of the 

system and distinguish the aging of the IM while the process 

noise is high. When the spectral interpretation for the fused 

signals is investigated deeply, some natural thresholds are 

acquired. It is noted that there are some intervals in which the 

process noise caches aging. Under low levels of process noise, 

the aging can be clearly seen on the PSD. However, the higher 

process noise prevents to detect the aging. Consequently, it is 

seen that while HI is lower than -0.3, process noise becomes 

dominant over aging. The regions for dominants process noise 

are shown in Table 11 with grey shaded. The intervals which 

are identified to interpret HI are listed below. 

• When HI>0.3, the system is healthy and the process noise 

is not dominant. 

• When -0.3<HI<0.3, although the process noise increases, 

the aging indications (fault frequencies) can be detected 

through the fused signal. However, in this region, the PSD 

and coherence analyses are required for an accurate 

decision. 

• When HI<-0.3, the process noise is very dominant, hence, 

the fused signal is not able to indicate the proper 

information about system. 

 

 
 

Figure 14. Table 9 graphical representation, K factor 
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Figure 15. Table 10 graphical representation, P factor 

 

 
 

Figure 16. The graphical representation of Health 

Information 

 

Table 9. K factor values for the different process noises on each aging cycle 

 
Q 

Cyc  

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1 1.5 2 2.5 3 3.5 4 4.5 5 10 

Cyc1 2.6 3.6 4.5 5.9 7.7 8.3 10.2 11.7 12.3 12.6 13.2 12.8 14.1 13.9 14.3 14.3 14.8 

Cyc2 1.2 1.3 1.54 1.78 2.1 2.44 2.7 2.9 3.3 3.3 3.63 3.63 3.63 3.63 3.63 3.63 3.63 

Cyc3 1.04 1.14 1.26 1.4 1.7 1.78 2.1 2.2 2.4 2.4 2.5 2.7 2.7 2.7 2.7 2.7 2.7 

Cyc4 0.99 1.1 1.2 1.43 1.72 1.9 2.2 2.5 2.7 2.9 3 3.15 3.3 3.5 3.5 3.5 3.7 

Cyc5 0.94 1.01 1.1 1.2 1.33 1.43 1.7 1.8 1.93 1.95 2.12 2.12 2.3 2.2 2.2 2.2 2.4 

Cyc6 0.9 1.02 1.14 1.3 1.56 1.75 2.1 2.3 2.5 2.6 3 2.8 2.9 3 3.2 3.1 3.56 

Cyc7 0.93 1.01 1.06 1.2 1.25 1.4 1.5 1.75 1.8 1.83 2 2 2 2.15 2 2.24 2.2 

Cyc8 0.92 0.97 1.01 1.05 1.1 1.2 1.3 1.35 1.45 1.5 1.55 1.62 1.67 1.66 1.74 1.72 1.95 

 

Table 10. P factor values for the different process noises on each aging cycle 

 
Q 

Cyc  

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1 1.5 2 2.5 3 3.5 4 4.5 5 10 

Cyc1 1.3 1.5 2.1 2.6 3.5 5 6.8 8.56 10 11.7 14.6 14 14.8 17 17.7 21.3 26.1 

Cyc2 1.1 1.2 1.5 2 2.5 3.25 5 5.8 7.2 8.1 10.3 10.7 10.6 12.5 13 13 17.8 

Cyc3 1.01 1.07 1.23 1.43 2.3 2.7 3.5 4.7 5.65 7 7.35 7.23 8.76 9 10.1 9.6 13 

Cyc4 0.96 1.02 1.2 1.4 1.8 2.2 3.1 3.8 4.6 5.3 5.8 6.45 7.1 7.25 7.25 7.25 10.8 

Cyc5 0.86 0.96 1.08 1.3 1.6 2 2.4 3.1 3.7 4.25 5.23 5.25 5.67 6.1 6.7 7.2 10 

Cyc6 0.85 0.99 1 1.27 1.5 1.86 2.4 3 3.45 4.1 4.5 5.4 5.1 5.57 5.8 6.3 9.3 

Cyc7 0.8 0.94 1 1.11 1.3 1.7 2.1 2.4 3 3.06 3.5 3.75 4.2 4.45 4.8 5.5 7.46 

Cyc8 0.85 0.93 1 1.13 1.24 1.43 1.6 1.93 2.25 2.6 3 3.1 3.6 3.7 3.62 3.6 6.1 

 

Table 11. HI values for the different process noises on each aging cycle 

 
Q 

Cyc 

0.08 0.16 0.32 0.64 1 1.5 2 2.5 3 3.5 4 4.5 5 10 

Cyc1 0.36 0.34 0.22 0.18 0.13 0.09 0.03 -0.045 -0.045 -0.022 -0.097 -0.097 -0.17 -0.24 

Cyc2 -0.05 -0.07 -0.12 -0.27 -0.3 -0.34 -0.39 -0.46 -0.47 -0.47 -0.5 -0.55 -0.55 -0.7 

Cyc3 -0.01 -0.13 -0.18 -0.22 -0.32 -0.38 -0.47 -0.47 -0.43 -0.5 -0.5 -0.57 -0.55 -0.68 

Cyc4 0 -0.022 -0.065 -0.15 -0.18 -0.23 -0.26 -0.28 -0.31 -0.34 -0.32 -0.32 -0.32 -0.47 

Cyc5 -0.036 -0.081 -0.15 -0.15 -0.24 -0.28 -0.35 -0.4 -0.4 -0.4 -0.44 -0.48 -0.52 -0.62 

Cyc6 0 0.01 -0.03 -0.06 -0.11 -0.14 -0.2 -0.17 -0.28 -0.25 -0.27 -0.25 -0.3 -0.42 

Cyc7 0 -0.018 -0.09 -0.15 -0.14 -0.22 -0.23 -0.23 -0.27 -0.32 -0.32 -0.38 -0.39 -0.52 

Cyc8 -0.03 -0.05 -0.075 -0.09 -0.15 -0.22 -0.24 -0.28 -0.28 -0.32 -0.36 -0.32 -0.32 -0.5 

 

 

6. CONCLUSIONS 

 

In this study, a data fusion application supported by KF for 

IFE is proposed. It integrates SV and FD operations in addition 

to the discrimination of process noise and aging. Vibration 

signals which are obtained through an accelerated aging 

process are used in this study. At the first step, the sensors are 

validated (SV) supported by statistical and spectral analyses. 

It is demonstrated that FD is also possible through the 

proposed method regarding the nature of Kalman filter. Then, 
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the effect of the process noise on the fused signal is studied 

while the system is aged. At last, a health rate is proposed to 

distinguish the aging while process noise exists. According to 

the results, the following statements are listed as a conclusion: 

• An IFE including SV and FD is possible through the 

proposed technique. 

• According to the spectral illustrations, when one 

sensor is damaged, the proposed method eliminates it. Thus, 

the fused signal is not affected by the defected sensor. 

• When any sensor is damaged, KG drops down 

significantly. 

• When the process is noisy, KG saturates to a constant 

value.  

• In the presence of damaged sensor, the fused signal 

can detect the frequency components between 2-4 kHz in each 

aging cycle. Thus, this property renders FD possible. 

• Calculating the coherence between the fused and the 

original signals is the easiest way for FD. 

• A health rate can be defined referring the 

mathematical characteristics of the fused and original signal.  

• Some thresholds can be defined for HI indicating if 

the system and process is healthy or not.  

Consequently, the results which are presented in this paper, 

prove that data fusion through KF is a powerful and novel 

technique which is extremely reliable for evaluating the 

system under various effects such as aging, measurement and 

process noises. 
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APPENDIX 

Table A.1. The nameplate of the test motor 

Property Technical Information 

Motor Type Premium Efficiency Motor 

US Electrical Motors  

Manufacturer Division of Emerson Elec. Co. St. 

Louis, MO 

Model Number 7965 B 

Power 5 HP 

Phase 3 

Speed 1,750 rpm 

Frame Number 184T 

Frame Type TCE 

Voltage 230/460 V 

Current 13/6.5 

Service Factor 1.15 

Frequency 60 Hz 

Power Factor 0.825 

Efficiency 90.2% 

NEMA Design B 

Insulation Class F 

Enclosure TE 

Maximum Ambient 

Temperature 

40℃ 

LR KVA code J 

Duty  Continuous 

Maximum KVAR 1.4 

Shaft End Bearing Type 6206-2Z-J/C3 

Drive End Bearing Type 6206-2Z-J/C3 

ID Number Z08Z177R190F 
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